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The implications of conceptualizing personality as a cognitive-affective processing
system that functions as a parallel constraint satisfaction network are explored. Com-
puter simulations show that from dynamic interactions among the units in such a net-
work, a set of stable attractor states and functionally equivalent groups of situations
emerge, such that IF exposed to situation group X, THEN the system settles in attractor
Y. This conceptualization explicitly models the effect of situations on a given individual,

and therefore can also be used to model the function of interpersonal systems. We dem-
onstrate this possibility by modeling dyadic systems in which one partner’s behavior
becomes the situational input into the other partner’s personality system, and vice
versa. The results indicate that each member of the dyad will, in general, exhibit new at-
tractor states. This suggests that the thoughts, affects, and behaviors that an individual
typically experiences are a function not of that individual’s personality system alone,

but rather afunction of the interpersonal system of which the individual is a part. Just as
individuals have distinctive and stable IF-THEN signatures, so do interpersonal rela-
tionships. Understanding the structure of the cognitive-affective processing system of
each relationship partner also should enable predictions of their distincitve relational

signatures as emergent properties of the interpersonal system that develops.

How our thoughts and feelings come and go, or
what William James captured with the phrase “stream
of consciousness” (1890), has been a basic topic in
psychology for almost a century. It is also a central fea-
ture of all living things: if what looks like an animal
doesn’t change its behavior in response to what hap-
pens to it, we may begin to wonder if it is even alive.
Signs of life are seen in variability.

Yet, when considering personality and individual
differences, the vital importance of change and flow
must be reconciled with the notion of constancy, and
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with the assumption that each individual is character-
ized by stable and distinctive qualities. The person that
we are in one moment is basically the same person in
the next moment, even if our thoughts, feelings and be-
haviors vary substantially. Is there something in us that
remains invariant through the changing stream of
thoughts, feelings, and behaviors, and if so, how might
one conceptualize such invariance?

A key to embracing such variations and invariance
in personality structure, we believe, lies in
reconceptualizing personality as a dynamical system
(Mischel & Shoda, 1995). Stability is expected in the
underlying structure that generates the thoughts, feel-
ings, and behaviors which themselves change from
one moment to the next. The stability of the underly-
ing structure will be reflected in part in the overall av-
erage levels of different types of behavior, but it also
will be seen most clearly in the way they change. As
every good novelist knows, both the subtle texture of
personality and its underlying dynamics may be re-
vealed in the seeming inconsistencies evident in a
person, and these may be even more informative than
the apparent consistencies and overall average behav-
ior tendencies.



PERSONALITY AS A DYNAMICAL SYSTEM

The Emerging Social
Cognitive-Affective Conception
of the Person

When we started looking for alternative conceptual-
izations of personality several years ago, we were
struck by the fact that in the broader field of social cog-
nition and the cognitive sciences in general, a concep-
tion was already emerging, if not explicitly, in the form
of a set of implicit assumptions. This conception views
the person as consisting of mental representations
whose activation leads to the thoughts and feelings ex-
perienced and the behaviors displayed (e.g., Higgins,
1990). The cognitions and affects particularly relevant
to personality include diverse content, or “cogni-
tive-affective units” (Mischel & Shoda, 1995). These
encompass the person’s encoding or construal of the
self and of situations, enduring goals, expectations and
feeling states, as well as specific memories of the peo-
ple and events that have been experienced, and a host
of competencies and skills particularly important for
self-regulation. These cognitive-affective units have
been previously discussed as “person variables” on
which individuals differ (Mischel, 1973). Some of
these units or mental representations are more avail-
able and accessible, ready to become activated, while
others are quite inaccessible (Higgins, 1996). Most im-
portantly, the activation of cognitive affective units is
not constant, but changes from one time to another,
from one situation to another. The renewed attention
on such dynamics was calling for a way to conceptual-
ize coherence in the face of change, accounting for the
predictable patterns that exist in the pattern of changes
distinctively characterizing a person.

Central to this emerging conception of personality
is the idea that mental representations of the psycho-
logical meaning of situations, representations of self,
others, possible future events, goals, affects, beliefs,
expectations, as well as behavioral alternatives are not
isolated, but are interconnected. We proposed that for a
given individual the likelihood that thought A leads to
thought B and emotion C is guided by a network of as-
sociations among cognitions and affects available to
that individual. Through this network, for example,
thinking about a person can activate the memory of the
thoughts and feelings associated with a particular event
in the past, which in turn may lead to other memories
and thoughts that may make us smile or cry (e.g.,
Andersen & Baum, 1994; Andersen & Cole, 1990). In-
dividuals differ stably in this network of inter-connec-
tions or associations, and such differences constitute a
major aspect of personality (Mischel & Shoda, 1995).

Furthermore, each unit is potentially connected to
every other unit in the network, and each pair of units is
characterized by a distinct and stable strength of asso-
ciation between them. Called recurrent networks, one
of the most notable properties of such networks is that

they settle into a set of activation patterns to satisfy
multiple simultaneous constraints represented by the
patterns and strengths of connections among the units
in the network. The use of a recurrent, or parallel con-
straint satisfaction, network is consistent with models
of human information processing in the broader cogni-
tive sciences, including analogical reasoning
(Spellman & Holyoak, 1992), attitude change
(Spellman, Ullman, & Holyoak, 1993), explanatory
coherence (Read & Marcus-Newhall, 1993; Thagard,
1989), dissonance reduction (Read & Miller, 1994;
Shultz & Lepper, 1996), and impression formation and
dispositional inference (Kashima & Kerekes, 1994;
Kunda & Thagard, 1996; Read & Miller, 1993).

