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The generation of large-scale data sets is a fundamental

requirement of systems biology. But despite recent advances,

generation of such high-coverage data remains a major

challenge. We developed a pooling-deconvolution strategy that

can dramatically decrease the effort required. This strategy,

pooling with imaginary tags followed by deconvolution (PI-

deconvolution), allows the screening of 2n probe proteins (baits)

in 2 � n pools, with n replicates for each bait. Deconvolution

of baits with their binding partners (preys) can be achieved by

reading the prey’s profile from the 2 � n experiments. We

validated this strategy for protein-protein interaction mapping

using both proteome microarrays and a yeast two-hybrid array,

demonstrating that PI-deconvolution can be used to identify

interactions accurately with fewer experiments and better

coverage. We also show that PI-deconvolution can be used to

identify protein-small molecule interactions inferred from

profiling the yeast deletion collection. PI-deconvolution should

be applicable to a wide range of library-against-library

approaches and can also be used to optimize array designs.

Understanding protein function on a genome-wide scale is one of
the central goals of biology1. A fundamental task associated with
this goal is the elucidation of cellular functional and interaction
networks. Recently, large-scale protein-protein interaction experi-
ments, using yeast two-hybrid screens2–7 or affinity purification8–10

have provided critical insights into protein function and biological
network structure. In addition to the determination of protein
interaction networks, systems biology will require the elucidation
of other interaction (for example, protein-small molecule, protein-
nucleic acid) and functional (for example, protein phosphoryla-
tion) networks. Although the need to generate these types of data
sets is obvious, our current ability to do so is inadequate.

The challenges of generating protein-protein interaction data
sets serve as a good model for what will be required to obtain other
interaction and functional network data sets. Because the genera-
tion of a complete interaction network one protein pair at a time is
labor- (and material-) intensive, simpler alternatives have been

sought. The creation of spatially addressable proteome-wide
screening platforms (such as the array of yeast two-hybrid strains2

and proteome microarrays11,12), for instance, allows an entire
subject library to be screened at once and hits to be decoded
without the need for DNA or protein sequencing. But thousands of
array screens are required to cover a yeast-sized interactome, an
even more daunting undertaking when replicate screens are needed
to improve accuracy and coverage.

To date, pools of 8 baits or more have been used to screen yeast
two-hybrid arrays6,13. In these approaches, secondary small-scale
screens are used to deconvolute the hits. A major weakness of this
procedure is that final coverage completely depends on the primary
pooling screen, which is often performed only once. Conversely, a
primary screen with reduced stringency may generate too many
false positives, creating a huge burden on the secondary screens.
Furthermore, small-scale secondary screens may not be possible for
some platforms such as protein microarrays. Because genome- and
proteome-wide arrays have the physical capacity to detect far more
interactions than those of a typical single protein, an alternative
pooling strategy that allows prey-bait deconvolution is possible.
The PI-deconvolution strategy we describe here reduces the num-
ber of screens needed, and increases accuracy and coverage. In
addition, we suggest a new method to optimize array design using
the same principle.

RESULTS
Description of the strategy
In PI-deconvolution (Fig. 1), 2n baits are distinguished by their
assigned n-bit binary codes, which are text strings consisting of ‘+’
and ‘–’ symbols (Fig. 1b). The baits are assigned to n pairs of
experiments (each pair containing one ‘+’ and one ‘–’ experiment)
corresponding to the binary bits (Fig. 1c). In each experiment pair,
half of all the 2n baits will be loaded to the ‘+’ experiment pool and
the other half to the ‘–’ pool. Any single bait is used once and only
once in each pair of experiments. Whether a bait is used for the ‘+’
or ‘–’ experiment in a pair is determined by its symbol in the coding
string at the corresponding bit (Fig. 1b,c). For example, bait 6 is
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represented by string ‘�+�+’. At bit 2 (third digit from the right in
the string), its symbol is ‘+’. Thus in pair 2, bait 6 is included in the
‘+’ experiment. This ‘+’ experiment also includes all the other baits
with a ‘+’ sign in the column for bit 2. Each prey’s interacting bait(s)
can be revealed by the prey’s profile in all the n pairs of experiments.
For example, prey 2 binds to only bait 5 among baits 1–16. In
Figure 1c, prey 2 is detected in four experiments, which are ‘�’ of
pair 3, ‘+’ of pair 2, ‘�’ of pair 1 and ‘�’ of pair 0. Accordingly, prey
2 can be represented by the profile ‘�+��’, denoting its readout
in each of the four experiment pairs. As pair numbering corre-
sponds to bit numbering in the tag of a bait, the prey’s profile can
allow a direct track back to its own bait(s). In this case, the profile of
prey 2 is identical to the bit tag for bait 5; thus, we know that prey 2
binds to bait 5. With this strategy, 2n baits can be screened in 2 � n
arrays (Table 1). Pool size will be limited by the technical false
negative and false positive rates (discussed below); the flexibility in
setting different bit numbers (n) allows the strategy to be applied to
different scenarios. Besides substantially decreasing the number of
screens needed, a major advantage of PI-deconvolution is that all
the baits are screened n times (Table 1), which allows cross-
validation and thus improves both coverage and accuracy of data.

