Formation and hydrogen storage properties of in situ prepared Mg–Cu alloy nanoparticles by arc discharge

J.P. Lei, H. Huang, X.L. Dong, J.P. Sun, B. Lu, M.K. Lei, Q. Wang, C. Dong, G.Z. Cao

A R T I C L E I N F O

Article history:
Received 8 April 2009
Received in revised form
18 July 2009
Accepted 24 July 2009
Available online 12 August 2009

Keywords:
Mg–Cu nanoparticles
Intermetallic compounds
Arc discharge
Hydrogenation treatment

A B S T R A C T

Mg–Cu alloy nanoparticles were in situ prepared by a physical vapor condensation method (arc discharge) in a mixture of argon and hydrogen. Four crystalline phases, Mg, Mg₂Cu, MgCu₂ and MgO, were formed simultaneously during the arc-discharge evaporation. Detailed experiments revealed that nanostructured hydrogen-active phases of Mg₂Cu and Mg exhibit enhanced hydrogen absorption kinetics possibly due to the small grain size and surface defects. The maximal hydrogen storage contents of Mg–Cu alloy nanoparticles can reach 2.05 ± 0.10 wt% at 623 K.

© 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The storage of hydrogen gas is presently accomplished with the stainless steel cylinders under high pressure, which is safety hazardous with low gravimetric storage density. In addition, with such gas storage techniques, it is difficult to achieve a storage capacity of 2 wt.% H₂. Hydrides are promising hydrogen storage material as gases typically take 1000 times of the space of their solid form. For example, magnesium hydride can store 7 wt.% H₂. However, it suffers some drawbacks, such as MgH₂ possesses slow hydrogenation and dehydrogenation kinetics, and high release temperature due to its high enthalpy of formation. Alloying magnesium with other elements could lower the stability of the hydride without reducing the capacity to an unacceptable value. The Mg₂Cu alloy, which crystallizes in the orthorhombic structure, is lighter and cheaper than the LaNi₅-type alloys. The hydrogen content in Mg₂Cu alloy is also relatively high, being 2.6 wt.% [1], whereas only 1.5 wt.% in LaNi₅H₆. In the past 30 years, many new developments have occurred in metal hydrides. A breakthrough in hydrogen storage technology was achieved by preparing nanocrystalline hydrides using new non-conventional methods, such as mechanical alloying (MA) [2–5], hydriding combustion synthesis (HCS) [6–8], hydriding chemical vapor deposition (HCVD) [9,10], repetitive-rolling [11,12], etc. As a common characteristic in those methods mentioned above, nano-structured hydride alloys become a flashpoint because of its enhanced kinetics and possibly improvement in thermodynamics, compared to conventional cast alloys [13–15].

Reducing the size of metal hydride particles to form nanoparticles leads to a dramatic change in their physical and chemical properties and became the starting point in most

* Corresponding author. Tel.: +86 411 84706130; fax: +86 411 84709284.
E-mail address: dongxl@dlut.edu.cn (X.L. Dong).
0360-3199/$ – see front matter © 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijhydene.2009.07.092
were measured at different temperatures. After activation, Pressure–Composition–Isothermal (PCI) curves and then annealing at the same temperature for 2 h in vacuum. This work, Mg–Cu alloy nanoparticles containing hydrogen-active phases of Mg2Cu and Mg were prepared in situ by a modified arc-discharge method. As a novel one-step and in situ synthesis method, this route is significant in many characters, such as short synthesizing time, low impurity, high effectiveness, simply operation, easy to automatize, etc. In this work, the phase, composition, microstructure and morphology of nanoparticles were carefully characterized by various analytical techniques and the formation for multi-phased nanoparticles was also discussed in detail. Hydrogen absorption/desorption properties were investigated by a volumetric method. It is expected to obtain some understandings on the vapor phase synthesized Mg–Cu nanoparticles and its novel hydrogen storage properties.

