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High-throughput two-hybrid analysis

The promise and the peril

Stanley Fields

Howard Hughes Medical Institute, Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA

The yeast two-hybrid (YTH) assay is an example of a
technology developed for the biological sciences in the
last few decades that has followed a progression of
four stages leading to genomic scale use. The first stage
is the initial description of a method: the prototype
version. Typically, the methodology is demonstrated
by a single example that is performed under defined
and optimal conditions. For a large fraction of new
technologies, few other examples beyond this proto-
type are ever described. However, some methods prove
of value in solving problems that confront biologists
and enter a second stage: widespread application. Dur-
ing this period, quality improvements come into play,
as experimentalists throughout the community add
their own adaptations. Often at this stage, the use of a
methodology is further spread by commercialization of
reagents or equipment. Some fraction of these broadly

applied technologies then prove sufficiently robust to
be scaled up in scope, leading to a third stage: high-
throughput (HT) usage. This stage is made possible by
advances in some combination of automation, minia-
turization, reduction in reagent costs and further
refinements of the approach. As throughput escalates,
so does the amount of data generated, sometimes to
a staggering degree. Thus, the maturing of this scale-
up phase elicits a fourth stage: a computational phase.
Here, novel algorithms, which could not have been
imagined given previous technologies, are developed to
deal with these huge data sets. The HT and computa-
tional stages continue hand-in-hand, constituting many
of the approaches of what has been termed functional
genomics or systems biology.

The quintessential example of this progression is
DNA sequence analysis. The major prototype
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The two-hybrid method detects the interaction of two proteins by their
ability to reconstitute the activity of a split transcription factor, thus allow-
ing the use of a simple growth selection in yeast to identify new inter-
actions. Since its introduction about 15 years ago, the assay largely has
been applied to single proteins, successfully uncovering thousands of novel
protein partners. In the last few years, however, two-hybrid experiments
have been scaled up to focus on the entire complement of proteins found
in an organism. Although a single such effort can itself result in thousands
of interactions, the validity of these high-throughput approaches has been
questioned as a result of the prevalence of numerous false positives in these
large data sets. Such artifacts may not be an obstacle to continued scale-up
of the method, because the classification of true and false positives has pro-
ven to be a computational challenge that can be met by a growing number
of creative strategies. Two examples are provided of this combination of
high-throughput experimentation and computational analysis, focused on
the interaction of Plasmodium falciparum proteins and of Saccharomy-
ces cerevisiae membrane proteins.
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sequencing method was the introduction of dideoxy-
nucleotide chain terminators in a synthesis reaction
with DNA polymerase I [1]. Although this version of
the dideoxy procedure led to widespread use and the
accumulation of many more DNA sequences that had
been accomplished heretofore, it was the conversion of
the method to a fluorescence-based and machine-read-
able format, combined with the assembly line style of
the modern genome center, that made possible the
deciphering of the tens of billions of sequenced bases
now available [2]. As the sequence data accumulated,
ever more sophisticated computational approaches
were devised to examine coding capacity, repeats,
duplications, mutations, recombinations, sequences of
related genomes, and many other properties. Although
sequence data continue to flow in at a prodigious rate,
much of the key literature that relates to genome
sequences now consists of novel computational analy-
ses. Progressions similar to that for DNA sequence
analysis can be outlined for transcriptional profiling
via DNA arrays, the identification of regulatory
regions in DNA, and the detection of human DNA
sequence polymorphisms.
In the proteomics arena, the appreciation that pro-

teins exert virtually all of their activities via inter-
actions with other molecules – be they other proteins,
nucleic acids, lipids, carbohydrates or small molecules –
has driven the development of technologies to exam-
ine these macromolecular associations. The most
realized of these methods detect protein–protein inter-
actions, with two approaches proving to be most
widespread: the YTH assay and the biochemical purifi-
cation of tagged proteins followed by identification of
associated proteins via mass spectrometry. Here, I
focus on the yeast assay, but note that many of the
conclusions apply equally well to the biochemical
approach [3,4].