PI-deconvolution on proteome microarrays
We tested PI-deconvolution using yeast proteome microarrays11,12,
which contain 4,088 purified Saccharomyces cerevisiae proteins (as
glutathione S-transferase fusions) immobilized on nitrocellulose-
coated glass slides. For this purpose, we used 15 (B16 ¼ 24) V5
epitope-tagged bait proteins (Fig. 2a). By first probing the yeast
proteome microarrays with each of these 15 proteins individually,
we derived a small network of protein interactions (Fig. 2a). We
consider this a ‘gold standard’ network, because all the interactions
in the network have been reciprocally confirmed (Fig. 2a). We

prepared pools of 8 baits (Supplementary Table 1 online) and used
them to probe the microarrays. All interactions among the 15
proteins were detected and deconvoluted using PI-deconvolution
with only eight proteome microarrays, and all hits were reprodu-
cibly detected four times (Fig. 2a). Furthermore, although there
were several interacting protein pairs within the mixed pools of
baits, they did not appear to affect detection or deconvolution.
(Raw chip images are available online; http://labs.pharmacology.
ucla.edu/huanglab/webpub.)

PI-deconvolution on yeast two-hybrid arrays
We demonstrated the utility of PI-deconvolution to screen a
genome-wide two-hybrid array consisting of B6,000 yeast strains,
each designed to contain one of the B6,000 S. cerevisiae open
reading frames (ORFs) fused to the Gal4 activation domain2. To
this end, we used 16 two-hybrid bait strains that each express a full-
length ORF fused to the Gal4 DNA-binding domain (Fig. 2b).
Thirteen of these bait strains have previously been screened against
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Figure 1 | Scheme for PI-deconvolution. (a) Graph representation of a hypothetical 32-protein network showing known interactions. Yellow filled circles,

proteins (nodes); red lines, interactions (edges). For simplicity, only nodes and edges concerning proteins 1–16 are shown. (b) Proteins 1–16 are used as the

first batch of baits to identify their preys. The total 32 proteins can be covered similarly with a second batch of experiments. We encode each bait with a 4-bit

‘+’ or ‘–’ string (imaginary coding tag); four bits are enough to uniquely encode 16 (¼24) baits. Thus, n bits can encode 2n distinct baits. (c) We prepare four

pairs of bait pools numbered 3, 2, 1 and 0, corresponding to each of the 4 bits. Every pair contains a ‘+’ pool and a ‘–’ pool, each using 8 baits (half the batch

size). Altogether, there will be 8 (2n) experiments (rows)—instead of 16 (2n)—to identify all interacting preys. Each column represents the profile of a prey:

positive signal, red, and negative signal, black. All valid preys (outlined columns) and their possible baits are listed. If a prey binds to only one bait in a batch,

the prey should be detected only once in each pair of experiments. The profile of a prey denotes its readout in each of the experiment pairs. ‘+’ or ‘�’ at a given

bit in the profile indicates that the prey is detected in the ‘+’ pool or the ‘�’ pool, respectively, of the corresponding experiment pair. Deconvolution is

accomplished by matching a prey’s profile with the coding strings of the baits. We use degenerate profile ‘n’ or ‘?’ to indicate neither or both experiments in a

pair give a positive call (such as prey 5 or prey 13). Preys with degenerate profiles can still be partially deconvoluted and further narrowing-down can be

achieved by reciprocal confirmation. (d) A graphical representation of the result in c.

