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WW-domain protein interactions<p>A protein interaction map for 12 of the 13 WW domains present in the proteins of <it>S. cerevisiae </it>was generated by using protein microarray data.</p>

Abstract

Background: The WW domain is found in a large number of eukaryotic proteins implicated in a
variety of cellular processes. WW domains bind proline-rich protein and peptide ligands, but the
protein interaction partners of many WW domain-containing proteins in Saccharomyces cerevisiae
are largely unknown.

Results: We used protein microarray technology to generate a protein interaction map for 12 of
the 13 WW domains present in proteins of the yeast S. cerevisiae. We observed 587 interactions
between these 12 domains and 207 proteins, most of which have not previously been described.
We analyzed the representation of functional annotations within the network, identifying
enrichments for proteins with peroxisomal localization, as well as for proteins involved in protein
turnover and cofactor biosynthesis. We compared orthologs of the interacting proteins to identify
conserved motifs known to mediate WW domain interactions, and found substantial evidence for
the structural conservation of such binding motifs throughout the yeast lineages. The comparative
approach also revealed that several of the WW domain-containing proteins themselves have
evolutionarily conserved WW domain binding sites, suggesting a functional role for inter- or
intramolecular association between proteins that harbor WW domains. On the basis of these
results, we propose a model for the tuning of interactions between WW domains and their protein
interaction partners.

Conclusion: Protein microarrays provide an appealing alternative to existing techniques for the
construction of protein interaction networks. Here we built a network composed of WW domain-
protein interactions that illuminates novel features of WW domain-containing proteins and their
protein interaction partners.
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Background
Methods for building protein interaction networks
The assembly of networks of interacting proteins and genes
has provided a new perspective on the organization and regu-
lation of cellular processes, allowing the superimposition and
interpretation of a variety of types of functional information
[1]. Detailed analysis of these networks has revealed underly-
ing hierarchies of interactions ('network motifs') [2], which
illustrate the common topologies adopted by groups of inter-
acting genes and proteins. To date, protein interaction net-
works built from experimental data have been based on either
high-throughput versions of the yeast two-hybrid (Y2H)
assay [3,4], or protein epitope-tag affinity purification/mass
spectrometry (AP-MS) [5,6]. The methods are complemen-
tary: Y2H identifies binary protein-protein interactions
whereas AP-MS establishes the members of co-purifying pro-
tein complexes. Both methods will likely be required to accu-
rately model local topologies within large networks [7], and
they have been used to interconnect thousands of proteins.

However, both of these approaches have inherent drawbacks.
They each suffer from their own classes of false positives: for
example, self-activating protein fusions can lead to artifactual
Y2H results, and high abundance proteins can contaminate
protein pulldowns in the AP-MS strategy. Conversely, false
negatives occur in each method due to their respective con-
straints. The Y2H assay demands that the interacting pro-
teins be functional in the context of a fusion and that
interactions occur in the nucleus to be detected; for this rea-
son, many proteins (for example, membrane proteins) are not
amenable to the standard assay. The AP-MS approach can
miss transiently interacting proteins, proteins that do not stay
associated during purification, and complexes not soluble
through the procedure. In addition, AP-MS approaches
demand that the epitope tag not affect a protein's proper fold-
ing and inclusion within a complex. Because of these techni-
cal drawbacks, protein interaction maps are both incomplete
and contain interactions that are not biologically relevant.

Recently, a third experimental approach, protein microar-
rays, has been developed that circumvents some of these
problems. In this approach, purified proteins are presented in
a format for in vitro binding studies, providing a platform for
a variety of protein interaction experiments (for example,
lipid-protein, small molecule-protein and protein-protein
interactions [8]). The protein microarrays have certain
advantages: they are comprehensive, encompassing for yeast
the great majority of proteins, including proteins of low cellu-
lar abundance; they are rapid to screen and analyze; and they
likely contain proteins that exhibit native post-translational
modifications when the normal host is used as the source of
protein. An additional feature is that array experiments are
performed under a uniform set of conditions, thus replacing
the disparate cellular milieus found in vivo with a single set of
experimental parameters in vitro. The arrays also have limi-
tations: some proteins cannot be expressed and purified; co-

purifying proteins may be present on the array; and the mod-
ification of array probes (for example, biotinylation) may
influence their binding properties.

Classification of WW domains in yeast
The WW domain is a well-characterized, highly conserved
protein domain found in multiple, disparate proteins and
subcellular contexts in a number of organisms [9,10], includ-
ing humans, in which the dysfunction of these proteins may
contribute to multiple disease states [11]. The domain adopts
a compact, globular fold with three β-sheets, forming two
grooves that serve as sites for ligand binding [12]. WW
domains bind proline-rich peptide or protein ligands [11];
this ligand recognition is mediated by sets of conserved resi-
dues within the domain [13,14], as observed in structures of
WW domains in complex with peptide ligands [15,16]. Based
on the presence of signature residues, a classification scheme
has been proposed for WW domains [13,14]. WW domains
within these classifications have particular ligand specifici-
ties: group I domains bind Pro-Pro-Xaa-Tyr (PY) motifs
[11,14]; group II/III domains bind poly-proline motifs [13];
and group IV domains bind proline motifs containing phos-
phorylated serine or threonine residues [14].

Ten proteins from Saccharomyces cerevisiae contain 13 WW
domains (Rsp5 contains three WW domains; Prp40 contains
two WW domains) (Figure 1a). The domains are defined by
conserved residues at particular positions (for example, tryp-
tophan at positions 13 and 36; proline at position 39), but
overall very little of the WW domain sequence is conserved
(Figure 1b). Several of these proteins have been well charac-
terized. Rsp5 (YER125W) is a ubiquitin ligase that partici-
pates in a variety of cellular processes, including vesicle
sorting and protein modification within the endoplasmic
reticulum (ER) [17]. Ssm4 (YIL030C) is another ubiquitin
ligase that associates with the ER and functions in Matα 2
repressor degradation [18,19]. The histone methyltransferase
Set2 (YJL168C) and the peptidyl-prolyl isomerase Ess1
(YJR017C) interact with the carboxy-terminal domain of
RNA Pol II via its phosphorylated Ser-Pro motifs [20,21] and
participate in the regulation of transcription at the level of
chromatin modification (Set2) and polymerase remodeling
(Ess1). Prp40 (YKL012W) participates in mRNA splicing,
interacting with Msl5 and Mud2 during the splicing reaction,
and it has also been linked to the Pol II machinery [22].