2. Experimental method

The experimental equipment for production of Mg–Cu alloy nanoparticles was similar to our previous work [17]. In the experimental setup a tungsten rod was used as the cathode. Micron-sized Mg and Cu particles (99% purity) were weighed proportionately and compressed into a cylindrical block which served as the anode to be evaporated. Considering the stoichiometric composition of Mg2Cu, the molar ratio of Mg to Cu in raw material (the cylindrical block) was set as 2:1. After evacuating, a mixture of hydrogen and argon was introduced into the work chamber as the source of hydrogen plasma and the condensing atmosphere. Arc current and voltage were maintained at 240 A and 30 V, respectively. Before removing the nanocomposite particles from the chamber, a passivation procedure was carried out on the as-prepared nanoparticles by introduction of a mixture gas of argon and trace air into the chamber for 30 h. The phases in nanoparticles were determined by X-ray diffraction (XRD) using a Shimazu XRD-6000 instrument. The morphology, size and microstructure of the nanoparticles were observed by high-resolution transmission electron microscopy (HRTEM) using a Tecnai220 S-TWIM instrument. The composition in as-prepared Mg–Cu alloy nanoparticles was detected using an energy dispersive spectroscopy (EDS) attachment on TEM. Using a Sieverts’ apparatus [18], Mg–Cu alloy nanoparticles were sufficiently activated under a thermal treatment condition, i.e. heating at 673 K for 2 h in 3.0 MPa hydrogen atmosphere and then annealing at the same temperature for 2 h in vacuum. After activation, Pressure–Composition–Isothermal (PCI) curves were measured at different temperatures.

3. Results and discussion

3.1. Evolution of Mg–Cu nanoparticles by hydrogen treatment

Fig. 1(A–C) shows X-ray diffraction patterns of Mg–Cu nanoparticles and its varieties through hydrogenation treatments.

Four phases, i.e. Mg, Mg2Cu, MgO and MgCu2, coexist in the as-prepared powders (Fig. 1(A)). Discerning the differences in the relative intensities among the diffraction peaks of four phases, it is found that the main phase is metal Mg. EDS analysis indicates that the content of Mg in the as-prepared nanocomposite particles (Mg/Cu = 4:2:1 in molar ratio) becomes excessive with respect to the nominated one in the raw material (Mg/Cu = 2:1 in molar ratio). From the equilibrium phase diagram [19], there are two kinds of intermetallic compounds (Mg5Cu4 and MgCu2) existed in bulk Mg–Cu alloys. In present nanocomposite particles which were synthesized by a non-equilibrium method, the same species of intermetallic compounds are totally detected. Actually, co-existence of Mg5Cu4 and MgCu2 is a common phenomenon in nanoparticles of Mg–Cu prepared by other methods, such as the combustion synthesis and annealing of the mixture of pure Mg and Cu nanoparticles [8,16]. The presence of MgO in nanoparticles is ascribed to be originated from the oxidation of Mg during particles’ passivation. In the present work, it is difficult to form the single phase of Mg5Cu4 in nanoparticles by co-evaporating of magnesium and copper raw materials, although the stoichiometric composition of Mg5Cu4 was fixed in the target bulk. In our previous research on Fe–Sn nanoparticles system [17], an excess Sn was also found in such binary alloy system in which there are large differences in the vapor pressures and melting points of two components. It is recognized that the element with relatively high vapor pressure and melting point would be excessive in the resultant nanoparticles of binary alloy, such as Mg–Cu and Sn–Fe alloy systems in which two constituting elements have great diversities in their characters.

Hydrogenation treatments include the activation process (three hydriding/dehydriding cycles) and P–C–I measurement. XRD patterns of the treated Mg–Cu nanoparticles after the first hydrogenation and 4 cycles of hydrogenation and dehydrogenation are also presented as Fig. 1(B) and (C), respectively. After the first hydrogenation reaction, three phases MgCu2, MgH2 and MgO coexist. However, the amounts of Mg5Cu4 and...
Mg decreased noticeably and disappeared as shown in Fig. 1(B). Pure Mg phase was completely hydrogenated to form MgH$_2$ and the phase of Mg$_2$Cu reacted with hydrogen to form MgCu$_2$ and MgH$_2$. Pure Mg and Mg$_2$Cu were recovered after several hydrogenation and dehydrogenation cycles as shown in Fig. 1(C). These results suppose the reaction mechanism and phase transformations occurred in the process of hydrogen absorption/desorption, and can be formulized as follows [1]:

\[
\text{Mg} + \text{H}_2 \rightarrow \text{MgH}_2 \quad (1)
\]

\[
2\text{Mg}_2\text{Cu} + 3\text{H}_2 \rightarrow 2\text{MgCu}_2 + 3\text{MgH}_2 \quad (2)
\]

It can be recognized that the hydrogenation was carried out on both of active phases of Mg and Mg$_2$Cu in the Mg–Cu nanoparticles. Calculation from XRD peaks by using of Scherer equation revealed that the average grain sizes are approximately 38, 27, 24, and 27 nm for Mg, Mg$_2$Cu, MgCu$_2$, and MgO phases in the as-prepared nanocomposite particles, respectively; and changed to approximately 10, 16 and 15 nm for MgCu$_2$, MgH$_2$ and MgO phases after first hydrogenation process. After 4th cycle of hydrogenation and dehydrogenation, they are approximately 30, 36 and 26 nm for MgCu$_2$, MgH$_2$ and MgO phases, respectively. These results imply that the phase transition or hydrogenation and dehydrogenation resulted in an increased grain size of Mg$_2$Cu. Although the mechanism of such a change of grain size is not known, it is possible that an aggregation and grain boundary diffusion may occur during the hydrogenation and dehydrogenation reactions, leading to an increased grain size.

Fig. 2 (A) and (B) presents morphologies and core/shell interface in the as-prepared Mg–Cu nanoparticles in different magnifications. Nanoparticles are spherical in shape with its sizes ranging from 50 nm to 350 nm. The rectangle region labeled in Fig. 2(A) is magnified for detailed analysis on the shell/core structure of nanoparticles (Fig. 2(B)). The shell of nanoparticles is identified as a crystal MgO with the interplanar spacing of 0.21 nm for (200) plane. Similarly, Mg$_2$Cu and MgCu$_2$ are also detected as part of the core of nanoparticles by their interplanar spacings, i.e. 0.23 nm for Mg$_2$Cu (080) plane and 0.21 nm for MgCu$_2$ (311) plane. The detailed mechanism for such core/shell structure in Mg–Cu nanoparticles will be discussed in the next Section 3.2. Evaluating from TEM micrographs, the mean size is approximately 144 nm for the as-prepared Mg–Cu nanoparticles. In brief, three prominent characteristics of the as-prepared nanoparticles can be obtained from Fig. 2, i.e. smooth particle’s surface, larger average particles’ size and polycrystalline structure in a single nanoparticle.

In order to investigate the effect of hydrogenation treatment on the morphologies and microstructures, the treated Mg–Cu nanoparticles after several hydriding/dehydriding cycles were analyzed by HRTEM observations as shown in Fig. 3(A–C). By the lattice fringe analysis, Mg$_2$Cu compound and MgO are identified as core and shell of a nanoparticle, respectively. In comparison with as-prepared nanoparticles, three obvious changes associated with morphologies and microstructures are observed after hydrogenation treatment. First, some partially hollow nanoparticles appear as labeled with arrows (Fig. 3(A)). Second, interspaces between core and shell are observed in one nanoparticle, which is the bright image area (Fig. 3(B)). Third, serious pulverization of nanoparticles occurred during hydrogenation/dehydrogenation cycle. As a result of pulverization, one nanoparticle was crushed into several smaller sized particles. The initial size of Mg–Cu nanoparticles was in the range of 50–350 nm which was then changed as about 5–270 nm after several hydrogenation/dehydrogenation processes. Meanwhile, other phenomena were emerged, such as irregular shape, partially hollow nanoparticles, the presence of some particles with smaller size, the separation between shell and core, etc.