Table 1 | Number of probings required in PI-deconvolution

Bit
number

Batch
size

Pool
size

Experiment
number

Total number
of experiments

‘Depth of
coverage’a

(n) (2n) (2n–1) (2n) (n � N / 2n–1)

4 16 8 8 50.0% � N 4

5 32 16 10 31.3% � N 5

6 64 32 12 18.8% � N 6

7 128 64 14 10.9% � N 7

8 256 128 16 6.25% � N 8

Conventional single-bait strategy N 1

N is the number of proteins in the genome.
aNumber of times the whole genome is covered.

184 | VOL.3 NO.3 | MARCH 2006 | NATURE METHODS

ARTICLES
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

em
et

h
o

d
s



the genome-wide array. Because of experimental variability, these
single-bait screens required each bait to be screened in duplicate,
resulting in a total of 32 screens for the 16 baits2,14. For the
PI-deconvolution format, the 16 bait strains were mixed into
eight pools and screened against the two-hybrid array. In this
procedure, two 8-bait pools in the same pair cover all of the
16 baits. Therefore, four pairs of PI-deconvolution screens repre-
sent four independent screens of all the 16 baits (Supplementary
Table 2 online). This protocol provides a considerable advantage
over the individual bait procedure because it reduces the number of
screens from 32 to 8, yet each bait is screened in quadruplicate.
(Raw data are available online; http://depts.washington.edu/sfields/
supplemental_data/pooled_2hybrid/.)

In the 13 single-bait screens, we observed 484 preys and defined
them as two-hybrid positive colonies2,14. Among these positive
colonies, 125 arose twice out of the duplicate screens, and we
termed them ‘reproducible’ positives; the other 359 arose once as
either false positives, or true positives that owing to experimental
variability did not yield reproducible results. Further testing is
usually required to confirm or reject such nonreproducible hits (for
a complete list of all single bait–screen hits, see Supplementary

Table 3 online). For the PI-deconvolution screens, each pair of
pools identified 153–189 hits, and in total 343 positive colonies
were identified (Table 2). The number of ‘reproducible hits’
between any two independent experiment-pairs ranged from 103
to 112. Conversely, as many as 155 positive colonies were repro-
ducible in at least two experiment pairs (40–50% higher than for
any two experiment pairs only;Table 2). This result suggests that, as
expected, a higher level of repetition indeed improves coverage. We
consider all 155 as reproducible positives from PI-deconvolution. A
complete list of all PI-deconvolution hits and deconvolution results
can be found in Supplementary Table 3.

Further evidence for improved coverage by PI-deconvolution is
provided by comparing the PI-deconvolution data with the single-
bait data. The 155 reproducible hits from the PI-deconvolution
data set include 26 (out of 359; 7%) ‘nonreproducible positives’
found in the single-bait screens, in addition to recapitulating 71 (of
125; 57%) reproducible single-bait positives (Table 3). This result
suggests that in the single-bait data set, B30% (26 of 97) of the true
positives were not found as reproducible hits. The remaining 58
PI-deconvolution reproducible positives are either previously un-
identified interaction partners for these 13 baits or belong to the
3 baits not screened before. In contrast, the 188 PI-deconvolution
nonreproducible hits contain only 2 (of 125; 1.6%) reproducible
hits from the single bait data (Table 3), suggesting that the PI-
deconvolution 155 reproducible hits might represent almost com-
plete (saturated) coverage, subject to the detection sensitivity of the
current system. The increased coverage is due to the high repeti-
tions inherent in PI-deconvolution screening.