Five of the S. cerevisiae WW domains are derived from pro-
teins about which little is known. These WW domains do not
conform to the canonical groupings of WW domains (Figure
1b), and thus the interaction specificities of these domains
cannot be predicted. Vid30 (YGL227W) has a putative role in
the vacuolar catabolite degradation of fructose-1,6-bisphos-
phatase [23]. Alg9 (YNL219C) is an ER-associated protein
involved in glycoprotein biosynthesis [24]; its human
homolog is associated with congenital disorders of glycosyla-
tion [25]. Wwm1 (YFL010C) has been implicated in yeast
Genome Biology 2006, 7:R30
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apoptosis, and interacts genetically with Mca1, the meta-cas-
pase that initiates the peroxide-induced apoptotic response in
yeast [26,27]. Aus1 (YOR011W) is involved in the uptake of
sterols [28]. The YPR152C protein is listed only as a 'hypo-
thetical protein' by the Saccharomyces Genome Database
[29], and has no functional annotation.

The three WW domains from Rsp5 belong to the group I class;
the two WW domains from Prp40 and the domain from
Ypr152c belong to the group II/III class; and the domain from
Ess1 belongs to the group IV class. The WW domains from
Prp40 [22] and Ess1 [30] interact with phosphorylated Ser/
Thr-Pro motifs, though further characterization via NMR

Motifs in yeast WW domain proteins and WW sequence alignmentFigure 1
Motifs in yeast WW domain proteins and WW sequence alignment. (a) Ten yeast proteins contain a total of thirteen WW domains. (b) Multiple 
sequence alignment of the 13 WW domains. The domains from Rsp5 and Prp40 are named corresponding to their occurrence from amino to carboxyl 
terminus. Conservation of the tryptophan residue at position 13 and the proline residue at position 39, as well as partial conservation of the tryptophan at 
position 36 define the WW domain (filled blue boxes). The sequences shown were purified as fusions to either MBP or GST. Residues boxed in red 
residues indicate the sequence determinants that put the WW domains into three different classes: groups I, II/III and IV [13]. Six of the WW domains do 
not conform to any of the classifications.
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indicates that the Prp40 domains also bind peptide ligands
containing PY and PPΨΨP motifs [15]. The remaining six
WW domains from Set2, Ssm4, Aus1, Vid30, Alg9 and Wwm1
do not conform to any of the known classifications, possibly
indicating a specialization of these domains with concomitant
changes in structure and ligand specificity. Except for the
domain present in Wwm1, these meta-WW domains lack the
conserved tryptophan residue at position 36 in the domain
(Figure 1b), in addition to residues used for the group classi-
fication scheme.

Results and discussion
Identification of yeast WW domain-protein 
interactions
We used protein microarrays to generate a protein interaction
map of yeast WW domain-containing proteins. The microar-
rays were constructed by printing 4,088 proteins from S. cer-
evisiae in duplicate on nitrocellulose-coated glass slides.
Other proteins printed on the arrays served as controls,
including biotinylated antibodies for the detection of the
biotinylated probes and gluthathione S-transferase for the
analysis of binding specificity. In Y2H experiments with sev-
eral of these WW domains present in DNA-binding domain
fusions as either full-length proteins or isolated domains, we
were unsuccessful in recovering previously reported interac-
tions and unable to test many of the constructs due to their
transcriptional self-activation (data not shown). Therefore,
protein microarrays provided an alternative method to iden-
tify the protein interaction partners of these domains.

We expressed each of the individual domains in Escherichia
coli as a fusion to either glutathione S-transferase (GST) or
maltose binding protein, and purified the fusion proteins
(Figure 2). During purification, WW domain fusion proteins
were biotinylated using an amine-reactive biotinylation rea-
gent, and each of the purified domains was used to probe
duplicate protein microarrays. We were unable to obtain suf-
ficient expression of either type of fusion protein containing
the WW domain from Alg9, and thus focused on the remain-
ing 12 WW domain probes. Protein-protein interactions on
the microarrays were detected by the addition of fluorophore-
conjugated streptavidin, and individual spots on the microar-
ray were visualized by fluorescence scanning (Figure 3a). Pre-
viously, protein-protein and protein-lipid interactions
identified using protein microarrays were shown to be highly
reproducible [31]. However, because of the importance of
reproducibility in any protein interaction experiment, we
applied each probe protein to two separate microarrays. After
data processing, only those proteins found as high-confidence
interactions were selected for further analysis. We defined
high-confidence interactions to be those in which four inde-
pendent observations of the interaction were made (that is,
signals greater than three standard deviations above the
mean spot fluorescence for a protein printed in duplicate on
two separate microarrays). To identify interactions that

might be platform-specific, we compared our initial data to a
set of 13 supplementary protein microarray experiments that
had previously been carried out (GAM, unpublished data).
We removed 15 proteins from our data set that were found in
more than half of these experiments, leaving 587 high-confi-
dence interactions between 12 WW domains and 207 proteins
(Additional data file 1).

Properties of the WW domain network
Within this network, the number of interactions observed
with different WW domain probes varied from 86 interac-
tions for the third WW domain of Rsp5 to 7 for Vid30 (Figure
4a); a recent study of a human 14-3-3 protein using protein
microarrays identified 20 proteins as 14-3-3 interactors [32].
The three domains from Rsp5 together interacted with 124
proteins (about 60% of the network), 45 of which were iden-
tified solely by these domains (Figure 3b). Conversely, the
first domain from Prp40 interacted with one protein uniquely
and the domain from Set2 had no unique partners. In general,
there is a large degree of overlap within the network, as 53
proteins were found by at least 4 different domain probes.