YTH progression

The original description of the YTH assay [5] intro-
duced the idea of splitting into two domains a site-
specific transcription factor, whose activity could then
be reconstituted via the interaction of heterologous
proteins fused to these two domains. Although the test
case for this assay was only a single example of yeast
proteins previously known to interact, the results led
to the suggestion that the approach might be applic-
able to the identification of new interactions via a
search of a library of activation domain-tagged pro-
teins. Such a search procedure was shown to be feas-
ible [6], and the assay was soon adopted by numerous
laboratories and converted to the ‘kit’-based format

that is popular with molecular biologists. The yeast
system had the advantages of speed, sensitivity and
simplicity in addressing an important biological ques-
tion at a time when other methods were far more
laborious, and when the identification of an interacting
protein following its purification was difficult. The
two-hybrid assay also proved to have utility with pro-
teins from essentially any organism and involved in
any biological process, although certain types of pro-
teins, such as membrane or extracellular proteins,
were less amenable to this approach. The two-hybrid
concept also proved remarkably malleable, with adap-
tations appearing that detected protein–DNA, protein–
RNA, or protein–small molecule interactions, as well
as protein–protein interactions that are dependent on
post-translational modifications, that occur in com-
partments of the cell other than the nucleus, or that
yield signals other than transcription of a reporter
gene [7].

The typical two-hybrid experiment, during most of
the 15 years that the method has been around, focused
on a single protein or, at most, a few proteins implica-
ted in the same process. An experimenter carrying out
the method might find that for the protein fused to the
DNA-binding domain (often termed the ‘bait’) used as
the target in the search, the assay yielded a handful of
candidate interactors (often termed the ‘prey’) as acti-
vation domain-fused proteins. These candidates were
generally analyzed individually to evaluate their
authenticity, by using experimental methods that might
include co-immunoprecipitation, in vitro biochemical
binding, protein localization, or transfection of the
genes encoding the candidate proteins in cell lines.
From these follow-up experiments, a common outcome
was that all but one of the candidates were eliminated
from consideration as relevant partners, and an even-
tual publication highlighted only this survivor. The
other candidates, which proved not to be bona fide
interactors, were considered false positives and were
never reported.

It is important to distinguish two types of proteins,
not of biological relevance, that can be recovered from
a two-hybrid screen. The first type consists of those
that do indeed bind to the bait protein in the context
of the YTH assay, but not in the normal in vivo con-
text. Such proteins might be, for example, members of
a family with the requisite recognition property but
not the specific member that recognizes the bait pro-
tein in its normal cellular milieu. The second type
represents artifacts of the YTH assay itself, wherein
transcriptional activity occurs independently of any
protein–protein interaction. Such artifacts include pro-
teins that when fused to a DNA-binding or activation
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domain can activate transcription on their own, plas-
mid rearrangements or copy number changes that gen-
erate such auto-activators, or alterations at a reporter
gene that result in constitutive expression. These false
positives, while not reflecting binding in the context of
the yeast assay, may still be highly reproducible. Our
own experience is that the great bulk of false positives
which arise in two-hybrid searches and that are gener-
ally eliminated when they occur in small-scale experi-
ments, fall into this second class.

Beginning in the mid-1990s, efforts were initiated to
apply the two-hybrid assay on a HT basis, first with
bacteriophage T7 [8], then with yeast [9–11], and more
recently with Drosophila melanogaster [12,13] and
Caenorhabditis elegans [14]. Several developments, such
as the availability of genome sequences, reduced pri-
mer and sequencing costs, array and pooling strategies,
and the increasing use of robotics, made such scale-ups
possible. As anticipated, the number of protein inter-
actions present in biological databases [15] increased
enormously, with a curve not unlike that of DNA
sequence accumulation (Fig. 1). Despite this consider-
able ramp-up in the number of interactions detected, it
is likely that only a small fraction of the total number
that occur in a cell has been uncovered. Parallel efforts
in either yeast [10,11] or D. melanogaster [12,13] show
little overlap in their data sets, and approaches based
on using small fragments in the assay yield different
interactions than those based on full-length proteins.