Of the 155 PI-deconvolution reproducible positives, 57 could be
assigned to a single bait (Supplementary Table 4 online), 34 to two
baits and 51 to four possible baits (see below about further
deconvolution of positives assigned to more than one bait). Of
the 57 unambiguously deconvoluted preys, 56 belong to the
13 previous screened baits. Of these 56, 38 were previously classified
as reproducible positives in single-bait screens; 11 were previously

Figure 2 | PI-deconvolution applied to protein

interaction mapping. (a) Yeast proteome

microarray screening. Fifteen bait proteins are

encoded as shown and eight bait pools are

prepared accordingly (see also Supplementary
Table 1). Each image column represents the

result of a pooling screen, and each image row

represents the same spot of the array. A positive

signal indicates the presence of one or more

binding proteins in the pool. Signals from ‘+’ pools

are false-colored red and ‘–’ pools, green. For

example, the prey spots representing CMD1 (top

row) were positive when probed with the ‘+’ pools

of pairs 1 and 2 (red), and the ‘–’ pools of pairs 0

and 3 (in green). The profile of CMD1 is thus read

as ‘– + + –’, which equals the encoding tag for the

bait CMK1. The results obtained by the PI-

deconvolution analysis (using eight arrays) are

identical to those obtained from single-bait

probing (using 15 arrays). Only reciprocally

confirmed interactions (red bidirectional arrows)

and self interactions (black arrow) are shown

(bottom). Detailed explanation of hit recognition is available in Methods. (b) Yeast two-hybrid array screening. Encoding and pooling schemes of 16 bait strains

are shown in Supplementary Table 2. The whole library array consists of 16 plates with 384 strains each. Shown are images of one representative library plate

screened with 16 baits using PI-deconvolution; each image is the result of a pooling screen with 8 baits.
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Table 2 | Reproducibility over PI-deconvolution experiment pairs

Overlapped hits Pair 0 Pair 1 Pair 2 Pair 3 All pairs

Pair 0 103 107 109

Pair 1 103 110 110

Pair 2 107 110 112

Pair 3 109 110 112

Total number of hits 153 189 179 180 343

Number of hits overlapping

with at least one other pair

123 127 130 133 155

Number of hits having no

overlap with other pairs

30 62 49 47 188
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classified as nonreproducible positives (that is, appearing only once
in duplicate screens), but can now be considered reproducible
because they appeared all four times in PI-deconvolution screens;
and 7 are previously unidentified interactions (Supplementary
Table 4) that had eluded detection in single-bait screens. One such
example is an interaction between Gac1 and Glc7, which are
regulatory and catalytic subunits, respectively, of a type 1 phos-
phatase (PP1) involved in the regulation of glycogen synthesis15.

In PI-deconvolution, unambiguous deconvolution requires a
prey to have a profile that consists of only ‘+’ or ‘–’ values, which
means that it is discovered once and only once in every PI-
deconvolution pair. Ambiguity occurs when a prey’s profile con-
tains ‘?’ (the prey turns up positive in both ‘+’ and ‘–’ experiments
of a PI-deconvolution pair) or ‘n’ (the prey turns up negative in
both ‘+’ and ‘–’ experiments of a PI-deconvolution pair). Such
degenerate profiles still cover all possible baits, although they do
not allow complete deconvolution. Degenerate profiles can
occur because of experimental false positives and false negatives

(Supplementary Table 5 online), or when more than one bait in a
batch binds to the same prey (Fig. 1). It is obvious that more preys
will have a ‘?’ profile in larger pools (see Supplementary Note
online). Ambiguous profiles may be further clarified by reciprocal
(pair-wise) confirmation. When an interaction can be observed
only in one direction, profile ambiguity can be clarified by bait
‘reshuffling’. For instance, when using n ¼ 5, 64 baits will be
randomly divided into two 32-bait batches. In a ‘reshuffling’ screen,
the baits will be divided differently into two batches. A prey-bait
pair will be accepted only when it is positive in both screens.

One reason why PI-deconvolution data cover only a portion
(57%) of the reproducible positives from single-bait screens could
be that sensitivity is compromised when several baits (8 in this case)
are pooled. If single-bait screens were more sensitive, then the
single-bait data set should cover more true positives than the
PI-deconvolution data set. But although 52 out of 125 (42%) repro-
ducible positives found in single-bait screens were missed in the PI-
deconvolution screens, 70 out of 155 (45%) PI-deconvolution

Table 3 | Comparison between single-bait and PI-deconvolution yeast two-hybrid screens