We used the Gene Ontology (GO) hierarchy [33] to identify
regions of the network that are enriched for particular classi-
fications. The network was first split into 12 subnetworks,
each consisting of a single WW domain probe and its interac-
tion partners. These subnetworks contain a number of signif-
icant (P < 0.05 using a hypergeometric test) enrichments of
GO annotations (Additional data file 2). In particular, an
enrichment of proteins involved in cofactor metabolism sug-
gests a role for Rsp5 in the assembly or localization of the
biosynthetic enzymes responsible for the metabolism of thia-
mine and other cofactors (Figure 3b). Enrichment of proteins
within the network that localize to the peroxisome suggests
that Rsp5, Ssm4 and Prp40 may be involved in processes
within this organelle. Proteins containing WW domains also
affect the localization and degradation of several proteins
from the ER and other membranous intracellular compart-
ments. For example, deletion of Ssm4 abrogates degradation
of the ER transmembrane protein Ubc6 [18], and Rsp5-medi-
ated ubiquitination of plasma membrane proteins directs
their internalization and targeting to the endosomal-lyso-
somal pathway [17]. In addition, we observe interactions with
several other ER proteins (for example, Rsp5 interacts with
Ubc6 and Pdi1) and GTP-hydrolyzing proteins involved in
vesicle transport (for example, Ssm4 interacts with Ypt6 and
Ess1 interacts with Ypt53).

Protein-protein interaction networks have a common under-
lying topology in which the distribution of node degrees can
be fit to a power law [34]. Intuitively, this observation is con-
sistent with protein functions: many proteins are specialized
and interact with relatively few partners, whereas relatively
few proteins are involved in numerous processes and interact
with many partners. However, discrepancies can arise when
this analysis is applied to small, sampled subsets of larger
Genome Biology 2006, 7:R30
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networks [35]. Our interaction network differs from existing
networks because it is focused on a single type of protein
domain, and is likely, therefore, to be more heavily sampled
(that is, more locally complete) than previous large-scale
screens. The node degree distribution of the WW domain net-
work exhibits the expected 'scale-free' topology of protein
interaction networks (Figure 4b).

We searched the network for groups of proteins having con-
served protein domains from the eMotif database [36], but
found no significantly enriched protein domains except for
the WW domain itself (data not shown). This observation is
consistent with the fact that binding sites recognized by WW
domains are short primary sequences as opposed to sizable
protein domains. We also used data compiled for Y2H and
AP-MS experiments available from the Saccharomyces
Genome Database [29] to identify 19 proteins within the net-
work that have not been reported as having known protein
interaction partners (Figure 5). Analysis of these proteins
using the GO Term Finder available from the Saccharomyces
Genome Database indicates no consistent functional annota-
tion within this set of proteins.

Within the interaction network generated in this study, a total
of 13 interactions have support from experimental studies,
bioinformatic approaches, or both. Eight interactions have
been observed previously by either the Y2H assay [3] or AP-

MS [5]. Five of these involved the ubiquitin ligase Rsp5,
which targets multiple proteins for degradation [37], two
involve interactions with Prp40, and the final one is the inter-
action between Ess1 and Bcy1, a regulatory subunit of cAMP-
dependent protein kinase A [5]. Two interactions involving
Rsp5 were found in a recent screen for Rsp5 substrates [38].
A probabilistic network of functional linkages [1] supports
eight interactions that we identified (Additional data file 3).
We searched for orthologous interactions ('interologs' [39])
between our dataset and the recently generated protein inter-
action maps of Drosophila melanogaster [40], Caenorhabdi-
tis elegans [41] and Homo sapiens [42] but found no
conserved interactions.

Given the low degree of overlap between these protein micro-
array data and existing datasets, validation of these interac-
tions by other approaches is an important step prior to
further analysis of the biology of these interactions. For
example, a reversed microarray experiment could be used to
address array-based artifacts, in which microarrays would be
assembled using the WW domain-fusion proteins as array
features, and these arrays would be probed with the interact-
ing proteins that were originally identified. Alternatively,
epitope-tagged versions of the WW domains could be intro-
duced into cells, and interacting proteins would be identified
using immunoprecipitation and western blotting or affinity

Purification of WW domain fusion proteinsFigure 2
Purification of WW domain fusion proteins. Coomassie-stained SDS-PAGE gel of WW domain fusion proteins following protein purification (top panels), 
western blot detection of fusion protein expression with anti-GST antibody (left middle panel) or anti-myc antibody (right middle panel), and biotinylation 
of fusion proteins observed by binding of HRP-conjugated streptavidin (bottom panels) are shown.
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purification and mass spectrometry; a similar strategy was
used to identify proteins that interact with human WW
domain-containing proteins [43].

WW ligand sequence motif representation
To address ligand specificity, we compiled a list of primary
sequence motifs of known WW domain-ligands from the lit-
erature and searched the proteins in our network for occur-
rences of these motifs. Within the network, 28 proteins have
canonical PY motifs and 5 have poly-proline motifs. Twenty-
six proteins have PPR motifs, and 38 proteins have a degen-
erate PY motif, the LPxY motif, which was previously shown
to be a determinant for Rsp5 specificity [44]; 24 of these 38
interacted with Rsp5 (Figure 3b). Twenty proteins have more
than one motif or possess motifs from multiple classes (Addi-
tional data file 4). We found a significant enrichment of pro-
teins with PY and LPxY motifs (P < 10-8 and 0.02,
respectively, using a binomial test) relative to all proteins
present on the microarrays. In the S. cerevisiae proteome,
approximately 250 proteins contain PY motifs (4% of all pro-
teins) and 400 proteins contain LPxY motifs (7%). In con-
trast, approximately 30% of the proteins in the WW domain
network contain either PY or LPxY motifs.

