/* Enter text without formatting, especially linebreaks! */
.ExecDir:before {
  content: 'Ron Irving';
  vertical-align: top;
}
.AcadDir:before {
  content: 'Sándor Kovács';
  vertical-align: top;
}
.AdmisDir:before {
  content: 'Jim Morrow';
  vertical-align: top;
}
.ResLifeDir:before {
  content: 'Bridget Klee';
  vertical-align: top;
}
.DiverAssocDir:before {
  content: 'Max Lieblich';
  vertical-align: top;
}
.RecruAssocDir:before {
  content: 'Julia Pevtsova';
  vertical-align: top;
}
.ResLifeAssistDir:before {
  content: 'Kristine Hampton';
  vertical-align: top;
}
.AdmisCoord:before {
  content: 'Alice Boytz';
  vertical-align: top;
}
.classOneInstA:before {
  content: '';
  vertical-align: top;
}
.classOneInst:before {
  content: 'Steve Klee';
  vertical-align: top;
}
.classOneTitle:before {
  content: 'Mathematical Reasoning and Proof';
  vertical-align: top;
}
.classOneAbs:before {
  content: 'Our goal in this class is to explore a range of techniques for solving problems and proving things.  We will work together to explore problems in algebra, geometry, number theory, and combinatorics.';
  vertical-align: top;
}
.classTwoInst:before {
  content: 'Kristin DeVleming';
  vertical-align: top;
}
.classTwoInstB:before {
  content: 'Julia Pevtsova';
  vertical-align: top;
}
.classTwoTitle:before {
    content: 'A guide to group theory';
  vertical-align: top;
}
.classTwoAbs:before {
  content: 'Group theory is a central part of what mathematicians call "algebra" but we will quickly see that this algebra might not be the algebra you already know.  We will start with intuition and hands-on puzzles to study groups: collections of objects satisfying three simple properties.  We will study what it means to be a group and answer the question you are already asking: why should I care?  (Hint: it might be because (a) it is cool (b) chemistry/physics (c) cryptography or (d) why not?)';
  vertical-align: top;
}
.classFourInst:before {
  content: 'Andrew Berget';
  vertical-align: top;
}
.classFourTitle:before {
  content: "Plane 'ol curves";
  vertical-align: top;
}
.classFourAbs:before {
    content: 'In our course we will learn about planar algebraic curves. The goal is to understand how two such curves intersect in the plane. For example, how does a circle (given by x^2 + y^2 = 1/2) meet a rose (x^2 + y^2)^3 = 4x^2 y^2), as shown below? Why are there 8 points of intersection and not more or less? We will see that morally there are 12 points of intersection and we will account for the missing points.';
  vertical-align: top;
}
.classThreeInst:before {
  content: 'Max Lieblich';
  vertical-align: top;
}
.classThreeTitle:before {
    content: 'What is a number?'; 
  vertical-align: top;
}
.classThreeAbs:before {
    content: 'What is a number? Is there a world where 3 equals 0? Is there a place where every point inside a disk is the center? Is there a three-dimensional number system? How imaginary are imaginary numbers? What are the basic properties of “number” that tie together different number systems? We will discuss these questions and more.';
    vertical-align: top;
}
.classIntenseInst:before {
  content: 'Sándor Kovács';
  vertical-align: top;
}
.classIntenseTitle:before {
  content: 'Beyond the third dimension';
  vertical-align: top;
}
.classIntenseAbs:before {
  content: 'In this course we will think about what dimension means and how we can make sense of dimensions higher than three.  On this quest we will learn about abstract algebraic concepts such as groups, rings, fields and their concrete incarnation in everyday life.';
  vertical-align: top;
}
.classSixInst:before {
  content: '';
  vertical-align: top;
}
.classSixTitle:before {
  content: '';
  vertical-align: top;
}
.classSixAbs:before {
  content: '';
  vertical-align: top;
}
.specialTwoLect:before {
  content: 'Kristine Hampton';
  vertical-align: top;
}
.specialTwoTitle:before {
  content: 'Font of (Mathematical) Knowledge';
  vertical-align: top;
}
.specialTwoAbs:before {
  content: "How do we quickly determine if a shape tiles the plane? Can we find efficient foldings of one polygon into another? What is the minimum number of pieces in the dissection of a polygon? We may not be able to answer these questions (yet!) but we can explore them using mathematical fonts. We'll see examples of fonts where each letter is the Voronoi diagram for a set of points, where each letter can be folded into a cube and we'll even try to design our own fonts to answer questions we're curious about!";
  vertical-align: top;
}
.specialFiveLect:before {
  content: 'Sam Burden';
  vertical-align: top;
}
.specialFiveTitle:before {
  content: 'Control theory with humans "in the loop"';
  vertical-align: top;
}
.specialFiveAbs:before {
    content: 'Human interaction with the world is increasingly mediated by intelligent machines that help us drive cars, fly aircraft and drones, and provide assistance to the elderly and disabled.  In this short course, you will learn about the mathematical principles governing these "human-in-the-loop" systems, termed control theory.';
  vertical-align: top;
}
.specialThreeLect:before {
  content: 'Mariana Smit Vega Garcia';
  vertical-align: top;
}
.specialThreeTitle:before {
  content: 'How to catch a turtle';
  vertical-align: top;
}
.specialThreeAbs:before {