The Cognitive-Affective Personality
System (CAPS)

Figure 1 illustrates the basic structure of the sys-
tem that in this conceptualization underlies changing
thoughts and feelings, and stable differences among
the patterns of change, summarized in a highly sim-
plified, schematic outline (Mischel & Shoda, 1995).
The personality system contains a number of cogni-
tive and affective units, connected to one another to
form networks of associations that distinctively char-
acterize each individual. When the individual encoun-
ters a situation, a subset of these units (the feature de-
tection units) becomes activated, depending on the
configuration of features present in the situation.
These activated units in turn activate other cognitions
and affects (processing units), following the stable as-
sociative links in the individual’s cognitive-affective
processing system (or CAPS) network. The figure is,
of course, a greatly simplified view of the rich system
of interconnections among the cognitive and affective
units. We assume that each individual’s characteristic
network among units reflects culture and subculture
(Mendoza-Denton, Shoda, Ayduk, & Mischel, 1999),
as well as an individual’s specific social learning and
biological-genetic history.

Behavioral Expressions of Stable
Individual Differences in the
CAPS Network

First, we consider in some detail how such a system
“works” to produce behaviors. Cognitions and affects
become activated, either by the salient “psychologi-
cally active” element in the situation (Shoda et al.,
1994) or internally by other activated cognitions and
affects. Activation then propagates through an individ-
ual’s unique network of associations, and ultimately
activates thoughts or emotions the individual is aware
of, or a behavior that is observable.
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Figure 1. An Illustrative CAPS network. When a unit connected to another unit by a solid line becomes activated, it increases the activa-
tion of the second unit, in proportion to the thickness of the arrow. When a unit connected to another unit by a broken line becomes acti-
vated, it decreases the activation of the second unit, in proportion to the thickness of the arrow. The CAPS networks used in the simula-
tions were larger than the network shown here, consisting of 5 input units, 10 processing units, and 5 output units each.

For example, suppose in situation 1, a person is sit-
ting on an airplane, and a man with a ponytail sits next
to her. Some of the feature detector units may become
activated (left side of Figure 1) upon seeing the man’s
ponytail, which might in turn activate some of the pro-
cessing units (middle section of Figure 1), such as con-
flicted feelings associated with the times when her
ex-hippie father, who had a ponytail, came to her
school on parents’ day. This may even activate other
processing units such as a specific memory of her
friends’ teasing her about her father’s long hair, and for
not having a TV in the converted school bus that was
their home. These feelings and memories in turn may
influence her response to the present situation, leading
to her feeling angry and hurt when a flight attendant ac-
cidentally skips her row when serving lunch.

What if the same personality system is in a different
situation, situation 2? Suppose this time the man who
sits next to her has a big mustache which reminds her
of her uncle, who had a farm and many children, and
made her feel welcome whenever she came for a visit,
thus activating cognitions and feelings that did not be-
come activated in situation 1. The result may be that
the processing units that become activated in this situa-
tion are distinctively different from those that become
activated in situation 1. As a result, she may be under-
standing and even somewhat jovial when the flight at-
tendant skips her row.

In short, the network of associations among specific
cognitions and affects (i.e., personality structure) that
characterizes the person can be invariant across situa-
tions, but its behavioral output is expected to vary
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greatly, and predictably, from one situation to another.
The cognitions and affects that are activated change
from one time to the next, but the relations between the
cognitions and affects activated at one time and those
activated next are assumed to reflect the stable person-
ality structure of the individual (Mischel & Shoda,
1995; Shoda & Mischel, 1998). In this case, we would
predict that for this person, IF in situation 1, THEN
conflicted and angry, but IF in situation 2, THEN warm
and friendly. In other words, the behavioral expression
of this system is in the set of [F-THEN relations that
characterize how the person’s behavior varies from one
situation to the next, constituting the person’s “behav-
ioral signature of personality” (Shoda et al. 1994).

The Role of Internal Situations and the
Stream of Cognitive-Affective States

The simplified illustration, however, does not ad-
dress a key aspect of the model: the pattern of con-
nections among the processing units is assumed to
form a recurrent, rather than a strictly feedforward,
network (e.g., McClelland & Rumelhart, 1986). Be-
cause of the multiple feedback loops present in such a
network, “downstream” units can activate “upstream”
units, generating a flow of thoughts, feelings, and
even behaviors without necessarily requiring an out-
side stimulus. That is, not only the external input, but
also the thoughts and feelings at a given point influ-
ence what happens next in the system. The result is
something that might resemble a “stream of con-
sciousness.” Will there be any stable and distinctive
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pattern discernible in the ever-changing states of such
a system? Or, will it keep changing in essentially ran-
dom, unpredictable ways?

Network simulations. To address this question,
we conducted a computer simulation of personality dy-
namics, using the basic architecture reported more
fully in Shoda and Mischel (1998). The computer sim-
ulation can only capture an extremely small subset of
the characteristics of the actual CAPS system that gen-
erates people’s experiences and behavior. Neverthe-
less, a system that implements such a subset is complex
enough so that a computer simulation is useful, or even
necessary, to provide insight into the system’s func-
tioning and characteristics.