3.2. Formation and derivation of Mg–Cu alloy nanoparticles

As discussed in Section 3.1, intermetallic compounds (Mg$_2$Cu and MgCu$_2$) in as-prepared Mg–Cu nanoparticles were confirmed by XRD diffraction (Fig. 1(A)). In arc-discharge,
a typical physical gas-phase method, the nanoparticles arised from a vapor condensation process involving evaporation, nucleation and growth. According to the conventional theory on nucleation and growth, it can be speculated that there are six stages through all the formation of Mg–Cu nanoparticles. A schematic diagram concerning the formation of Mg–Cu nanoparticles is illustrated in Fig. 4. First, individual atoms of Mg and Cu will co-exist in gas state above the boiling point of Cu (Tb, Cu) because Mg has a lower boiling temperature than Cu, as shown in Fig. 4(A). Second, homogeneous nucleation is expected in an arc-discharge condition in which there are no preferential sites for nucleation. Prior to Mg elements, Cu atoms favor to form bigger clusters surrounding by gaseous Mg atoms in the temperature range from Tm, Cu to Tb, Cu (Fig. 4(B)). Third, Cu clusters are collided to be nuclei in a temperature between Tb, Mg and Tm, Cu (Fig. 4(C)). Fourth, above melting point of Mg (Tm, Mg), the grown Cu particles provide favorable sites for a heterogeneous nucleation of Mg and grow to larger composite particles in nanometer scale. Simultaneously, intermetallic Mg2Cu compound is created through the interface reaction and diffusion (Fig. 4(D)). At the temperature below than melting point of Mg, all phases in particles, i.e. Mg, Mg2Cu and MgCu2, are formed by solid diffusion (Fig. 4(E)). After passivation process, MgO layer forms on the surface of nanoparticles (Fig. 4(F)). It should be mentioned on the sequence of formation for Mg2Cu and MgCu2 phases. From Mg–Cu alloy phase diagram [18], it is known that Mg2Cu emerges firstly as Mg become excessive. Frederick et al. [20] experimentally found that Mg2Cu is the primary phase in the as-prepared Cu–Mg film with excessive Mg content than the stoichiometric composition of Mg2Cu. Therefore, it is also reasonably speculated that Mg2Cu is the primary phase in the present work.

Evolution of Mg–Cu nanoparticles by the hydrogenation treatment can be schematically illustrated as shown in Fig. 5. As proved by XRD diffraction patterns (Fig. 1), the hydriding/dehydriding process can cause phase transitions which is usually characterized by a crystalline structure change, a volume expansion/shrinkage, and a nucleation energy barrier [14]. In the hydrogenation process, it is believed that the volume expansion takes place as long as existence of active phases and volume shrinkage also occurs in the dehydriding process (Fig. 5(A) and (B)). Calculating from the theory density of active phases indicates that volume changes during
hydrogenation process are 33% for reaction Eq. (1) and 24% for Eq. (2). The hydrogenation process is complex and involves multi-sequential and yet parallel steps. The applied activation procedure includes penetration of the surface MgO oxide layer, hydrogenation, and propagation from surface to inner core, leading to cracking of particles, due to the expansion of crystal lattice associated with the hydride formation and the brittle nature of the hydride [21]. It is known that hydrogen diffusion in the close packed MgO is extremely slow [22] and strongly thermally activated compared to diffusion of hydrogen in Mg [23] and MgH2 [24]. As inactive phase and shell of Mg–Cu nanoparticles, MgO has tendency to keep original morphologies and cause the separation between shell (MgO) and core (active phases) or partly hollow particles. Other factor to be considered is the diffusion of hydrogen atoms, whose movement along grain boundaries is usually faster than that inside the lattice due to the lower packing density and defects in interfaces. Thus, grain boundaries would be the favorable nucleation sites for the hydride phase. In such case, it is reasonable to suppose that pulverization of nanoparticle is initiated at grain boundaries by the volume changes (Fig. 5(C)) and the separation among polycrystalline grains occurs. Here, it should be noted that the presence of MgO is not always unfavorable which appears to exert a stabilizing effect on stability as hydrogen storage [25]. It had been indicated that the pulverization of nanoparticles, phase transition and presence of MgO may play positive effects on improvement of hydrogen absorption kinetics and prohibition of recrystallization in cracked nanoparticles [26]. Furthermore, the smaller sizes of grains or particles created by pulverization will bring out lots of defects, i.e. new fresh surfaces, boundaries, etc. and can reduce the diffusion distances and increase the surface areas, which all facilitate the hydriding/dehydriding process and improve the hydrogen storage properties.

