Photoanodes with mesoporous TiO₂ beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells

Ru Zhou, Qifeng Zhang, Evan Uchaker, Lin Yang, Naiqiang Yin, Yonghu Chen, Min Yin, Guozhong Cao

Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
Department of Physics, University of Science and Technology of China, Hefei 230026, China

Abstract

Photoanode is a critically important component in quantum dot sensitized solar cell (QDSC), and its configuration will exert a tremendous influence on the cell performance. In this paper, submicrometer-sized mesoporous TiO₂ beads were prepared for QDSC application in view of their high specific surface area, superior light scattering and easy electrolyte penetration. Two configurations for the photoanodes were designed and studied with mesoporous TiO₂ beads combined with nanoparticles: a double-layer configuration composed of a thick bead layer on top of a thin nanoparticle layer, and a mixture structure made of mixed mesoporous TiO₂ beads and nanoparticles. Photovoltaic results showed that double-layer and mixture configurations delivered power conversion efficiencies of 4.33% and 4.65%, respectively, achieving impressive improvement compared to the single-layer films made from mesoporous beads or nanoparticles (~4%). The mesoporous TiO₂ beads served as scattering layer or scattering centers to enhance light scattering and boost the photocurrent while the incorporation of nanoparticles into the voids between mesoporous beads further increased the surface area for QD loading and led to better connection between the neighboring beads. Electrochemical impedance spectroscopy analysis revealed a retarded charge recombination for the mesoporous beads when combined with nanoparticles, reflected in the increase of open circuit voltage.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There is a strong demand for the development of low-cost and high-performance solar devices as clean and sustainable energy partially to replace fossil fuels [1]. Quantum dot-sensitized solar cells (QDSCs) as a derivative of dye-sensitized solar cells (DSCs) have attracted considerable attention in recent years [1–5]. QDSCs are relatively cost-effective and easy to manufacture. Compared to organic dyes, narrow band gap semiconductor QDs possess versatile optical and electrical properties in terms of (1) tunable band gap across a wide energy range, (2) strong light absorption, (3) high stability against oxidative deterioration, (4) high extinction coefficients and (5) large intrinsic dipole moment facilitating charge separation [6–11]. A high theoretical photovoltaic conversion efficiency up to 44% in view of the multiple excitation generation (MEG) effect has encouraged people to develop QDSCs with the use of various QDs [12], such as CdS [2,9–11,13,14], CdSe [2,9–11,15,16], CdTe [17], PbS [18], and Ag₂S QDs [19], as sensitizers for light harvesting. However, the power conversion efficiency of the QDSC up to now, typically around 1–5%, still lags far behind the record power conversion efficiency of 15%, reported recently for DSCs [20]. Therefore, efforts are still urgently needed to boost the efficiency of QDSC and explore its full potential.

Aside from the QD sensitizer, the photoanode configuration as a critically important part of QDSC drastically impacts the cell performance. It is of great importance to have the photoanode structure for high QD loading, strong light scattering, efficient electron transport and quick electrolyte diffusion [21]. The mesoporous TiO₂ nanoparticle films (for example, commercial P25 nanoparticle) have been extensively studied as the photoanodes for QDSCs and DSCs, due to the appreciable internal surface area and good electron transport [22,24]. However, typical nanometer-sized TiO₂ particles (∼20 nm) in the photoanodes are very weak scatterers in the generation of light scattering because the size of the...
nanoparticles is far smaller than the wavelengths of visible light, resulting in a significant portion of the light emitted on the photoanodes transmitting through the film without interacting with the sensitizer [25,26]. According to the Mie theory and Anderson localization of light [27,28], resonant scattering of light is predicted to occur for spherical particles, when the particle size is comparable to the wavelengths of incident light. A strong scattering effect would extend the distance that light travels within the photoanode film, provide the photons with more opportunities to be absorbed by sensitizers (i.e., dye molecules or QDs), and thus eventually enhance the light-harvesting capability of the photoanode. As a result, submicrometer-sized mesoporous sphere was considered to be a promising material for DSC or QDSC in view of their high specific surface area and strong light scattering effect [29–31]. Scattering centers and scattering layers have been effectively employed to enhance light harvesting for improved cell performance. Ferber et al. suggested the use of 250–300 nm TiO2 particles as the scattering centers mixed in a TiO2 matrix consisting of 20 nm particles [32]. Wang et al. employed a mixture of 23 nm particles and 100 nm particles to fabricate a photoanode for DSC application, and achieved a higher efficiency (8.4%) than the photoanode made from only 23 nm particles (7.6%) [33]. However, it is evident that the introduction of large particles as scattering centers would reduce the dye/QD loading capacity of the photoanode. As for the more favorable way of utilizing an upper scattering layer to enhance the light scattering, although significant effect has been reported in many cases [34–36], the commonly used scattering layer itself, such as a thin layer composed of 400 nm rutile TiO2 or ZrO2, does not produce much photocurrent due to very low surface area. Furthermore, the thickening of film thickness further increases the transport distance of the photon-generated electrons which in turn leads to high charge recombination rate in the solar cell [21,37].