A hypothetical personality was simulated in a
20-unit connectionist network consisting of 5 situation
feature detection input units, 10 cognitive-affective
processing units, and 5 behavior output units (similar
to the one depicted in Figure 1, except the network
used in the simulation used a larger number of units).
Information travels unidirectionally from the feature
detection units into the 10 processing units. The pro-
cessing units themselves formed a fully interconnected
recurrent network, containing many feedback loops.
Information then travels from the processing units to
the behavior, or output, units. Connection weights for
each distinct pair of units were set for each simulated
personality by randomly assigning a value drawn from
a continuous distribution, ranging from -1 to 1. The
connection weights were fixed thereafter, so that in this
simulation no learning took place to alter the CAPS
network. (In real life, of course, experiences, particu-
larly intense or prolonged exposure to critical events,
can change the connection weights, which in the CAPS
theory represent personality change.)

Figure 1 illustrates the structure of associations
among the units, with the lines connecting each pair
of these units representing the associations among
them. Some of the associations are positive (shown
by a solid line), indicating that when one unit be-
comes activated, it will increase the activation of the
other unit to which it is connected. Other associations
are negative (shown by a dashed line), indicating that
when one unit becomes activated, it will suppress the
activation of the other unit to which it is connected.
Thicker lines indicate stronger connections, either
positive or negative.

To understand the operation of such a system, we
“stimulated” the network by temporarily increasing
the activation of a subset of the feature detection
units. This is analogous to when a person is exposed
to a social stimulus. A stimulus was assumed to have
a characteristic set of features, which activated corre-
sponding feature detection units in the CAPS net-
work. Activation was assumed to spread from the ac-
tivated units to other units in the network. In this

case, activation would spread from the stimulated
feature detector units to the cognitive-affective pro-
cessing units, to the behavioral output units.

Such spreading activation is not unlike the biological
system that inspired the original connectionist model-
ing. However, in a biological system the activation lev-
els of all the units change simultaneously, and more or
less continuously. To simulate simultaneous and contin-
uous changes in conventional computers, which operate
serially (i.e., executing one operation at atime, albeit ex-
tremely rapidly), a series of small adjustments are made
in the activation levels of each unit, implemented in
many “cycles” of adjustment. Specifically, in one cycle,
the inputs to each unit from all units to which it is con-
nected are summed, and added toits previous level of ac-
tivation minus a slow decay, such that 98% of its activa-
tion in the previous cycle “carries over” to the next cycle
(i.e., without any input into a unit, its activation value
was 98% of its value in the previous cycle).! Then, the
adjustment process starts all over again in a new cycle. It
has been shown (Anderson, Silverstein, Ritz, & Jones,
1977; Hopfield, 1982, 1984) that after a number of up-
dating cycles these types of networks settle into charac-
teristic stable states, known as attractors. In our case, the
attractor states represent the characteristic “states of
mind” (e.g., a set of beliefs, affective states, etc.) acti-
vated in our simulated personality, in response to differ-
entcombinations of feature detector inputs. In the hypo-
thetical example of an airplane passenger mentioned
earlier, the attractor states in the simulation correspond
to her states of resentment and security, in response to
two different situations.

In our simulations, attractor states were determined
by stimulating the network with a variety of stimuli,
analogous to encountering a variety of situations, and
letting the network “settle” after exposure to each stim-
ulus. Specifically, we created 100 “situations”, each of
which corresponded to a unique combination of values
of the five feature detector units, with values chosen

1 The activation level of each unit was updated following the
“squashing” function (e.g., McClelland & Rumelhart, 1986; Shultz
& Lepper, 1996), which scaled the effect of net input into each unit in
proportion to the distance left to the ceiling (when activation < 0) or
to the floor (when activation > 0) of the possible range of activation,
which was set from -1 to +1. Specifically,
when net; 2 0,

ai(t+1) = d - ai(t) + neti - {ceiling — ai(t)}
when net; < 0,
ai(t +1) = d - ai(t) + neti- {ai(t) — floor}
Net input into unit i was computed as: net; = ¢ * Z( wi * f(ai(1))),

i#j
where is the activation level of unit j at time  and 1s the weight of the
connection between the unit j and unit i. The weights were symmetri-

cal, o thatwy = wy. f(a() = !

——_ which s a sigmoi
+ M E(1-8) ’ s a sigmoid

function of a;(t) over -1 to +1. Constants are set as follows: c=0,d =
.98, ceiling = 1.0, floor =-1.0, A= 10,8 = 0.
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randomly from a continuous distribution ranging from
—1to 1. “Situation” 1 may be represented by the feature
detection unit values —.23, .41, .09, —.35, .17, for exam-
ple, while “situation” 2 may be represented by .81,
—-.63, —.14, .31, —.28. After stimulation by each input
pattern, activation levels of units in each network were
adjusted until no change in activation was detected
from one cycle to the next (within the limit of the preci-
sion level available to the programming language
used). The network reached such stable states with a
median of 215 cycles. After the network settled, the ac-
tivation values for the ten units were recorded.