PI-deconvolution screening

Reproducible hitsa Nonreproducible hits Hits not in PI-deconvolution data Total

Single-bait screening Reproducible hitsb 71 2 52 125

Nonreproducible hits 26 13 320 359

Hits not in single-bait data 70 173

Total 155c 188

aPositive in at least two experiment pairs. bPositive in duplicate. cThis number is smaller than the sum of those above because some hits belong to multiple baits.
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Figure 3 | PI-deconvolution applied to drug resistance screening of 128 (¼27) yeast deletion strains in 14 pools (64 strains per pool). Designated drug

resistant strains (fpr1D for rapamycin18 and ppg1D for wortmannin32) are correctly deconvoluted. The colors in the table denote the coding schemes;

yellow, ‘�’ and green, ‘+’.
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reproducible hits were not found by the single-bait screens
(Table 3). Thus, it does not appear that the single bait data set
has a better coverage than the PI-deconvolution data set. These
results suggest that intrinsic yeast two-hybrid variability, rather
than loss of sensitivity owing to pooling, likely underlies the
discrepancy between the two data sets.

PI-deconvolution in identifying drug-resistant mutants
The primary advantage of PI-deconvolution is that it increases
screening efficiency by making better use of the physical capacity of
whole-proteome platforms for parallel detection. We tested the
PI-deconvolution approach on an assay independent of protein
interaction mapping, namely the identification of yeast mutants
resistant to specific drugs. The S. cerevisiae deletion collection is a
set of B4,500 strains, each deleted for one of the nonessential
ORFs16,17. We assayed 128 (n ¼ 7) strains from this collection
for fitness response to rapamycin, which targets the Tor proteins18,
and wortmannin, which is a phosphatidylinositol 3–kinase
inhibitor19. Using 14 (¼ 2 � 7) pools each containing 64 (¼26)
strains (see Supplementary Table 6 online), the PI-deconvolution
approach deconvoluted the two strains previously known to be
resistant to rapamycin (fpr1D) or to wortmannin (ppg1D; Fig. 3),
a screening efficiency that is an order of magnitude higher
than when single strains were used. Although higher efficiency
could be obtained by setting a higher n value (that is, screening
a larger pool) in PI-deconvolution, acceptable pool size is also
determined by the sensitivity and background of the detection
method (as is true for any pooling strategy). In addition, because
pooled screening generally relies on the gain of a signal, drug
hypersensitivity cannot be scored in a pooling screen using fitness
as a readout.

In silico simulation on DIP
To predict the performance of PI-deconvolution in an actual large-
scale network, we performed a series of in silico experiments to

simulate the performance of PI-deconvolu-
tion on the Database of Interacting Proteins
(DIP)20. DIP contains 4,716 proteins and
14,848 interactions, which is close to the
estimation that a typical protein binds to 3–
10 other proteins21,22. The simulation shows
that even with 16 or 32 baits per pool, both
reciprocal and reshuffling methods can effi-
ciently clarify the ambiguous profiles under
a variety of experimental false positive and
false negative conditions (Fig. 4). (For addi-
tional simulations, see Supplementary
Note.) Notably, coverage after reciprocal or
reshuffling confirmation is still considerably
higher than for single-bait screens, especially
for interactions between low-degree nodes
(Fig. 4). Our simulation also shows that PI-
deconvolution can be applied to random
networks as well (see Supplementary Note).

PI-deconvolution for compressing arrays
PI-deconvolution is a robust alternative
experimental design that will save time
and resources in proteome-wide protein-

protein interaction mapping. Although we describe this strategy as
a method to pool baits in a combinatorial fashion, the idea of
PI-deconvolution can be also used to redesign prey arrays
and maximize the efficiency of single-bait screens. For example,
the yeast two-hybrid array consists of 16 plates, each containing
384 Gal4 activation domain fusion strains. Because we have
demonstrated that 8-bait pools can be used to screen the prey
array, it should also be possible to screen a single bait against
pools of eight prey strains. Thus, the 16 plates can be compressed
into 8 plates using the PI-deconvolution scheme (eight activation
domain fusion strains per well). This compressed library can
be maintained and screened against single baits, equivalent
to screening the original 16-plate array in quadruplicate (total
reduction to 12.5%).