The prevalence of the PY motif within the network is expected
given the group I classification of the three WW domains
from Rsp5. Of the 124 proteins that interacted with these
domains, 27 have PY motifs (Figure 3b); only 9 proteins in the
network have a PY motif and did not interact with a WW
domain from Rsp5. Consistent with its role as an E3 ubiquitin
protein ligase, Rsp5 interacted with several proteins involved
in protein modification and turnover, including members of
the ubiquitin modification system (for example, Ubi4, Ubc6
and Ubp10), and ubiquitin-like modifications (Rub1). In
addition, we observed the known self-interaction between the
third WW domain of Rsp5 and the Rsp5 protein on the micro-
array [45]. Surprisingly, we did not observe interactions
between the Rsp5 WW domain probes and two members of a
known Rsp5 complex, Bul1 and Bul2 [46], both of which are
present on our arrays and contain PY motifs. As these pro-
teins are members of a complex, it is possible that accessory
proteins needed to mediate the interaction of Rsp5 with Bul1
and Bul2 are not present on the microarray.

A total of 8 proteins in the network have matches to the poly-
proline motifs (PPLP and PPPP), and 26 proteins have
matches to the PPR motif. Several of these proteins are pro-
miscuous; for example, 2 proteins with poly-proline motifs
and 6 proteins with PPR motifs interacted with half or more

Protein microarray data and the Rsp5 networkFigure 3
Protein microarray data and the Rsp5 network. (a) A microarray was probed with the first WW domain from Rsp5 and interactions were visualized via 
application of dye-labeled streptavidin and fluorescent scanning. Following data processing, two proteins (Ubc6 and Oye3) had signals above background. 
Control proteins (dye-labeled and biotinylated proteins) are indicated. (b) Interactions involving the WW domains from Rsp5. A total of 124 proteins 
were identified using the WW domains from Rsp5. Functional annotations are superimposed on the network using filled circles and outlines.
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of the WW domains. This scattered distribution may reflect
some intrinsic property of interactions between these ligand
classes and WW domains, such as relatively weak affinities
between these molecules in the context of microarrays.

The WW domain from Ess1 belongs to the group IV class,
which binds phosphorylated ligands. However, because we do
not know the phosphorylation states of proteins on the micro-
arrays, we cannot assess the proportion of phosphorylation-
dependent interactions within the network. Rpo21, the Pol II
subunit containing the carboxy-terminal domain that is
bound by Ess1 when phosphorylated, is not present on the
microarrays. However, proteins containing WW domains
have been proposed to mediate a physical coupling between
the transcription and splicing processes in yeast [10]. Con-
sistent with this association, we observed an interaction
between Ess1 and Prp2, a DEAD-box RNA-dependent
ATPase required for the first step of mRNA splicing [47].

Approximately 43% of the proteins within the network have
matches to the canonical ligand motifs known to mediate WW
domain interactions. The absence of known motifs in other
interacting proteins could be due to any of several reasons.
First, isolated WW domains may recognize novel sequence
motifs when they are removed from their protein context.
Second, they may bind to structural motifs that have yet to be
identified at a primary sequence level. Third, other accessory
proteins may be needed for WW-containing proteins to rec-
ognize their targets.

The lack of known motifs could also be due to more general
consequences of using the microarray strategy to identify
protein ligands. In a microarray experiment, the concentra-
tion of probe protein defines the upper limit of affinity for an
interaction. Our probes were applied at low micromolar con-
centrations, and, therefore, interactions with KD values
higher than this limit would be missed; most of the KD values
measured for WW domain:ligand interactions are in the 10 to
100 µM range [13]. On the other hand, the concentration of
probe may be so high as to recover interactions that are not
physiologically relevant. These false-positives could account
for spurious interactions with proteins that lack canonical lig-
and motifs, or have a particular motif but are not bound in
vivo.

As nearly half of the proteins in the network do not have rec-
ognizable WW domain ligand motifs, we searched for novel
motifs within the network using motif identification software,
including MEME [48] and a network-based motif sampler
[49]. These approaches did not identify any novel motifs,
indicating either that most common motifs have been identi-
fied, or that additional parameters such as structural infor-
mation may be needed to define novel motifs. However, the
MEME searches converged on degenerate versions of the PY
and LPxY motifs. Many WW domains possess some level of
recognition flexibility toward peptide ligands in vitro, and we
asked whether this same versatility was reflected among the
proteins within the WW domain network.

WW domain network propertiesFigure 4
WW domain network properties. (a) The number of interaction partners identified using each WW domain probe. (b) Log-log plot of the node degree 
distribution within the WW domain network. Black circles represent WW domain probes and red circles represent protein interactors; power law fits to 
data sets including (black line) and excluding (red line) WW domain probe are shown.
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Phylogenetic evidence for structural conservation of 
WW domain ligands
We used a comparative genomics approach to analyze the dis-
tribution and conservation of WW domain binding sites. Sim-
ilar approaches have been used to annotate genomes, to
search for conserved functional DNA elements, such as tran-
scription factor binding sites [50,51], to discover novel pro-
tein interactions [52], and to delineate receptor-ligand
interactions [53]. Recently, the strategy was used to analyze
the yeast SH3 domain interaction network, illustrating that
the comparative approach, in combination with protein dis-
order prediction, was effective in recovering known interac-
tions and predicting novel ones [54]. Because the peptide
ligands bound by WW domains are small, well-defined and
sufficient for binding (for example, Pro-Pro-Xaa-Tyr), the
search for evolutionarily conserved WW binding sites within
protein partners can potentially be reduced to the identifica-
tion of conserved stretches of amino acid residues.