The attractor states for each network were then
identified by submitting the final activation values of
the system resulting from each of the 100 inputs to the
Partitioning Around Medoids (PAM) clustering
algorithm?, developed by Kaufman & Rousseeuw
(1990) and available as an add-on package for the
freely available statistical language R. The clustering
algorithm determined the dissimilarity (indexed by Eu-
clidean distance) among the 100 final states, each of
which was characterized by the set of 10 activation val-
ues of the processing nodes. We then identified distinc-
tive clusters of final states using a criterion that re-
quired a minimum level of dissimilarity between every
member of a cluster and members of other clusters.
This clustering algorithm required the user to specify
the number of clusters. Therefore the data were ana-
lyzed with this clustering algorithm 99 times, with the
requested number of clusters ranging from 2 to 100,
producing 99 sets of cluster solutions. For each solu-
tion, we determined the number of clusters that met our
criterion for being “isolated”3, and defined the optimal
solution as that with the maximum number of distinc-
tive clusters. We then considered those clusters as at-
tractors. For the simulated person shown in Figure 2,
for example, a maximum number of distinct clusters
were obtained with a 4-cluster solution (i.e., extracting
more than 4 clusters did not increase the number of
clusters that met the criterion for being distinctive).

To visualize the dynamic change in the network as it
moved from the initial “exposure” to each situation, to
an attractor or settled state, we conceptualized the state
of the system at any time as a point in a 10-dimensional
space, following the “brain state in a box” representa-
tion (e.g., Anderson, 1977; Golden, 1986). At any

2Downloadable at http://cran.r-project.org/src/contrib/PACK-
AGES .html#cluster.

3The PAM algorithm identifies a user-specified number of clus-
ters that minimize intra-cluster distances while maximizing
inter-cluster distances. For each cluster, PAM computes an index of
separation, the minimal distance between a member of the cluster
and a member of another cluster. We considered a cluster to be dis-
tinct when its separation was 0.3 or greater (i.e., clusters whose
members were at least a distance of 0.3 away from a member of an-
other cluster, in a ten dimensional space where each dimension
ranged from -1 to +1).
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Figure 2. The attractor states of the CAPS network for one simu-
lated person. The network was “‘exposed” to 100 distinctive “situ-
ations.” Thelocation of each small circle represents the initial acti-
vation levels of the first two feature detection units after exposure
to eachssituation. The x-coordinate of asmall circle corresponds to
theinitial activation level of the first feature detection unit, and the
y-coordinate, that of the second feature detection unit. The loca-
tion of each small triangle represents the final activation levels of
the first two behavior output units, after exposure to each situa-
tion, and after the network has settled into a stable state. Note be-
cause the figure plots the initial activation of only 2 of the 5 input
units, starting points that appear close in the figure may differ in
the other 3 units. Thus two starting points that are close in this fig-
ure may lead to different attractors.

point in the updating cycle, the state of the network is
defined by a set of 10 values, representing each of the
10 behavior output unit’s activation levels. That set of
10 values can be thought of as the coordinates of a lo-
cation in a 10-dimensional space. As the states change,
the set of 10 values will change, which, in this frame-
work, would correspond to a different location in the
10-dimensional space. Thus, the change from one time
to the next in the system can be thought of as a point
moving through the 10-dimensional space.

Drawing a 10-dimensional space is not possible,
so we chose two of the processing units to illustrate
the settling process. Figure 2 summarizes the sys-
tem’s response after being exposed to each of the 100
situations. In the figure we plotted the final activation
levels of these two output units on the X-Y plane.
The x-coordinate of each small triangle at one end of
each line corresponds to the final activation level of
the first output unit, while the y-coordinate corre-
sponds to the final activation level of the second out-
put unit. The initial states after the system was ex-
posed to each situation are shown in the many small
circles on the other end of the lines, with each circle
representing the initial values for the first two of the
five feature detection input units, superimposed on
the same X-Y plane that is used to show the final
states of the output units. The x-coordinate of each
small circle corresponds to the initial activation level
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of the first feature detector unit, while the y-coordi-
nate corresponds to the initial activation level of the
second feature detector unit.

The distribution of the small circles on the X-Y
plane corresponds to the locations of the input space
we sampled. With 100 input vectors sampled, it still
would not be fair to call it an exhaustive sample, but
we can see most of the input space is represented to
some degree. The graph shows that different feature
constellations produce different end states for the
same individual. But instead of the 100 different in-
put patterns leading to 100 different end states, there
were 4 clusters of end states, or attractors, shown in
large circles. That is, one group of IFs lead to one
THEN (i.e., a distinct attractor state), while another
group of IFs led to a different THEN. Thus, for this
simulated person, there were four distinct groups of
IFs (input patterns) each leading to a distinct THEN.4
These clusters may be thought of as corresponding to
functional equivalence classes of situations that
Gordon Allport hypothesized as an expression of an
individual’s personality, or “a neuropsychic system
(peculiar to the individual) with the capacity to render
many stimuli functionally equivalent, and to initiate
and guide consistent (equivalent) forms of adaptive
and expressive behavior” (1937, p.295).