In addition, the problem of false positives did not
disappear with the accelerating scale of two-hybrid
experiments. Instead, what disappeared was the ability

to validate each candidate interaction by another
experimental approach, given that the number of inter-
actions which would need to be tested overwhelmed
the capacity of other methodologies to do so. Thus,
data sets were published that included many pairs of
proteins that seemed biologically implausible. Further-
more, when computational approaches (see below)
were applied both to the HT data sets and to the com-
bined data set generated by many small-scale experi-
ments (the ‘community’ data set), clear differences
were found in the properties of these two data sets
[16]. The conclusion from some of these studies was
that 50% or more of the HT data were likely to be
false positives.

If such a high prevalence of spurious data was
indeed the case, it is fair to ask: are these large-scale
efforts worth undertaking? I would argue that they
are unquestionably of value, for at least four reasons.
First, the goal of a complete description of an organ-
ism’s protein network warrants whatever attempts,
however early in their maturation, are needed to
accomplish it. As projects to decipher such a network
for human cells begin ramping up, they may eventu-
ally result in data as significant as the human genome
sequence. Second, when researchers tackle ambitious
goals, they reveal the limitations of the technology,
thus enabling subsequent improvements. For example,
YTH analysis can be accompanied by increasingly
large scale co-immunoprecipitation approaches, such
as that attempted for 143 pairs of C. elegans inter-
actions [14], and other robust experimental means of
validating interactions can be envisioned. For exam-
ple, in the approach of Tong et al. [17], two-hybrid
positives were compared with protein interactions
derived from phage display experiments, with the
intersection of these noisy (but independent) data sets
yielding pairs of higher confidence. Third, protein
interaction data can be highly useful to biologists,
simply as lists of candidates; in this way, these data
are similar to the noisy results of other approaches,
such as large-scale chromatin immunoprecipitation
[18,19] or synthetic lethality studies [20]. Those with
sophisticated knowledge of a particular protein may
have observed one or another two-hybrid candidate
also arise in a complementary approach; they may
home in on a candidate based on other large-scale
data, such as expression profiles; or they may be able
to test a defined set of candidates in another experi-
mental assay. Fourth, computational biologists have
applied an ever-burgeoning set of approaches to exam-
ine protein interaction data, often with the aim of
discriminating biologically likely examples from false
positives.
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Fig. 1. A comparison of DNA sequence and protein interaction

data. Cumulative base pairs of DNA sequence available in

GenBank (http://www.ncbi.nlm.nih.gov/) are shown in red, and

cumulative protein interactions available in the DIP database (http://

dip.doe-mbi.ucla.edu/) are shown in blue. Interaction data are from

L. Salwinski and D. Eisenberg, University of California, CA, USA.

(personal communication).
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Computational assessments and
insights

As protein interaction data accumulated via HT
approaches, an increasing number of papers appeared
from computational biologists in which the quality of
interaction maps was analyzed. Just as the experimen-
tal approaches to generate these data focused on yeast,
the computational ones also centered on this organism.
The basis for most of these computational strategies is
a test of the correlation between the interaction data
and other properties known about the proteins, protein
networks, or the corresponding genes.
One major contribution from the computational

analyses was the finding that interactions that are
evolutionarily conserved have a higher probability of
being biologically relevant than those detected in only
a single organism [21–23]. Indeed, some interactions
have been experimentally observed in several different
organisms. In a similar manner, computational analy-
ses demonstrated that if two proteins implicated in an
interaction have paralogues that also interact, this
interaction is of increased likeliness [24].
Several studies demonstrated that Saccharomyces

cerevisiae genes whose encoded proteins interacted are
more likely than random gene pairs to be transcrip-
tionally CO–regulated across different biological con-
ditions [24–29]. Such a correlation allows a set of
interaction data to be parsed into those of higher or
lower confidence. Similar analyses have been per-
formed for the C. elegans [14] and D. melanogaster
[12] data sets. However, it must be noted that many
interacting protein pairs, such as cyclins and cyclin-
dependent kinases, are encoded by genes with very
different transcriptional timing.
Another type of analysis has examined the connec-