DISCUSSION
Pooling and deconvolution designs have been of great interest to
various fields23,24 (see also Supplementary Note). Although 8-bait
or larger pools6,13 have been used for screening yeast two-hybrid
arrays, two major concerns exist. First, a considerable number of
true positives will be lost as false negatives, because only the hits
that pass the initial pool screening (usually performed only once)
will go to the secondary deconvolution screening. Second, because
many false positives can pass the primary screen, the burden of
secondary deconvolution screens can be huge. PI-deconvolution
overcomes both of these limitations. We have demonstrated that, as
a result of the built-in repetitions, PI-deconvolution improves
coverage and accuracy simultaneously. Deconvolution is inherent
in the PI-deconvolution method and involves direct ‘profile read-
ing’ without the necessity of secondary screens. Most hits are at
least partially deconvoluted (92% of the hits are narrowed down to
at most 4 baits); further deconvolution can be achieved by pair-wise
confirmation. Unlike methods requiring secondary screens,
PI-deconvolution is generally applicable to both two-hybrid array
and proteome microarray platforms.
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Figure 4 | PI-deconvolution simulated on yeast interactome (DIP). We assume that all interactions in DIP

are correct. Only the interactions that are confirmed reciprocally or after bait-reshuffling are accepted.

Both accuracy (fraction of true interactions among the detected ones; blue) and coverage (fraction of true

interactions detected; red) are calculated for interactions between proteins with different node degrees

(x axis). For example, blue and red curves with x axis value 0–24 showed accuracy and coverage of PI-

deconvolution for interactions between nodes with degrees no more than 24. The curves with ‘x’ indicate

the accuracy and coverage by duplicated single bait screening, where only reproducible hits are accepted.

We assume 40% of the hits from each array experiment are false positives (FP), and each array experiment

will lose 40% of true positives (FN). (a) PI-deconvolution simulated using BitNum ¼ 5 (n ¼ 5; 16 baits

per pool) and CutOcc ¼ 2 (only hits that show up at least twice are accepted). (b) PI-deconvolution

simulated using BitNum ¼ 6 (n ¼ 6; 32 baits per pool) and CutOcc ¼ 2.
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Protein networks are best modeled as scale-free networks25 in
which the majority of nodes have only a few neighbors and a small
number of nodes (‘hubs’) have many neighbors. As expected, the
coverage of interactions between proteins of high connectivity is
lower than that between proteins of low connectivity (coverage for
highly connected nodes can be improved when the bit number is
decreased; see Supplementary Note). PI-deconvolution is espe-
cially useful for mapping interactions of low-degree nodes, which
account for the majority of nodes in protein networks (Supple-
mentary Note) and require the largest number of experiments
using traditional single-bait methods.

If the average degree (of connectivity) increases proportionally
with number of nodes, PI-deconvolution will be able to cover
a human interactome network with the same efficiency as for
yeast (using same pool size). But as average degree appears to
be conserved among different organisms21,22,26, even fewer
experiments may in fact be needed, because a larger pool of baits
can be accommodated on a larger proteome array. We suggest
that PI-deconvolution–guided community efforts will greatly
accelerate interactome mapping from yeast to human. Like-
wise, PI-deconvolution should be amenable to increasing the
throughput of high-content and/or high-dimensional screening/
mapping projects27,28.

Besides increased screening efficiency, a primary benefit of
PI-deconvolution is better data accuracy because of a high level
of repetition. Analogously, communication systems are made
accurate through extensive redundancy to reduce noise29 (see also
http://www.lucent.com/minds/infotheory/), and this principle has
been used in designing DNA microarrays30. The similarity between
PI-deconvolution and binary communication systems should allow
the translation of error-correction methods in information and
computer science to large-scale biological network analyses.
For example, an extra pair of pool screening (for example,
with bait reshuffling) can be performed to provide additional
redundancy for error detection, analogous to a parity check in
communication systems.

Finally, many topological motifs have been described for complex
networks (including electronic circuits, the world-wide web,
cells, the brain, ecological systems and social networks)31. Not all
motifs, however, occur in biological networks (the same is true for
nonbiological networks). For example, the 4-node feedback loop
(square lattice) design, which is commonly found in electronic
circuits, is not a motif in protein interaction networks31. It would
be interesting to study to what extent the PI-deconvolution
strategy can be robustly applied to each type of network and each
type of subgraph.