Forty personalities were simulated in this manner,
with each exposed to 100 unique feature detector unit
input patterns. For each input pattern, the activation
levels of the network units were adjusted until the
network reached a stable state, and the final activa-
tion values for the 10 processing units were recorded.
Using the clustering technique on these 10 values, for
each simulated personality, we were able to deter-
mine the number and the size and location of the at-
tractors for each of the simulated personalities. The
40 simulated personalities had, on average, 2.18 at-
tractors of varying size and location.

Extending the Model to Address
Interpersonal Systems: The
Personality of a Dyad

An attractor state is a distinct pattern of activation in
cognitive and affective units that is particularly stable;
once a network is in that state, it is unlikely to change
easily. As shown earlier, the personality system, mod-
eled as a recurrent network, “settles” into one of its dis-
tinctive attractor states after encountering a situation
that activates some of the cognitive-affective units.

4 In general, the larger the network, the larger the number of at-
tractors. Thus in a more realistic network representation of an indi-
vidual containing more than 10 processing units, the number of at-
tractors, of course, should be much larger than is illustrated in the
present simulation.

Furthermore, in response to different situations, the
system may settle into different attractor states.

In the previous simulations, it was assumed that af-
ter an initial exposure to situations, the subsequent pro-
cessing of the initial stimulus was carried out by the
network in isolation, without further external inputs or
constraints. Such a process may account for what
might happen, for example, when an individual is
watching a TV news program alone. As the individual
encounters a news item, her mind is stimulated by it,
and after a chain of associations, may settle into a state
of recurrent thoughts, corresponding to one of her cog-
nitive-affective network’s attractor states. When the
next topic is presented, the process repeats, this time
settling into another attractor state, if the new item acti-
vates a different set of thoughts. Note that in this exam-
ple, the situations (i.e., the news stories) are deter-
mined by factors outside the individual’s influence.
That is, the thoughts, feelings, and behaviors of the in-
dividual do not (under usual circumstances) influence
the next item featured on the news.

Real-life, however, is replete with situations that are
not determined independently of a person’s actions,
and indeed they tend to be the rule rather than the ex-
ception. For example, imagine a couple in a heated ar-
gument. In such a dyadic interaction, what one person
says, the tone of voice, or even the quick glimpse of a
facial expression, can significantly affect the other per-
son’s thoughts, feelings, and behavior. Furthermore, to
the extent that the dyad represents a significant rela-
tionship, it would not be easy, or adaptive, to ignore
one another. Every reaction of one individual may
count, in determining the partner’s cognitive, affective,
and behavioral responses. Could the present frame-
work be extended to model interactions in a dyadic sys-
tem in which the response of one individual is closely
coupled to the response of the other?

This theoretical possibility was explored in a review
of recent empirical literature (Zayas, Shoda, & Ayduk,
in press). In the present article, we address it
computationally by simulating a dyadic system that
combines two networks, each representing a person
(Figure 3). Each individual CAPS network was con-
structed in exactly the same way as in the simulation
described earlier and shown in Figure 1. In contrast to
the previous simulations, however, this time pairs of
networks were combined by connecting the behavior
units of one network to the feature detector units of the
other network and vice versa. In this manner, each indi-
vidual network becomes part of a larger parallel con-
straint satisfaction system. This coupling of individual
networks is conceptually akin to recent work on cou-
pled dynamical systems (see Nowak & Vallacher,
1998), which modeled the properties of dyads such as
relationship synchronization and the manner in which
a dyad reaches equilibrium. Gottman and colleagues
(e.g., Gottman, Swanson & Swanson, this issue) have
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Figure 3. A dyadic system is formed in which the behaviors of
one member activate the feature detection units of the other, and
vice versa.

applied a dynamical model to understand the charac-
teristics of interactions in married couples

We hypothesized that when two CAPS networks
are connected to each other, configurations of
thoughts and feelings that previously were not chron-
ically activated may now become chronic. That is,
when interlocked in a dyad, individuals in the dyad
may be characterized by a new set of recurring
thoughts, affects, and behaviors that they did not have
when alone. This may occur if partner A’s behavior
activates certain thoughts and affects in partner B,
and if in turn these thoughts are expressed in the be-
havior by partner B that led to partner A’s behavior,
thus forming a feedback loop that reinforces these
new thoughts, affects, and behaviors. More specifi-
cally, we predicted that while each person’s CAPS
network has a set of characteristic attractor states,
when they are interlocked in a dyadic system the indi-
vidual CAPS network will not necessarily settle into
the original set of attractors. Rather, they may settle
into a new set of attractors. Such a positive feedback
loop might underlie the “chemistry” of interpersonal
relationships. The simulations to test these hypothe-
ses followed these steps:

1. For each of the 40 simulated personalities, the at-
tractor states of each CAPS network were identified by
“stimulating” each, in isolation, with 100 stimulus pat-
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terns and allowing them to settle into a stable state after
exposure toeach stimulus pattern (as described earlier).

2. Twenty dyads were formed out of the original set
of 40 simulated personalities. The two networks con-
stituting each dyad were then “interlocked” by con-
necting person A’s behavior units to person B’s feature
detector units, and vice versa. Specifically, behavior
units #1, 2, 3, 4 and 5 of person A activated situation
feature detectors #1, 2, 3, 4 and 5 of person B, respec-
tively, while behavior units #1, 2, 3,4 and 5 of person B
activated situation feature detectors #1, 2, 3, 4 and 5 of
person A, respectively.