tivity of protein networks: if protein A interacts with
proteins B and C, then the finding that B and C also
interact forms a closed loop of three proteins and
serves as a measure of interaction reliability [30–34].
Such interconnected clusters, which can be of varying
size, are a feature of many biological complexes and
pathways. Taken another step in analysis, a group of
proteins may form a conserved module [35–37], which
is reflective of these proteins performing a discrete bio-
logical activity. Such modules are often evolutionarily
conserved, at least in part, among many species.
Another computational approach evaluates the func-

tional assignments of interacting proteins. Given that a
set of interacting proteins is likely to work in the same
biological process, common functional annotations for
such proteins support their relevance [38,39]. Other
comparisons can be made between interaction data

and the available set of protein structures [40,41] or
protein domains [42]. Although only a very small frac-
tion of the interaction data corresponds to protein
complexes with solved structures, these examples pro-
vide a particularly good set for use for validating HT
approaches. Finally, several groups have taken a com-
bined approach, whereby interaction data are assessed
according to the amount and type of supporting data
[43,44]. Going beyond the experimentally derived data,
computational biologists have developed novel algo-
rithms that functionally link proteins, based on fea-
tures other than sequence homology or experimental
data [45], to predict protein networks. These algo-
rithms use properties such as the conservation or loss
of protein pairs during the evolution of species, the
presence of a protein with two domains matching up
to two separate proteins that interact, and the order of
genes encoding interacting proteins.

A striking insight to emerge from analyzing the
overall protein networks that result from large-scale
approaches is their scale-free degree distribution, in
which the number of links per protein is highly non-
uniform, ranging from a few hubs with many connec-
tions to the great majority of hubs with only a few
connections [37]. Another feature is their small-world
property, in which any two proteins can be connected
by a path with only a few links [37]. Such characteris-
tics are also seen in other networks, such as the
World Wide Web and social networks. In the case of
protein networks, the evolution of this topology can
be explained by the preferential attachment of new
nodes to ones that already have many links, in a pro-
cess related to gene duplication [37]. Highly connected
proteins are more likely to interact with a protein
that is duplicated than with one that has few links.
Thus, these highly connected proteins gain even more
links. Another intriguing aspect of the structure of
protein networks is their robustness, namely the abil-
ity to respond to changes. This robustness is a conse-
quence of the protein network topology, with random
loss of proteins mostly affecting the many proteins
with only a few partners rather than the small num-
ber of hubs [37]. In yeast, deletion of genes encoding
highly connected proteins is three times more likely to
result in a lethal phenotype than deletion of other
genes [46].

Plasmodium falciparum protein
interactions

In the last few years, my laboratory has taken on a
few projects that required HT two-hybrid methods
and that yielded data sets whose analysis required a
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significant investment in computational approaches. In
one, we have sought to identify protein–protein inter-
actions on a large scale for the malaria parasite Plas-
modium falciparum as part of a collaboration with
Prolexys Pharmaceuticals, Inc. (Salt Lake City, UT,
USA). One major issue with this organism is that
approximately two-thirds of the genes do not bear suf-
ficient similarity to genes of other organims to allow
functional predictions to be made [47]. A second issue
with the genes of P. falciparum is their exceptionally
high A+T content (of nearly 80%), which makes pro-
tein expression in heterologous organisms, such as
Escherichia coli or yeast, problematic. We observed in
pilot two-hybrid studies that P. falciparum proteins
generally either did not express or appeared as much
smaller protein fragments than expected. To circum-
vent these problems, we used a strategy developed by
Prolexys Pharmaceuticals in which hybrid proteins are
generated that consist of the Gal4 DNA-binding or
activation domain, a fragment encoded by a small seg-
ment of P. falciparum DNA, and a metabolic enzyme
whose activity can be directly selected for in the YTH
reporter strain (Fig. 2). The result of this configur-
ation is that only recombinant plasmids bearing the
P. falciparum insert as an in-frame fusion, and that
lead to successful transcription and translation to

produce the hybrid protein, are included in a two-
hybrid library.

Using this strategy, we carried out >30 000 two-
hybrid searches by mating random yeast transformants
expressing a DNA-binding domain fusion to an activa-
tion domain library [48]. Diploids were plated on
media selecting both for expression of the two meta-
bolic enzymes at the C termini of the fusions and for
the activity of the two-hybrid reporter genes. Only at
the stage when transformants grew on these selective
plates were plasmids recovered from the yeast, inserts
sequenced, and the identity of the two P. falciparum
fragments determined. Nearly 14 000 pairs of plasmid
inserts were sequenced, leading to an initial description
of >5000 unique protein–protein interactions.