We compiled genomic sequences for several yeast species in
the ascomycete and basidomycete lineages and searched for
orthologs of proteins in our interaction network using the
best-hit reciprocal BLAST method [55]. Of the 207 S. cerevi-
siae proteins in the network, 191 have at least one ortholog
among the 24 yeast species analyzed. We also analyzed the
conservation of the WW domains themselves among yeast
lineages (Figure 6). The WW domains in Rsp5, Prp40, Ess1,
Wwm1, Aus1 and Ypr152c are maintained in all the yeast spe-
cies. The WW domain in Set2 orthologs is either missing, or
is found as one of two classes: the group II/III domain, or, in
species closely related to S. cerevisiae, a meta-WW domain,
which lacks the residues defining the group II/III class. The
distribution of WW domains among Alg9 orthologs is mainly
restricted to species closely related to S. cerevisiae, whereas
that of Ssm4 and Vid30 is only in the S. cerevisiae lineage.

These sets of orthologous protein sequences were used to
generate multiple sequence alignments, which were exam-
ined for the conservation of known primary sequence motifs.
In several instances, known WW ligand sequence motifs are
conserved among the lineage of interactor orthologs (Figure
7; Additional data file 4). Moreover, we found evidence sug-
gesting that WW domains have sufficient recognition mallea-
bility to bind structurally similar peptide ligands within the
PY (PPxY) and LPxY ligand classes. Both the PPxY and LPxY
motifs were found in sets of orthologs as: an invariant
sequence; multiple sequences in which the 'x' position varies;
or multiple sequences in which the tyrosine is replaced with
structurally similar residues (predominantly phenylalanine
but in some instances histidine or tryptophan). Although the
first two classes were expected, the third class has not been
previously observed in a biological context. However, the
group I WW domains exhibit recognition flexibility in vitro.
Previously, the specificity of the Yap65 WW domain was
assessed using an array of peptides encompassing each single
alanine substitution of the peptide ligand, demonstrating that
phenylalanine is a functional replacement for tyrosine within
the PPxY motif [56]. Several group I WW domains also
exhibit this recognition flexibility [57]; the structure of a
Nedd4 WW domain-PPxY ligand indicated that peptide bind-
ing uses a groove that recognizes the N-substituted Pro-Pro
sequence, forming a large pocket that accommodates the
tyrosyl side chain [16]. It is possible that phenylalanine side
chains are accommodated by this pocket, and that the subtle
tyrosine to phenylalanine structural change may be used in
biological contexts for the tuning of WW domain-ligand
interactions.

We analyzed several conserved motifs in detail (Figure 7).
Ymr171c, an endosomal protein of unknown function that
interacted with the third WW domain from Rsp5, harbors two
PPxY motifs that are maintained in nearly all of its 21
orthologs. Aat2 is an aspartate aminotransferase that local-
izes to peroxisomes during oleate utilization [58]. It contains
a single PPxY motif that is maintained as PPxH and PPxF in
several of the orthologs. Ylr392c contains single instances of
the PPxY, PPxF and LPxY motifs, each of which is conserved
among its three orthologs. Ylr392c interacted with the first
and third WW domains of Rsp5, a finding that is supported by
its prior identification via AP-MS as a member of an Rsp5
complex [5]. Yjl084c contains instances of the PPxY, PPxF
and LPxY motifs. The PPxY and LPxY motifs are maintained
in all 19 orthologs, while the PPxF motif is present in 15 of the
orthologs. Yjl084c interacted with the first and third domains
of Rsp5, and is known to be phosphorylated by Cdk1 [59].
Finally, Prp2 is an essential RNA helicase that participates in
the early steps of mRNA splicing. Prp2 has two LPxY motifs
that are conserved among its ten orthologs. Prp2 was found
by five WW domain probes, possibly indicating a reduction in
specificity for the LPxY motif.

Venn diagram illustrating the representation of yeast proteins involved in protein-protein interactions found using yeast two-hybrid (Y2H) assay, protein epitope-tag affinity purification/mass spectrometry (AP-MS) and protein microarray strategiesFigure 5
Venn diagram illustrating the representation of yeast proteins involved in 
protein-protein interactions found using yeast two-hybrid (Y2H) assay, 
protein epitope-tag affinity purification/mass spectrometry (AP-MS) and 
protein microarray strategies.
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These motifs may represent structural determinants that are
evolutionarily maintained because of a selective pressure
applied by their interactions with WW domain-containing
proteins. This hypothesis relies on the assumption that the
presence of a protein sequence motif (for example, PPxY) is
sufficient to mediate an interaction with a WW domain. We
tested this assumption by asking whether these putative WW
domain recognition determinants are more conserved than
similar determinants. For each set of orthologs, we used the
S. cerevisiae protein as a reference point and asked to what
extent other determinants of a similar form are conserved.
For example, both the PPxY and LPxY motifs can be general-
ized as tripeptides with an intervening residue (that is, X-X-
x-X). For each such tripeptide in the S. cerevisiae protein, we
determined the proportion of orthologs that maintained the

three residues, allowing all substitutions at the 'x' position.
We generated histograms of these data, and labeled the bins
that contain the putative determinant (for example, PPxY)
present in the S. cerevisiae protein (Figure 7b). In each case
except that of Aat2, the putative determinants are among the
most highly conserved motifs within the set of orthologs,
suggesting that these sequences are being actively main-
tained. In the Aat2 lineage, PPxY is found as PPxH and PPxF
in several of the orthologs, reducing its apparent conservation
level. Of the 54 ortholog groups that have instances of the
PPxY, PPxF, LPxY or LPxF motifs, we found 27 orthologous
protein sets in which the motif is maintained in more than
half of the orthologs, suggesting that maintenance of these
determinants is common among the proteins found to inter-
act with WW domains (Figure 8).