3. Then the attractor states of these two interlocked
networks were identified. We re-stimulated Person A’s
feature detector units with the same 100 input patterns
used when her network was simulated alone. Because
Persons A and B are “interlocked,” the behavioral out-
put of Person A in response to each stimulus pattern
becomes the input into Person B, whose behavioral
output in turn becomes the input to Person A, starting
another cycle of interaction. The activation in person
A’s network spreads through to person B’s network and
back, creating not only intra-individual but also
inter-individual feedback loops. The simulation con-
tinued over many cycles, until there was no change in
the states of either person. The attractor states resulting
from these simulations were compared with those re-
sulting from being simulated alone (step 1). This pro-
cedure was repeated for Person B.

To test for the effect of the dyadic interaction, we
compared the attractor states before and after the indi-
vidual networks were paired in a dyad. Would each in-
dividual network settle into different attractor states
now that it was part of the larger parallel constraint sat-
isfaction network of the dyad? The answer seemed to
be yes. As an illustration, compare Figure 4 to Figure
2. Figure 4 shows the attractors for the same simulated
person as in Figure 2. But now the person is part of a
dyadic system (see Figure 3). Note that before the net-
work became part of a dyadic system it had four attrac-
tors, but when part of the dyadic system, it had three.’
Furthermore, except for attractor #3, the new attractors
were not the same as those shown in Figure 2.

These results are summarized in Table 1. In order to
test if the difference in the distribution of attractors be-
tween when the network was stimulated alone and when
itwas embedded in a dyadic system might simply be due
to chance, we computed %2 to compare the two distribu-
tions of attractors. For the results shown in Table 1, 2
was 191.3 (df = 5), with p < .0001. The effect size, in-
dexed by Cohen’s e (Cohen, 1977) which ranges from O
(no effect) to 1 (maximum effect) was 0.96.

5As when the networks were simulated alone, the number of at-
tractor states was derived from the final activation values of all 10
processing units, not just the two units shown in the figure.
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Figure 4. The same CAPS network that produced the attractor
states shown in Figure 2 were now embedded in a dyadic system
with another CAPS network. The x-coordinate of a small circle
corresponds to the initial activation level of the first feature detec-
tion unit, and the y-coordinate, that of the second feature detec-
tion unit. The location of each small triangle represents the final
activation levels of a processing unit, after exposure to each situa-
tion, and after the network has settled into a stable state. The x-co-
ordinate of a small triangle corresponds to the final activation
level of one processing unit, and the y-coordinate, that of the sec-
ond unit.

Summary of Results Across All Dyads

Nineteen of the 20 dyads resulted in both members
of the dyad producing at least one attractor both alone
and when embedded in a dyad.

For each of these 19 dyads, we conducted the same
analysis as described earlier for the example shown in
Figures 2 and 4 and in Table 1. The mean %2 was 59.1
(mean df = 2.03), with a mean Cohen’s e effect size in-
dex of .51. In 16 of the 19 dyads, at least one member
of a dyad underwent changes in the distribution of at-
tractors that were statistically significant at p < .05.

Concluding Thoughts

We have outlined and illustrated a conception of
personality that allows a reconciliation of the human
qualities of both change and stability and that indeed
predicts them in the expressions of a personality sys-
tem. This conception accounts for intraindividual

variability in behavior, as well as for overall average
individual differences in behavior tendencies, both
enduring human characteristics (Mischel & Shoda,
1995). That is, although the particular thoughts and
affects activated at a given moment change within a
person, the internal organization of the cognitive-af-
fective processing system itself remains relatively sta-
ble and invariant, at least in the short term, from situ-
ation to situation. The stable structural properties of
the cognitive-affective processing system guide the
dynamic activation within the network of particular
cognitions and affects activated by a given situation.
In turn, different sets of cognitions and affects lead to
different behaviors, but to the extent that a person en-
counters situations with similar features, similar be-
havioral responses are generated. Key properties of
the system were illustrated in computer simulations,
in which individuals’ characteristic cognitive-affec-
tive processing systems were modeled as a recurrent,
parallel constraint satisfaction network. The results
showed that an individual is likely to have a distinct
set of attractor states, perhaps corresponding to recur-
rent thoughts, feelings, and behaviors, and function-
ally equivalent groups of situations emerge, such that
IF encountering situation class X, THEN the system
settles in attractor Y. The simulation illustrated how
such aspects of personality can be an emergent qual-
ity, based on the stable and distinctive cognitive-af-
fective network that characterizes an individual and
his or her interaction with the environment. In addi-
tion, because this conceptualization of personality ex-
plicitly models the effect of situations on a given in-
dividual, it can also be used to model the function of
interpersonal systems. We demonstrated this possibil-
ity by modeling dyadic systems in which one part-
ner’s behavior becomes the situational input into the
other partner’s personality system, and vice versa.
The results indicated that each member of the dyad
will, in general, exhibit new attractor states, suggest-
ing that the thoughts, affects, and behaviors that an
individual typically experiences are a function not of
that individual’s personality system alone, but rather
a function of the interpersonal system of which the
individual is a part.

There is much commonality between the present
results and those shown by Gottman, Swanson, and
Swanson (this issue). Both show that a model of dy-
namical interactions between pairs of individuals
predict stable interaction patterns that reflect the

Table 1. Attractors for the Network Shown in Figure 4, as a Function of Whether the Network was Isolated (“Alone”’)
versus Embedded in a Dyadic System.