3.3. Hydrogen absorption properties of Mg–Cu alloy nanoparticles

3.3.1. Hydrogen absorption kinetics

From a thermodynamic view, Mg-based hydrides should form readily at room temperature. However, this case never occur in practice because of kinetic limitations [27]. Generally, a typical hydrogen absorption process for the overall reaction is composed of five intermediate partial processes, i.e. physisorption, chemisorption, surface penetration, diffusion, and hydrides formation [28]. Any delay of those processes will reduce the kinetic properties. The presence of MgO surface layer for Mg-based alloy is usually unavoidable due to air exposure or oxygen impurity in H2 gas. MgO layer on the surface of nanoparticles are not transparent to hydrogen molecules and consequently prevents hydrogen molecules from penetrating into the material. To initiate hydrogen absorption the MgO layer must be perforated or cracked, which is the essence of activation. Here, the activation was
carried out at 673 K under 3.0 MPa of hydrogen pressure. For dehydrogenation process, samples were annealed at the same temperature in vacuum and the finish of hydrogen desorption was reached when the change of hydrogen pressure was less than about 1 Pa per minute. Fig. 6 is the hydrogenation kinetic curves for Mg–Cu nanoparticles. Especially, the curve for cycle 1 presents the effect of activation on hydrogen absorption kinetics for the as-prepared Mg–Cu nanoparticles, which is a typical sigmoidal shape and can be well explained by the conventional theory of Johnson–Mehl–Avrami for nucleation and growth [29]. The reason for this behavior, however, is not internal kinetics but successive activation of the sample’s surface [30].

Prior to be measured, the hydrogenated sample was annealed for 2 h in vacuum at 673 K for the purpose of completely dehydrogenation. There are two significant changes observed in Fig. 6. On one hand, the maximum hydrogen absorption content is reached in cycle 1, i.e. 2.38 ± 0.19 wt.% of hydrogen in 90 min. Meanwhile, the saturated hydrogen absorptions are 2.02 ± 0.16 wt.% and 2.06 ± 0.16 wt.% for cycle 2 and cycle 3, respectively. In normal case for a hydrogen storage material, the maximum hydrogen absorption contents are almost the same among the cycles, or it is lower for the first cycle due to an incompletely hydrogen activating. In present Mg–Cu nanoparticles, the situation is quite contrary implying that there are multi phases coexisted. Actually, the first cycle is an activation process and the higher hydrogen absorption content is attributed to the existence of excessive Mg as indicated by XRD (Fig. 1A). It is well known that pure Mg can absorb 7.6 wt.% of hydrogen at maximum. In cycles 2 and 3, the quantities of Mg became relatively lower owing to the phase transformation by hydrogen treatment, i.e. decrease of Mg content accompanying with an increase of Mg2Cu after hydrogen treatment (Fig. 1C). On the other hand, the hydrogen absorption rates for both of the cycles 2 and 3 are obviously higher than that in cycle 1. It is also found that all hydrogen absorption rates of cycles for Mg–Cu nanoparticles are higher than that for melting–casting alloys [12], exhibiting a better reaction kinetics. The hydrogen absorption contents reach 0.23 ± 0.02 wt.% in 5 min during the first cycle, while it is 1.93 ± 0.15 wt.% and 1.98 ± 0.16 wt.% for the cycles 2 and 3, respectively.