Phylogenetic conservation of WW domains among yeast lineagesFigure 6
Phylogenetic conservation of WW domains among yeast lineages. Radial trees were generated based upon multiple alignments for orthologs culled from 
24 yeast species. Solid lines indicate lineages in which the WW domain is maintained in the orthologous proteins, whereas dashed lines indicate those 
proteins in which the WW domain is not present. In the Set2 ortholog group, the WW domains highlighted in gray are most similar to the meta-WW 
domain in S. cerevisiae, whereas in the other lineages the WW domain conforms to the group II/III classification. Organism abbreviations are Saccharomyces 
cerevisiae (Sc),Candida guilliermondii (Cgui),Candida glabrata (Cgla),Chaetomium globosum (Cglo),Kluyveromyces waltii (Kw),Kluyveromyces lactis (Kl),Yarrowia 
lipolytica (Yl),Candida lusitaniae (Cl),Debaryomyces hansenii (Dh),Schizosaccharomyces pombe (Sp),Pneumocystis carinii (Pc),Fusarium graminearum 
(Fg),Magnaporthe grisea (Mg),Neurospora crassa (Nc),Podospora anserina (Pa),Aspergillus fumigatus (Af),Aspergillus nidulans (An),Ashbya gosypii (Ag),Histoplasma 
capsulatum (Hc),Coccidioides immitis (Ci), Ustilago maydis (Um),Cryptococcus neoformans (Cn),Coprinus cinereus (Cc),and Rhizopus oryzae (Ro).
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When structural malleability within WW domain ligands was
observed, the results were initially disregarded as in vitro
artifacts. Here, we have presented evidence that recognition
versatility is sufficiently widespread as to be conserved in sev-
eral protein lineages from evolutionarily distant yeast species.
To address the limits of this conservation, we performed a re-
evaluation of a recent study [43] of human WW domain inter-
actions based on epitope tagging and AP-MS. Several of the
co-purifying proteins do not have matches to the canonical
sequence motifs that were initially analyzed [43]. However,
we found that many of the human proteins have matches to
the PPxF and LPxY motifs, including splicing and transcrip-
tion factors (for example, PPxF and LPxY in U2AF2, LPxY in
CPSF1) (Additional data file 5).

Several WW domain proteins have conserved WW 
domain binding sites
Searches for primary sequence motifs within the WW
domain-interacting orthologs indicated that several of the
WW domain-containing proteins themselves have evolution-
arily conserved WW domain binding sites (Figure 9a). A sim-
ilar observation [60] was made for Rsp5, which binds
peptides harboring the LPxY motif that is found at the car-
boxyl terminus of Rsp5. Our analysis revealed that Alg9 also
has a conserved LPxY motif that in some lineages is
coincident with presence of the WW domain, possibly indi-
cating a co-evolving domain and binding site (Figure 9b). In
addition, the Wwm1 and Ssm4 proteins harbor PY motifs
(PPxY in Wwm1, PPxF in Ssm4), which are maintained in
nearly all of their respective orthologs. We analyzed these
proteins for the conservation of S. cerevisiae protein motifs
and found that for Rsp5, Wwm1 and Ssm4, the putative WW
domain binding sites are among the most conserved motifs

Phylogenetic conservation of the WW ligand motifs within yeast proteinsFigure 7
Phylogenetic conservation of the WW ligand motifs within yeast proteins. (a) Positions of primary sequence motifs within S. cerevisiae Aat2, Ymr171c, 
Ylr392c, Prp2, and Yjl084c. (b) Logo representations [68] of the conserved region within the set of orthologs. The number of orthologs in each set is 
indicated. Gray dashed boxes highlight the conserved motifs; numbers indicate the position of the motif within the S. cerevisiae protein. Histograms 
represent the level of conservation of all S. cerevisiae X-X-x-X sequence determinants within the set of orthologs. Colored circles mark the bins that 
contain the PPxY, PPxF and LPxY motifs.
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within these proteins (Figure 9b). The LPxY determinant in
Alg9 is less well-conserved, which may indicate that it is not
used as a WW domain recognition site.

The pattern of conservation for the Wwm1, Rsp5 and Ssm4
proteins is suggestive of two separate types of evolutionary
maintenance. The first is self-interaction, as when the WW
domains and recognition sites are co-maintained in Wwm1
and Rsp5. We observed an interaction between the third WW
domain of Rsp5 and the Rsp5 protein on the microarray, sup-
porting the conservation a WW domain binding site. In our
study, Wwm1 was present on the microarrays but did not
interact with the Wwm1 WW domain probe. The second type
of maintenance is binding of a conserved recognition site to
another WW domain-containing protein that is present
throughout the lineage. For Ssm4, the WW domain is present
only in the S. cerevisiae protein, whereas WW domain bind-
ing sites are present in nearly all of the orthologs. As both
Ssm4 and Rsp5 are ubiquitin ligases, it is possible that the
conserved PPxF site in Ssm4 mediates an interaction with
Rsp5; the presence of the WW domain in the S. cerevisiae
Ssm4 ortholog may thus reflect a unique functional
specialization. In our study, Ssm4 was not present on the
microarrays.

The role of Wwm1 in the yeast apoptotic response [27] may be
mediated by its interaction with either itself or other proteins
containing WW domains, possibly serving to propagate some
signal necessary for regulation of this response. Wwm1 inter-
acted with Pai3, the cytoplasmic inhibitor of yeast saccha-
ropepsin [61]. As the apoptotic cascade in higher eukaryotes
is initiated by a series of proteolytic cleavage events, the
Wwm1-Pai3 interaction may point to a similar protease-initi-
ated cascade of signaling events in yeast.

A model for WW domain interaction evolution
Isolated WW domains bind their cognate ligands weakly in
vitro, with KDs in the 10 to 100 µM range [13,14] (Figure 10a).
However, the biological context of many WW domains and
their protein ligands likely serves to increase the affinity of
these interactions. Two broad classes of binding modes could
increase the apparent affinity of interactions (Figure 10b).
One class is represented by proteins that have multiple WW
domains and bind ligands with isolated motifs, whereas the
other class contains proteins with a single WW domain whose
ligands contain multiple binding sites. Both of these situa-
tions are frequently observed: Rsp5 and Prp40 in S.
cerevisiae and several human proteins contain multiple WW
domains [43]. Conversely, the S. cerevisiae Ess1 protein (Pin1
in humans) interacts with several repeats of the phospho-Ser/
Thr-Pro motif in the Pol II carboxy-terminal domain [10].
Coincident WW domain and WW binding sites (Figure 10c)
such as those found in the Rsp5, Ssm4, Alg9 and Wwm1 pro-
teins could influence function by serving as sites for either
intra- or intermolecular association. Such associations could
provide a mechanism for self-imposed regulation, or could
play a more active role by increasing the local concentration
of an ancillary functional domain, labeled 'X' in Figure 10c.
Analysis of the interactions of the WW domains of human
Nedd4 family proteins showed that whereas some proteins
were recognized uniquely by a WW domain, others were rec-
ognized by multiple WW domains [43], supporting a model
for interaction specificity tuning. WW domains may thus act
as scaffolds in the construction of multi-protein complexes by
providing a mechanism for the optimization of specificity and
affinity for the interactions between WW domains and their
protein partners.