Attractor #1 Attractor #2 Attractor #3 Attractor #4 Attractor #5 Attractor #6
Alone 60 25 7 0 0
Embedded in a dyad 0 0 0 64 33

Note: Entries indicate the number of situations leading to each attractor. 2 (df = 5) = 191.3, p < 10 38, Cohen’s ¢ = 0.96.
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unique combination of the two people in the dyad,
and that this is an emergent quality in that it is not a
simple combination of the behavioral tendencies
that exist in the two individuals alone. The present
work and the Gottman et al. work complement each
other in that the latter directly models the influence
of one person on the other, with the possibility of
empirically assessing the nature of these influences
from observable data. The CAPS networks, on the
other hand, focus on the intra-individual dynamics,
that is, interactions among the cognitions and af-
fects within an individual. Thus the present work
can be thought of as modeling the intra-individual
processes that may underlie the nature of the influ-
ence one person has on the other, which is the focus
of the Gottman et al. model. By assessing the pat-
tern of automatic associations among cognitions
and affects that form individuals’ CAPS networks
to predict the nature of influence one person has on
another if they form a dyad.

Furthermore, there are a number of questions that
could be addressed by a relatively simple extension
of the present work. For example, what would be the
result if every possible combination of individuals
were simulated? Would each distinctive pair result in
a unique set of attractors, or would some individuals
tend to result in repeated patterns of relationships,
such as always getting into hostile and conflicted re-
lationships across a range of partners? And if so, is it
because the individual is relatively impervious to sit-
uational input, or is it because the individual manages
to provoke a predictable pattern of reaction from oth-
ers? Furthermore, real-life dyads’ CAPS networks are
related due to partner selection (e.g., Zayas et al., in
press) and mutual influences over the course of a re-
lationship, for example. What would be the effect of
such relationships between the CAPS networks of
partners in a dyad?

The simulation of the dyadic system illustrated here
is one example of what may be possible with a model
of personality that incorporates, rather than excludes,
the effect of situations. It models how people respond
cognitively, affectively, and behaviorally, to the impor-
tant situations in which their lives are contextualized,
as illustrated in dyadic relations with significant oth-
ers. Such phenomena as the multiple “relational
selves” that define identities (e.g. self as partner, self as
daughter, self as mother) are increasingly recognized
in social psychology and self-theories (e.g. Mischel &
Morf, in press), although they are not routinely in-
cluded in most current approaches to personality and
individual differences. Our hope is that such an ap-
proach will allow phenomena like the relational nature
of personality to be studied with increasing precision.
Another fruitful line of research may be to investigate
individual differences in the structure of these net-
works. For example, individuals may differ in the num-
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ber and “depth” of attractors, as well as the complexity
of their CAPS networks. Such differences may in turn
allow one to predict the kinds of stabilities and
constancies in observable behaviors that are likely to
be expressed.

The depiction of a person condensed into a single
still photo with an average of joy and sadness, hope and
despondence, anger and conciliation may provide a
useful composite for many purposes. But to begin to
account for the individual’s characteristic dynamics,
one needs to examine the processes that underlie them,
as expressed in the patterns of distinctive IF-THEN
personality signatures. A glimpse into such processes
comes from analyzing the structure of the person’s
cognitive-affective processing sytem (Shoda &
Mischel, 1998). We propose that just as individuals
have distinctive and stable IF-THEN signatures, so do
interpersonal relationships (e.g., “This couple always
starts arguing when life gets too good”). By under-
standing some of the structure of the cognitive-affec-
tive processing system of each relationship partner we
also may become able to predict their distinctive rela-
tional signatures.

References

Allport, G. W. (1937). Personality: A psychological interpretation.
New York: Holt, Rinehart, & Winston.

Andersen, S. M., & Baum, A. B. (1994). Transference in interper-
sonal relations: Inferences and affect based on significant-other
representations. Journal of Personality, 62, 460-497.

Andersen, S. M., & Cole, S. W. (1990). “Do I know you?”: The role
of significant others in general social perception. Journal of
Personality and Social Psychology, 59, 384-399.

Anderson, J. A. (1972). A simple neural network generating an inter-
active memory. Mathematical Biosciences, 14, 197-220.
Anderson, J. A. (1977). Neural models with cognitive implications.
In D. LaBerge & S. J. Samuels (Eds.), Basic processes in read-
ing perception and comprehension (pp. 27-90). Hillsdale, NJ:

Lawrence Erlbaum Associates, Inc..

Anderson, J. A,, Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977).
Distinctive features, categorical perception, and probability
learning: some applications of a neural model. Psychological
Review, 84, 413-451.

Cohen, J. (1977). Statistical power analysis for the behavioral sci-
ences. New York: Academic Press.

Golden, R. M. (1986). The ‘brain-state-in-a-box’ neural model is a
gradient descent algorithm. Journal of Mathematical Psychol-
ogy, 30, 73-80.

Gottman, J., Swanson, C., & Swanson, K. (2002). A general systems
theory of marriage: Nonlinear difference equation modeling of
marital interaction. Personality and Social Psychology Review,
6, 326-340.

