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ABSTRACT 

Summary: Measuring the consequences of mutation in proteins is 

critical to understanding their function. These measurements are 

essential in such applications as protein engineering, drug develop-

ment, protein design and genome sequence analysis. Recently, 

high-throughput sequencing has been coupled to assays of protein 

activity, enabling the analysis of large numbers of mutations in paral-

lel. We present Enrich, a tool for analyzing such deep mutational 

scanning data. Enrich identifies all unique variants (mutants) of a 

protein in high-throughput sequencing data sets and can correct for 

sequencing errors using overlapping paired-end reads. Enrich uses 

the frequency of each variant before and after selection to calculate 

an enrichment ratio, which is used to estimate fitness. Enrich pro-

vides an interactive interface to guide users. It generates user-

accessible output for downstream analyses as well as several visu-

alizations of the effects of mutation on function, thereby allowing the 

user to rapidly quantify and comprehend sequence–function rela-

tionships. 

 

Availability and Implementation: Enrich is implemented in Python 

and is available under a FreeBSD license at 

http://depts.washington.edu/sfields/software/enrich/. Enrich includes 

detailed documentation as well as a small example data set. 

 

Contact: dfowler@uw.edu, fields@uw.edu  

 

Supplementary information: Supplementary text is available at 

Bioinformatics online.  

1 INTRODUCTION  

Understanding how variations in protein sequence relate to func-

tion is of fundamental importance. Measurement of protein activity 

is critical to engineer protein function, to understand how muta-

tions relate to disease, and to gain insight into catalytic mecha-

nisms (Alper, et al., 2006; Kato, et al., 2003; Weiss, et al., 2000). 

Efforts to parallelize measurement of protein activity rely on selec-

tion for a desired function present within a library of variants of a 

  
*To whom correspondence should be addressed.  

protein of interest using a display-based system that directly links a 

protein’s activity to its encoding DNA sequence (Levin and Weiss, 

2006; Pal, et al., 2006; Sidhu and Koide, 2007). Selection for func-

tion (e.g. ligand binding, catalytic activity, or stability) alters the 

population of displayed proteins, and thus their associated DNA 

molecules. DNA sequences encoding highly functional variants are 

enriched whereas DNA sequences encoding poorly functional 

variants are depleted.  

Sanger sequencing of library members after selection can reveal 

a few hundred highly functional variants. Recently, high-

throughput sequencing has been used to significantly increase the 

number of variants assessed (Di Niro, et al., 2010; Dias-Neto, et 

al., 2009; Ernst, et al., 2010; Fowler, et al., 2010; Hietpas, et al., 

2011; Hinkley, et al., 2011; Ravn, et al., 2010). Such “deep muta-

tional scanning” (Araya and Fowler, 2011) experiments engender 

significant analysis challenges. 

Here, we present Enrich, a tool to address these challenges. En-

rich identifies and enumerates unique protein sequences within 

high-throughput sequencing data. It calculates an enrichment ratio 

between unselected and selected libraries for each unique variant, 

and it creates a number of visualizations. Enrich is open-source, 

freely available, and modular, creating easy-to-manipulate output 

files. Thus, users can customize Enrich and perform project-

specific analysis.  

2 APPROACH 

Enrich is implemented in Python. Enrich requires approximately 

two hours to run on a typical data set on a desktop computer. To 

facilitate the analysis of multiple data sets in parallel, Enrich can 

function in a high-performance computing environment managed 

by the Oracle Grid Engine. Enrich uses the DRMAA distributed 

resource management API to facilitate extension to other environ-

ments (http://drmaa.org/). Enrich supports command line execution 

and an interactive mode that guides users through the configuration 

and execution of Enrich runs.  

Enrich takes as input FASTQ-formatted high-throughput se-

quencing data files acquired from an unselected and a selected 

library (Cock, et al., 2010). Enrich can use reads from any se-

quencing platform, provided they are FASTQ-formatted. If over-
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lapping paired-end reads have been acquired, Enrich corrects each 

read pair for sequencing error by examining agreement between 

the reads. At positions where the reads disagree, the nucleotide 

with the higher quality score is used.  If both reads have identical 

quality scores at the position in question, the read pair is removed. 

More robust error models could improve error correction, particu-

larly when overlapping paired-end reads are not available (e.g. 

ShoRAH) (Zagordi, et al., 2011).  

Variant sequences are identified and enumerated within the un-

selected and selected libraries. Variants containing insertions and 

deletions are removed. An enrichment ratio (selected/unselected) is 

calculated for each variant. Enrichment ratios are evaluated using a 

two-sided Poisson exact test to calculate a p-value for the signifi-

cance of enrichment or depletion for each variant. Multiple testing 

correction is performed using false discovery rates (Storey and 

Tibshirani, 2003). The resulting q-values enable the user to identi-

fy subsets of variants whose frequency is significantly altered by 

selection. To accomplish these tasks, the Enrich workflow is divid-

ed into seven modules that can run independently or all together 

(for a more detailed description, see the Supplemental text). 

Figure 1. Enrich Visualizations. Enrich produces three visualizations; 

examples from the data set included with Enrich are shown here. (a) The 

diversity within a library is illustrated by a heatmap of the frequency of 

each position-mutation combination. (b) The position-averaged change in 

mutational frequency between two libraries is shown. (c) The log2-scaled 

enrichment ratio for each position-mutation combination is plotted, indi-

vidually organized both by position and by amino acid (a single amino 

acid, serine, is shown). Blue dots indicate the enrichment or depletion of 

substitutions. Red squares correspond to wild type residues. Grey squares 

correspond to unobserved mutations.  

Enrich uses matplotlib to produce any of three visualizations as a 

starting point for further analyses (Figure 1). The visualizations 

show an estimation of library diversity, the position-averaged mu-

tation enrichment and an all-residue enrichment ratio scan. In addi-

tion to providing these visualization options, Enrich produces easy 

to use output files that can be carried forward into project-specific 

analyses. Enrich can take advantage of high performance compu-

ting to conduct many analyses in parallel. Enrich’s Python-based 

modular, extensible design enables users to customize the soft-

ware. Enrich facilitates deep mutational scanning, which can be 

widely applied to the breadth of disciplines that depend on under-

standing protein sequence-function relationships.  
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