Conclusion
We have constructed a network of yeast WW domain interac-
tions using protein microarrays, the first such domain-spe-
cific network built using this strategy. Protein microarray
technology is sufficiently orthogonal to existing techniques to
allow the recovery of a number of previously unobserved, but
biologically relevant protein interactions, and will be useful in
the future for refining and expanding protein interaction
maps. A comparative genomic approach uncovered evidence
for a previously unappreciated level of structural malleability
in the conservation of WW domain ligands. The comparative
approach also revealed that WW domain-containing proteins
often themselves contain conserved WW domain binding
sites, indicating a role for multimerization in WW domain
protein function. WW domains have been shown to possess
recognition flexibility in vitro, and this versatility manifests
itself in vivo on an evolutionary scale.

Histograms representing the levels of conservation for the PPxY, PPxF, LPxY and LPxF motifs among 54 orthologous protein setsFigure 8
Histograms representing the levels of conservation for the PPxY, PPxF, 
LPxY and LPxF motifs among 54 orthologous protein sets.
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Materials and methods
WW fusion protein construction and purification
The sequence for each of the 13 WW domains including
approximately 10 amino acids amino-terminal to the first
tryptophan and approximately 10 amino acids carboxy-ter-
minal to the conserved proline residue were cloned into E.
coli expression vectors pMAL-c2x (New England Biolabs,
Beverly, MA, USA) or pGEX-4T (Amersham Biosciences,
Uppsala, Sweden) to generate maltose binding protein or GST
fusions, respectively. A 300 ml culture of Luria-Bertani broth

(LB) was inoculated with a starter culture of WW-domain
fusion-containing bacteria, induced to express protein with
isopropyl-beta-D-thiogalactopyranoside (IPTG), and har-
vested as described in the manufacturer's protocol. Superna-
tants from sonicated cell lysates were passed over
equilibrated amylose resin (New England Biolabs) or
glutathione-beads (Amersham Biosciences). Proteins were
biotinylated by the addition of 50 µg/ml NHS-LC-LC-biotin
(Pierce Biotechnology, Rockford, IL, USA) to the columns,
washed with phosphate-buffered saline (PBS), and eluted

Co-occurrence of WW domains and WW domain binding sitesFigure 9
Co-occurrence of WW domains and WW domain binding sites. (a) Positions of the WW domains (green bars) and conserved primary sequence motifs 
(PPxY/F in red, LPxY/F in blue) in Wwm1, Rsp5, Alg9 and Ssm4. (b) Radial trees and motif conservation for the ortholog groups of each protein. Organism 
abbreviations are Saccharomyces cerevisiae (Sc),Candida guilliermondii (Cgui),Candida glabrata (Cgla),Chaetomium globosum (Cglo),Kluyveromyces waltii 
(Kw),Kluyveromyces lactis (Kl),Yarrowia lipolytica (Yl),Candida lusitaniae (Cl),Debaryomyces hansenii (Dh),Schizosaccharomyces pombe (Sp),Pneumocystis carinii 
(Pc),Fusarium graminearum (Fg),Magnaporthe grisea (Mg),Neurospora crassa (Nc),Podospora anserina (Pa),Aspergillus fumigatus (Af),Aspergillus nidulans 
(An),Ashbya gosypii (Ag),Histoplasma capsulatum (Hc),Coccidioides immitis (Ci), Ustilago maydis (Um),Cryptococcus neoformans (Cn),Coprinus cinereus (Cc),and 
Rhizopus oryzae (Ro). Solid branches indicate lineages in which the WW domain is present; dashed lines indicate the absence of a WW domain. Colored 
branches indicate lineage in which a motif is present; lineages in gray lack the motif. The histograms represent the relative conservation of S. cerevisiae 
motifs of the form X-X-x-X among the orthologs. Red and blue dots indicate the bins that contain the highlighted motifs.
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with either 10 mM maltose or 20 mM glutathione. Proteins
were assessed for expression and purity by coomassie stain-
ing and western blot against the fusion protein, and for bioti-
nylation by detection with horseradish peroxidase (HRP)-
conjugated streptavidin (Figure 2). Concentration was
assessed by comparison to known amounts of proteins on
SDS-PAGE gels, as well as by comparison to protein stand-
ards in Bradford assays and absorbance at 280 nm.

Yeast proteome collection
The yeast proteome collection was derived from the yeast
clone collection of 5,800 yeast open reading frames [31]. The
identity of each clone was verified using 5' end sequencing.
Expression of GST-tagged protein by each clone was tested
using western blotting and detection with an anti-GST
antibody. The 4,088 clones that passed both quality control
measures were purified using high-throughput affinity chro-
matography as previously described [31].