Higgins, E. T. (1990). Personality, social psychology, and person-sit-
uation relations: Standards and knowledge activation as a com-
mon language. In L. A. Pervin (Ed.), Handbook of personality:
Theory and research (pp. 301-338). New York: Guilford.

Higgins, E. T. (1996). Knowledge activation: Accessibility, applica-
bility, and salience. In E. T. Higgins & A. W. Kruglanski (Eds.),
Social psychology: Handbook of basic principles (pp.
133-168). New York: Guilford.



PERSONALITY AS A DYNAMICAL SYSTEM

Hopfield, J. J. (1982). Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the
National Academy of Sciences, 79, 2554-2558.

Hopfield, J. J. (1984). Neurons with graded responses have collec-
tive computational properties like those of two-state neurons.
Proceedings of the National Academy of Sciences, 81,
3088-3092.

James, W. (1890). The Principles of Psychology. New York: Holt.

Kashima, Y., & Kerekes, A. R. Z. (1994). A distributed memory
model of averaging phenomena in person impression forma-
tion. Journal of Experimental Social Psychology, 30, 407-455.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An
introduction to cluster analysis. New York: Wiley.

Kunda, Z., & Thagard, P. (1996). Forming impressions from stereo-
types, traits, and behaviors: A parallel-constraint-satisfaction
theory. Psychological Review, 103, 284-308.

Kohonen, T. (1972). Correlation matrix memories. /JEEE Transac-
tion on Computers, C-21, 353-359.

McClelland, J. L., & Rumelhart, D. E. (1986). A distributed model of
human learning and memory. In J. L. McClelland & D. E.
Rumelhart (Eds.), Parallel distributed processing: Explora-
tions in the microstructures of cognition: Vol. Il. Psychological
and biological models (pp. 170-215). Cambridge, MA: MIT
Press/Bradford Books.

Mendoza-Denton, R., Shoda, Y., Ayduk, O. N., & Mischel, W.
(1999). Applying Cognitive-Affective Processing System
(CAPS) Theory to cultural differences in social behavior. In W.
J. Lonner, D. L. Dinnel, D. K. Forgays, & S. A. Hayes, (Eds.),
Merging past, present, and future in cross-cultural psychology:
Selected papers from the Fourteenth International Congress of
the International Association for Cross-Cultural Psychology
(pp- 205-217). Lisse, Netherlands: Swets & Zeitlinger.

Mischel, W. & Morf, C. (in press). The self as a psycho-social dy-
namic processing system: A meta-perspective on a century of
the self in psychology. In M. Leary & J. Tangney (Eds.), Hand-
book of Self and Identity. New York: Guilford.

Mischel, W., & Peake, P. K. (1982). Beyond déja vu in the search for
cross-situational consistency. Psychological Review, 89, 730-755.

Mischel, W., & Shoda, Y. (1995). A cognitive-affective system the-
ory of personality: Reconceptualizing situations, dispositions,
dynamics, and invariance in personality structure. Psychologi-
cal Review, 102, 246-268.

Nowak, A., & Vallacher, R.R. (1998). Dynamical social psychology.
New York: Guilford.

Read, S.J., Jones, D. K., & Miller, L. C. (1990). Traits as goal-based
categories: The importance of goals in the coherence of
dispositional categories. Journal of Personality and Social Psy-
chology, 58, 1048-1061.

Read, S. J., & Marcus-Newhall, A. (1993). Explanatory coherence
in social explanations: A parallel distributed processing ac-
count. Journal of Personality and Social Psychology, 65,
429-447.

Read, S. J., & Miller, L. C. (1994). Dissonance and balance in belief
systems: The promise of parallel constraint satisfaction pro-
cesses and connectionist modeling approaches. In R. C. Schank
& E. Langer (Eds.), Beliefs, reasoning, and decision making:
Psycho-logic in honor of Bob Abelson (pp. 209-235). Hillsdale,
NJ: Lawrence Erlbaum Associates, Inc.

Shoda, Y., & Mischel, W. (1998). Personality as a stable cogni-
tive-affective activation network: Characteristic patterns of be-
havior variation emerge from a stable personality structure. In
S. J. Read & L. C. Miller (Eds.), Connectionist and PDP
Models of Social Reasoning and Social Behavior (pp.
175-208). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Shoda, Y., Mischel, W., & Wright, J. C. (1994). Intra-individual sta-
bility in the organization and patterning of behavior: Incorpo-
rating psychological situations into the idiographic analysis of
personality. Journal of Personality and Social Psychology, 67,
674-687.

Shultz, T. R., & Lepper, M. R. (1996). Cognitive dissonance reduc-
tion as constraint satisfaction. Psychological Review, 103,
219-240.

Spellman, B. A., & Holyoak, K. J. (1992). If Saddam is Hitler then
who is George Bush? Analogical mapping between systems of
social roles. Journal of Personality and Social Psychology, 62,
913-933.

Spellman, B. A., Ullman, J. B., & Holyoak, K. J. (1993). A coher-
ence model of cognitive consistency: Dynamics of attitude
change during the Persian Gulf war. Journal of Social Issues,
49, 147-165.

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain
Sciences, 12, 435-467.

Zayas, V., Shoda, Y., & Ayduk, O. N. (in press). Personality in context:
An interpersonal systems perspective. Journal of Personality.

325



