Sample Problems
DO NOT SUBMIT

1. Let x be a positive real number. Prove that
\[\sqrt{\frac{[x]}{x + \{x\}}} + \sqrt{\frac{\{x\}}{x + [x]}} \geq 1, \]
where $[x]$ is the integer part of x and $\{x\}$ is the fractional part.

2. A drawer has d more black socks than white socks. Suppose that if two socks are selected at random then the probability that they match is $1/2$. How many socks of each color are there?

3. Prove that
\[\log_e(e^n - 1) \log_e(e^n + 1) + \log_\pi(\pi^n - 1) \log_\pi(\pi^n + 1) < e^2 + \pi^2. \]

4. A sequence of integers is defined as follows. Starting with $n = 1$, list all the multiples of n up to n^2. Thus, the sequence starts with the multiples of 1 up to 1, followed by the multiples of 2 up to 4, then the multiples of 3 up to 9, and so on, so that its first few terms are 1, 2, 4, 3, 6, 9, 4, 8, 12, 16. What is the 2011th term in the sequence?

5. Let a, b, c be positive real numbers and let $0 < m < \frac{1}{4}$. Prove that at least one of the following equations has real roots.
\[
ax^2 + bx + cm = 0 \\
bx^2 + cx + am = 0 \\
cx^2 + ax + bm = 0.
\]

6. Let A, B, C be the angles of a triangle. Prove that
\[\sin A + \sin B \sin C \leq \frac{1 + \sqrt{5}}{2}. \]
7. Let a, b, c be the length of sides opposite angles A, B, C in triangle ABC. Prove that
\[
\frac{\cos^3 A}{a} + \frac{\cos^3 B}{b} + \frac{\cos^3 C}{c} < \frac{a^2 + b^2 + c^2}{2abc}.
\]

8. Let a, b, c be positive real numbers satisfying $abc = 1$. Prove that
\[
a + b + c + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq 3 + \frac{a}{b} + \frac{b}{c} + \frac{c}{a}.
\]