  content:"In Zeno's paradox of Achilles and the turtle, Achilles is racing against a turtle. He allows the turtle a head start of 100 meters. Achilles runs at a constant speed of 10 meters per second, while the turtle walks at 0.1 meters per second. After a certain amount of time, Achilles has run 100 meters, bringing him to the spot where the turtle started. During that time the turtle has walked a bit further. This means Achilles needs some more time to run that extra distance, by which time the turtle will have advanced more. It seems, then, that Achilles will never be able to reach the turtle. In this lecture, we will explore how to add infinite many numbers to find a solution to Zeno's paradox.";    
  vertical-align: top;
}
.specialFourLect:before {
  content: 'Paul Gafni';
  vertical-align: top;
}
.specialFourTitle:before {
  content: 'Western Music Theory in a Nutshell';
  vertical-align: top;
}
.specialFourAbs:before {
  content: 'A little bit of math goes a long way in learning music! Starting with the physics of vibrating strings, we will construct a rich and nuanced understanding of harmony. We will consider two Western tuning systems and examine how each system balances the tradeoff between practicality and the \'true\' harmony of string vibration. In the second half of the talk, we will focus on the simple structures within Diatonic harmony, including Roman Numeral Analysis and modes. Main reference: Harmonic Experience by W.A. Mathieu.';
  vertical-align: top;
}
.specialIntenseLect:before {
  content: 'Ioana Dumitriu';
  vertical-align: top;
}
.specialIntenseTitle:before {
  content: 'The myriad uses for Catalan numbers';
  vertical-align: top;
}
.specialIntenseAbs:before {
  content: 'The Catalan numbers are perhaps the most famous sequence of numbers in enumerative combinatorics. From allowable parenthesis sequences to lattice paths, and from rooted unlabeled trees to triangulated polygons, the Catalan numbers count a huge variety of apparently unrelated combinatorial structures that are relevant in fields like computer science, probability, random matrix theory, and so on. This fact gives rise to all sorts of interesting bijections between the aforementioned combinatorial structures. We will have fun playing with and exploring some of them.';
  vertical-align: top;
}
.specialSixLect:before {
  content: 'Allison Henrich';
  vertical-align: top;
}
.specialSixTitle:before {
  content: 'Knotty Games';
  vertical-align: top;
}
.specialSixAbs:before {
  content: "Most people are under the mistaken impression that math can't be fun. The aim of much of my research with undergraduates, high school students, and professor collaborators, in part, is to provide more counterexamples to this claim. Our work combines one of the most delightfully visual mathematical subjects--knot theory--with one of the most common sources of fun: games. In this talk, we will learn the basics of knot theory and the rules of various knotty games. There will be opportunities for you to play these games on several types of knot diagrams and think about strategies that can guarantee certain players a win!";
  vertical-align: top;
}
.specialSevenLect:before {
  content: '';
  vertical-align: top;
}
.specialSevenTitle:before {
  content: '';
  vertical-align: top;
}
.specialSevenAbs:before {
    content: '';
  vertical-align: top;
}
.specialEightLect:before {
  content: '';
  vertical-align: top;
}
.specialEightTitle:before {
  content: '';
  vertical-align: top;
}
.specialEightAbs:before {
  content: '';
  vertical-align: top;
}
.specialNineLect:before {
  content: '';
  vertical-align: top;
}
.specialNineTitle:before {
  content: ''; 
  vertical-align: top;
}
.specialNineAbs:before {
  content: '';
  vertical-align: top;
}
.specialTenLect:before {
  content: '';
  vertical-align: top;
}
.specialTenTitle:before {
  content: '';
  vertical-align: top;
}
.specialTenAbs:before {
  content: '';
  vertical-align: top;
}
.headtacOne:before {
  content: 'Wilson Ly';
  vertical-align: top;
}
.headtacTwo:before {
  content: '';
  vertical-align: top;
}
.tacone:before {
  content: 'David Cheng';
  vertical-align: top;
}
.tactwo:before {
  content: 'Lily Natasha Wartman';
  vertical-align: top;
}
.tacthree:before {
  content: 'Alia Yusaini';
  vertical-align: top;
}
.tacfour:before {
  content: '';
  vertical-align: top;
}
.tacfive:before {
  content: '';
  vertical-align: top;
}
.classOneRespTA:before {
  content: 'David Cheng';
  vertical-align: top;
}
.classTwoRespTA:before {
  content: 'Wilson Ly';
  vertical-align: top;
}
.classThreeRespTA:before {
  content: 'Lily Natasha Wartman';
  vertical-align: top;
}
.classFourRespTA:before {
  content: 'Alia Yusaini';
  vertical-align: top;
}
.classFiveRespTA:before {
  content: '';
  vertical-align: top;
}
.classSixRespTA:before {
  content: '';
  vertical-align: top;
}
.classOneTAs:before {
  content: '';
  vertical-align: top;
}
.classTwoTAs:before {
  content: '';
  vertical-align: top;
}
.classThreeTAs:before {
  content: '';
  vertical-align: top;
}
.classFourTAs:before {
  content: '';
  vertical-align: top;
}
.classFiveTAs:before {
  content: '';
  vertical-align: top;
}
.classSixTAs:before {
  content: '';
  vertical-align: top;
}
.specialIntenseTA:before {
  content: 'Lily Natasha Wartman';
  vertical-align: top;
}
.specialTwoTA:before {
  content: 'Wilson Ly';
  vertical-align: top;
}
.specialThreeTA:before {
  content: 'Alia Yusaini';
  vertical-align: top;
}
.specialFourTA:before {
  content: '';
  vertical-align: top;
}
.specialFiveTA:before {
  content: 'David Cheng';
  vertical-align: top;
}
.specialSixTA:before {
  content: 'Wilson Ly';
  vertical-align: top;
}
.specialSevenTA:before {
  content: '';
  vertical-align: top;
}
.specialEightTA:before {
  content: '';
  vertical-align: top;
}
.specialNineTA:before {
  content: '';
  vertical-align: top;
}
.specialTenTA:before {
  content: '';
  vertical-align: top;
}