From preliminary analyses of this data set, it was
clear that some proteins had many more partners than
did others, and that these partners, in the cases in
which they were annotated, tended to encompass a
huge diversity of biological processes. Thus, these ‘pro-
miscuous’ proteins appeared to behave as typical false
positives in the YTH assay. We used a computational
method to eliminate the interactions involving these
proteins, thereby deleting nearly half of the initial data
set and resulting in a core set of ! 2800 interactions.

A large fraction of the interactions in this core set
are between two proteins of uncharacterized function,
or between a protein of uncharacterized function and
a protein with an annotation, although some of the
annotations are of limited usefulness. We carried out
several computational approaches to attempt to find
some of the interactions most likely to be biologically
relevant. By searching for regions of the overall net-
work that are statistically more connected than others,
we identified a subnetwork around the P. falciparum
Gcn5 protein, the homologue of a yeast histone acety-
lase. The subnetwork also contained a number of other
proteins implicated in chromatin metabolism, DNA
replication, transcription and ubiquitin metabolism. By
comparing transcriptional profiles of the genes enco-
ding interacting pairs, we found another subnetwork
of interactions encompassing proteins implicated in
host cell invasion. These included several known mer-
ozoite surface proteins and others probably expressed
on the surface of the parasite. By analyzing interac-
tions for those enriched in specific protein domains, we
identified probable interactions involved in processes
such as RNA processing, transcription, translation and
ubiquitin metabolism. None of these approaches is cer-
tain to validate two-hybrid interactions as ones that
occur in the parasite; however, they provide test cases
for the parasitology community for additional research
efforts.

Gal4
AD

gene
fragment Y

metabolic
enzyme 1

Gal4
DBD

gene
fragment X

metabolic
enzyme 2

mate and carry out 
two-hybrid selection

AD ENZ 1
Y

ENZ 2
DBD

X

Gal4
binding site

reporter gene

Fig. 2. A two-hybrid selection using libraries that contain only plas-

mids whose protein fusions are expressed in yeast. Both the Gal4

DNA-binding domain (DBD) and activation domain (AD) plasmids

encode metabolic enzymes (ENZ) at the C terminus of the protein

fusions whose activities complement mutations in the yeast repor-

ter strain. Only when the gene fragments X and Y allow expression

of the metabolic enzymes are the recombinant plasmids included in

the DBD or AD library.
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Yeast membrane protein interactions

Another large-scale project that we have tackled
focused on the interactions of membrane proteins, a
difficult class of proteins to work with in interaction
studies because they are ill-suited for the nuclear local-
ization that is required for a transcription-based
approach (such as the two-hybrid assay) and they are
difficult to purify in biochemical approaches that rely
on tagged proteins and mass spectrometry identifica-
tion. We attempted to identify interactions for a set of
! 700 S. cerevisiae proteins annotated as integral mem-
brane proteins by applying a modified membrane two-
hybrid assay [49,50] on a large scale. This assay relies
on the fusion of two membrane proteins to the two
halves of ubiquitin, an N-terminal domain (N-Ub) and
a C-terminal domain (C-Ub) (Fig. 3A). The C-Ub
domain, in turn, is fused to a LexA-VP16 transcription
factor. Interaction of the membrane proteins reconsti-
tutes a quasi-native ubiquitin, leading to cleavage by

cellular ubiquitin-specific proteases after the ultimate
ubiquitin residue. The cleavage releases the transcrip-
tion factor, which enters the nucleus and activates
expression of reporter genes, detected in our case by
expression of the HIS3 gene, and thus growth on
media lacking histidine.

We generated an array of ! 1400 colonies, represent-
ing two transformants for each annotated membrane
protein, as a fusion to the N-Ub domain (Fig. 3B).
About half of the set of ! 700 C-Ub fusions were suit-
able to screen against this array by the use of a mating
assay. From a duplicate set of screens, we identified a
total of nearly 2000 putative protein interactions [51].
But, as with the traditional two-hybrid approach, we
realized that many of the interactions detected by the
split ubiquitin assay were likely to be false positives.