As known from the above results, the hydrogenation kinetics for nanoparticles is improved by a simple activation with only one thermal cycling, which is a consequence of several combined effects. Firstly, an abundance of defects and boundaries exist in the nanostructured particles, such as phase boundaries, interfaces of core/shell structure, dislocations, etc., and all of them favor to store an excess energy and further facilitate hydrogen absorption. In other words, the presence of grain boundaries and defects allow hydrogen atoms to easily penetrate into nanoparticles. Secondly, the broken MgO shells may bring a positive effect on improvement of hydrogen absorption kinetics by promoting the nucleation of hydrides at interfaces between MgO and Mg phases. It was also proved that a thin and defective MgO layer can improve hydrogen absorption rate for Mg-based alloys [31]. Andreasen et al. reported that improved oxidation resistance was obtained in Mg–Cu complex compared to pure Mg
sample due to the presence of Mg₂Cu/MgCu₂ [21]. The effect of MgO layer was rationalized within the concept of “Process Control Agent” and its efficiency of MgO for decreasing the growth rate of Mg crystallites during cycling (periodic hydriding–dehydriding) was tested [32]. In this study, the positive effect of MgO shell in Mg–Cu nanoparticles on the hydrogenation kinetics is also expected.

3.3.2. P–C–I curves of Mg–Cu alloy nanoparticles

P–C–I curves were measured at different temperature to reveal hydrogenation/dehydrogenation properties of Mg–Cu nanoparticles, as shown in Fig. 7. After activation processes, the as-prepared Mg–Cu nanoparticles become a new composite containing two main active phases of Mg₂Cu and Mg (Fig. 1C). Accordingly, P–C–I curves exhibit two plateaus corresponding to the hydrogen absorption reactions of Mg (at lower pressure) and Mg₂Cu (at higher pressure), respectively [1]. The hydrogen absorption contents at higher pressure are 1.92 ± 0.10, 1.98 ± 0.10 and 2.05 ± 0.10 wt.% at 573, 598 and 623 K, and at lower pressure are 0.64 ± 0.03, 0.56 ± 0.03 and 0.53 ± 0.03 wt.% at 623, 598 and 573 K, respectively. The maximum hydrogen uptake of Mg₂Cu phase at 623 K is 2.05 wt.%, which is a little lower than 2.25 wt.% of nanocrystalline Mg₂Cu-type alloys synthesized by mechanical alloying and annealing [5]. These results show a tendency that the hydrogen absorption content is improved by a gradually increased temperature. On basis of a classical analysis, the hydrogen solubility in Mg₂Cu nanoparticles is expected to be decreased at a higher temperature and reflected in the length of corresponding plateau in P–C–I curve [19]. On the contrary, the present results on Mg–Cu nanoparticles display an inverse behavior with the classical analysis. This phenomenon may be attributed to the presence of Mg component which has poor hydrogen absorption kinetic at lower temperature [33]. It is reasonable to recognize that some kinetics factors may restrict the hydrogenation reaction of Mg at low temperature and result in the present phenomenon.

4. Conclusions

Mg–Cu alloy nanoparticles were in situ prepared by an arc-discharge method using micro-sized metallic powders of Mg and Cu as the raw materials. Four phases, i.e. intermetallic compounds of Mg₂Cu and MgCu₂, Mg and MgO, coexist in an Mg–Cu nanoparticle. As-prepared Mg–Cu nanoparticles have spherical shapes, readily to disintegrate into smaller nanoparticles when subjected to hydriding. The Mg₂Cu compound, desirable phase for efficient hydrogen storage, increases in content and becomes a main phase through the phase transformation after several cycles of hydrogenation and dehydrogenation. Mg–Cu alloy nanoparticles exhibit an excellent kinetic property with higher hydrogen absorption rate due to its high specific surface area and the defects. The co-existence of other metal or metal compound phases may serve as an easy path for quick heat transfer during the hydrogenation and dehydrogenation reactions. The maximal hydrogen storage contents of Mg–Cu alloy nanoparticles are 1.92 ± 0.10, 1.98 ± 0.10 and 2.05 ± 0.10 wt.% at 573, 598 and 623 K, respectively.

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (50371012) and Program for New Century Excellent Talents in University of the State Ministry of Education (No. NCET-05-0283).

References