In summary, we present a pooling and deconvolution strategy (PI-
deconvolution) that is generally applicable to maximize screening
efficiency in a wide variety of situations. The essence of PI-deconvo-
lution is imaginary tagging (binary coding), combinatorial pooling
and built-in deconvolution and cross-validation. The key advantages
of PI-deconvolution include better accuracy, coverage and efficiency.
PI-deconvolution is very flexible because it can be easily scaled up or
down by setting different n values. In addition to protein interaction
networks, PI-deconvolution can be useful for other library-against-
library scenarios, as long as most probes in the query library have
only a few targets in the subject library. The versatility lies in
imaginary tagging, which is universally applicable regardless of the
nature of the query (molecules, cells, organisms and others).

METHODS
Proteome microarray, yeast two-hybrid array and drug resis-
tance screening. We probed the yeast proteome microarrays12

(Protoarray Yeast Proteome Microarray; Invitrogen) with purified
V5 epitope–tagged ‘bait’ proteins according to manufacturer’s
instructions. For pooling experiments, the final concentration of
each probe (bait protein) was 5 ng/ml. To detect the bound bait
proteins, we probed the arrays with an Alexa Fluor 647–labeled
anti-V5 and acquired the array image using an Axon GenePix
4000B scanner. Yeast two-hybrid array screens were performed as
described previously14. For drug resistance screening, the 128 yeast
deletion strains containing one rapamycin-resistant strain and
one wortmannin-resistant strain were chosen based on previous
genome-wide, single strain fitness data32,33. Pools of strains were
tested in clear 96-well plates for fitness response to rapamycin
(100 nM) and wortmannin (1 mM), using DMSO (drug carrier)
as control.

Analysis of proteome microarray data. The amount of yeast
protein for each ORF on the array is variable and approximately
equivalent solution protein concentrations are available for each
spot. Because there is the potential for proteins present in higher
quantity on the array to skew data analysis by having higher
signals, we developed an approach that identifies hits from parallel
protein microarray experiments that considers the amount of
protein in each spot. Suppose dc is the fluorescence intensity read
from spot Xc with concentration c, a subset of intensity data D ¼
{di, i represents all spots with concentrations between 90% � c and
110% � c} will be compared to dc. Let d0¼

P
idi/nc (nc is the

number of spots in D), P value of testing if intensity of spot Xc is
higher than d can be calculated as 1 – F((dc – d0) / SD), in which
SD is the standard deviation of dataset D and F(x) is the
cumulative probability function of standard normal distribution.
We will usually consider spot Xc as a positive hit if its P value is o
0.01. Spot data representing the results of probing with the 15 bait
proteins in both single and pooling screens are available in
Supplementary Table 7 online.

Simulation on the DIP network. We assume that all the interac-
tions in the DIP graph are true interactions. In a simulated
pooling experiment, a set of preys of a given set of baits will be
returned. Experimental false-positive rate (FP) and false-negative
rate (FN) are considered in the virtual screening procedures. Let
Nneighbor be the number of neighbors of all the baits in a pool
according to DIP, Ntp be the number of detected true positives in
the neighborhood and Nfp be the number of false positives in the
virtual screening procedure. A simulated screen will return a set of
nodes containing Ntp random nodes from true positives and
Nfp nodes from non-neighboring nodes. Knowing that FN ¼
(Nneighbor – Ntp)/Nneighbor and FP ¼ Nfp/(Nfp + Ntp), we can get
Ntp ¼ Nneighbor � (1 – FN) and Nfp ¼ FP/(1 – FP) � Ntp.
Accuracy (fraction of true interactions among detected interac-
tions) and coverage (fraction of true interactions detected) are two
criteria that we used to measure the performance of our strategy.
Four parameters are simulated: bit number (BitNum), occurrence
cutoff (CutOcc, the number of times a signal is detected to be
considered a true positive), experimental false-positive rate
(FP, fraction of false positive signals in all positive signals) and
false-negative rate (FN, fraction of undetected true positives).
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Note: Supplementary information is available on the Nature Methods website.
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