Unlike the case for P. falciparum proteins, for yeast
proteins there is a wealth of available data from both
small-scale and HT studies. Thus, a large fraction of
yeast proteins have been classified in the Gene Ontol-
ogy system [52] for their biological process, molecular
activity, or subcellular localization. Furthermore, virtu-
ally all of the genes of yeast have been individually
deleted and the resulting phenotypes of the deletion
strains examined for numerous properties [53]. Tran-
scriptional profiles of yeast genes have been carried
out under many different environmental conditions
[54]. In addition, we considered a number of features
of the interactions derived from the assay itself, such
as whether one or both of the transformants in the
array yielded a signal, whether positives were observed
in one or both of the duplicate screens, whether an
interaction was found in both of the reciprocal orienta-
tions of the vectors, and how much growth on a histi-
dine-deficient plate a transformant displayed.

To use all of this information for classifying the
interactions by likelihood, we collaborated with
William Noble’s group at the University of Washing-
ton to apply a support vector machine (SVM)
approach [55]. The SVM is an algorithm that is trained
on a set of positive examples and a set of negative
examples to ‘learn’ the features that discriminate these
two sets. It then uses this knowledge to separate the
uncharacterized examples into two groups that resem-
ble either the positive or the negative training set.

Our SVM analysis of 100 trials revealed that ! 7%
of the interactions were of the highest confidence and
always grouped with the positive set, 11% were of next
highest confidence, and 24% of the next highest con-
fidence. Slightly more than half of the interactions
were never grouped with the positive set and were
of low confidence. We identified examples of small
clusters of proteins implicated in such processes as

B

array of N-Ub fusions

mate to 
strain carrying 

C-Ub fusion

selection of diploids 
on -histidine plate
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C-Ub

PLV

PLV

N-Ub

gene Y C-Ub LexA-
VP16

gene X   N-Ub
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binding site
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ubiquitin-
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Fig. 3. Array-based split-ubiquitin approach. (A) Plasmids encode

protein fusions to the N-terminal (N-Ub) and C-terminal (C-Ub)

halves of ubiquitin. The C-Ub plasmid additionally encodes the

LexA-VP16 transcription factor. Interaction of the X and Y proteins

leads to reconstitution of ubiquitin, cleavage by cellular proteases,

and transcriptional activation of the HIS3 reporter gene by LexA-

VP16. (B) An array of transformants was generated that includes

!700 yeast membrane proteins fused to N-Ub. Mating of these

transformants to a strain carrying a protein fused to the C-Ub

domain allows selection of diploids on a plate deficient in histidine.
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insertion of proteins into the endoplasmic reticulum,
vesicle transport, sterol biosynthesis, and phosphate
transport. In each cluster, we were able to define inter-
actions of high likelihood (including positive training
set examples), as well as those of decreased likelihood.
The interactions defined in these clusters, like the sub-
networks found for P. falciparum proteins, ultimately
must be experimentally validated by biologists and bio-
chemists whose research focuses on these processes.

Conclusions and perspectives

The YTH assay turned out to be highly general in its
applicability to a wide range of different proteins, and
easily mastered by the biological community. However,
early efforts with this method demonstrated that in
addition to bona fide interactors, false positives were
readily observed. These undesirable positives could be
eliminated, but to do so required labor-intensive
experimental means. As the assay became more wide-
spread, it proved amenable to HT approaches, first for
simple organisms and then for fruit flies and nema-
todes. These large-scale approaches resulted in huge
data sets of interactions, but they also led to the inclu-
sion of a significant degree of false positives. Because
experimental methods could no longer be used to weed
out false positives, new computational methods to clas-
sify interactions by their confidence were developed.

The next frontier is likely to be protein interaction
maps of human cells, with efforts already underway to
accomplish this goal. The yeast assay, along with the
complementary biochemical approach, will be used to
yield enormous riches of interaction pairs, but con-
tinuing computational efforts will be needed both to
assess the reliability of the data and to reveal the
implications of these interactions for insights into bio-
logical processes.
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