Yeast protein microarray manufacturing
Commercially available protein microarrays were manufac-
tured by Invitrogen (Carlsbad, CA, USA). A contact-type
printer (Omnigrid, Genomic Solutions, Ann Arbor, MI, USA)
equipped with 48 matched quill-type pins was used to deposit
each of 4,088 purified yeast proteins along with a set of con-
trol elements in duplicate spots on 1" × 3" nitrocellulose-
coated glass slides. The printing of these arrays was carried
out in a cold room under dust-free conditions to preserve the
integrity of both samples and printed microarrays. Each lot of
slides was subjected to a quality control procedure that
included a gross visual inspection of all the printed slides for
imperfections. The second step consisted of a more detailed
characterization of each spot on the array. Since each of the
proteins was tagged with GST, this quality control procedure
was accomplished by using an antibody detection protocol
specific for GST. This procedure measures the variability in
spot morphology, the number of missing spots, the presence
of control spots, and the amount of protein deposited in each

spot. The number of missing spots on the arrays was less than
1%, and the median spot size was 130 mm.

Protein array probing and data analysis
Microarray experiments were carried out in a cold room (4°C)
as described by the manufacturer (Invitrogen). Briefly, arrays
were probed with 300 µl of a solution containing 50 µM bioti-
nylated probe protein in PBS on ice in horizontally positioned
Atlas glass hybridization chambers for 90 minutes. Following
incubation, the arrays were washed 3 times with 2 ml of PBS,
followed by the addition of 2 ml of PBS containing a 400 µg/
ml of Alexa Fluor 647-streptavidin. The arrays were incu-
bated for 30 minutes and then washed three times with 2 ml
of PBS, removed from the incubation chamber and air-dried
by hand-shaking the slides. Fluorescent scans of each protein
microarray were obtained using an Axon GenePix scanner
(Molecular Devices, Sunnyvale, CA, USA) and were manually
processed. The protein microarrays are printed onto a total of
48 blocks, which are separable based on their coordinates.
Because of local variations in the background on each array,
we analyzed each block separately. Counts from each yeast
protein spot (excluding control proteins) within a block were
combined and a trimmed mean (removing the top and bot-
tom 10% of the data) was calculated. Spots with counts
greater than three standard deviations above this trimmed
mean were selected as positives. A protein scored as an initial
positive is one that was found in duplicate in two independent
array experiments. Protein microarray data generated in this
study have been deposited at the NCBI Gene Expression
Omnibus [62] under accession GSE3758.

To identify false-positive and platform-specific interactions,
we compared our data set to 13 interaction data sets previ-
ously collected using the yeast protein microarrays (GAM,
unpublished data). Proteins in our dataset that appeared in
more than half (seven or more) of these supplemental data
sets were removed. We also examined the interactions to
identify proteins that were specific to the MBP or GST
fusions, as these could represent false-positives arising from
interaction with maltose binding protein (MBP) or GST, but
did not find any fusion-specific interactions.

Primary sequence motif analysis
Sequences for yeast strains were compiled from the Resource
for Fungal Comparative Genomics [63], which compiles and
annotates fungal genomic sequences generated by multiple
sources. Orthologs of S. cerevisiae proteins were identified
from 24 yeast species in the ascomycetes and basidomycetes
lineages using the reciprocal BLAST method [55]. In addition
to best reciprocal matches, we required that at least 80% of
the sequence was aligned. The organisms used in the analysis
were S. cerevisiae, Candida guilliermondii, Candida glo-
brata, Chaetomium globosum, Kluyveromyces waltii, Kluy-
veromyces lactis, Yarrowia lipolytica, Candida lusitaniae,
Debaryomyces hansenii, Schizosaccharomyces pombe,
Pneumocystis carinii, Fusarium graminearum, Mag-

A model for the optimization of interactions between WW domains and protein ligandsFigure 10
A model for the optimization of interactions between WW domains and 
protein ligands. WW domains are colored green, WW ligand binding 
motifs are colored red, and auxiliary protein domains are in blue.
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naporthe grisea, Neurospora crassa, Podospora anserina,
Aspergillus fumigatus, Aspergillus nidulans, Ashbya
gosypii, Histoplasma capsulatum, Coccidioides immitis,
Ustilago maydis, Cryptococcus neoformans, Coprinus cin-
ereus, and Rhizopus oryzae. Multiple alignments were gener-
ated with T-Coffee using default values [64] and visualized
using Jalview [65]. Phylogenetic trees were generated using
the Phylip software package [66].

Protein interaction network analysis
The protein network was searched for groups of enriched GO
classifications using the GO classification resource available
through the Saccharomyces Genome Database [29], and
eMotif classifications obtained from the Saccharomyces
Genome Database were used to search for protein domain
enrichment within the network. Network visualization was
done using Cytoscape [67].

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a compilation of
WW domain-protein interactions recovered using the protein
microarray strategy. The first column corresponds to the
name of the WW domain probe, and the second column is the
systematic name of its protein interaction partner. Additional
data file 2 shows enrichment of GO classifications within the
WW domain network. Additional data file 3 shows the over-
lap between the WW domain interaction data set and previ-
ously generated protein-protein interaction networks.
Additional data file 4 is the primary sequence motif represen-
tation in the network. Motifs were identified using regular
expressions (poly-proline 'P{4,}', PY 'PP\w [YF]', LPxY 'LP\w
[YF]', PPR 'PP [RK]'). Additional data file 5 lists the primary
sequence motifs from the human WW domain interaction
data set. Motifs that were previously assessed are highlighted
by blue headers.
Additional data file 1Compilation of WW domain-protein interactions recovered using the protein microarray strategyThe first column corresponds to the name of the WW domain probe, and the second column is the systematic name of its protein interaction partner.Click here for fileAdditional data file 2Enrichment of GO classifications within the WW domain networkEnrichment of GO classifications within the WW domain network.Click here for fileAdditional data file 3Overlap between the WW domain interaction data set and previ-ously generated protein-protein interaction networksOverlap between the WW domain interaction data set and previ-ously generated protein-protein interaction networks.Click here for fileAdditional data file 4Primary sequence motif representation in the networkMotifs were identified using regular expressions (poly-proline 'P{4,}', PY 'PP\w [YF]', LPxY 'LP\w [YF]', PPR 'PP [RK]').Click here for fileAdditional data file 5Primary sequence motifs from the human WW domain interaction data setMotifs that were previously assessed are highlighted by blue headers.Click here for file
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