Compared to the extensive research of the mesoporous beads as scattering centers or scattering layers in DSC, there is relatively little systematic and in-depth study on such beads for QDSC application. In our previous work [38], submicrometer-sized mesoporous TiO2 beads were demonstrated to be good candidates for QDSC application in view of high specific surface area, effective light scattering and easy electrolyte penetration. However, for the photoanode consisting of TiO2 beads only, the large voids exist between the submicrometer-sized mesoporous beads result in a loss of internal surface area, insufficient connection between adjacent beads, and poor contact between TiO2 film and FTO substrate. The combination of mesoporous TiO2 beads and nanoparticles is expected to increase the surface area for more QD sensitizers and facilitate the charge transfer in the photoanode, while retaining light scattering effect. The present study is aimed to optimize the photoanode configuration for QDSC through the combined use of mesoporous TiO2 beads and nanoparticles. The designed photoanodes, i.e., double-layer and mixture configurations, address the drawbacks of single-layer film made of TiO2 beads or nanoparticles, and demonstrate the improvement in the cell performance.

2. Experimental

2.1. Synthesis of Mesoporous TiO2 beads

Mesoporous TiO2 beads were prepared from a two-step method combined precipitation and solvothermal process [31,39]. Firstly, amorphous precursor beads were prepared via a precipitation process in the presence of hexadecylamine (HAD, 90%, Sigma-Aldrich) as structure-directing agent and KCl to control the monodispersity of the precursor beads by adjusting the ionic strength of the solution. 5.296 g HAD was dissolved in 800 mL ethanol, followed by the addition of 3.20 mL KCl aqueous solution (0.1 M). To this solution, 17.6 mL titanium (IV) isopropoxide (TIP, 97%, Sigma-Aldrich) was added under vigorous stirring at ambient temperature. The resulting white TiO2 suspension was kept static at the same temperature for 18 h, and then centrifuged. The beads were washed with ethanol three times and dried in air at room temperature. Secondly, to prepare mesoporous TiO2 beads with a highly crystalline framework, a solvothermal treatment of the air-dried precursor beads was performed. Specifically, 0.96 g of amorphous precursor beads was dispersed in a 12 mL ethanol and 6 mL deionized water mixture with 25% ammonia solution of 1 mL. Then the resulting mixture was sealed within a 30 mL autoclave and heated at 160 °C for 16 h. After centrifugation and ethanol washing, the air-dried powders were calcined at 500 °C for 2 h in air to remove organic residuals, resulting in the formation of mesoporous TiO2 beads.

2.2. Preparation of photoanode films

To prepare the QDSC photoanode films, 0.5 g of solvothermally treated TiO2 beads (or commercial P25 nanoparticles) mixed with 0.25 g ethylcellulose and 1.75 g α-terpineol were first dispersed into 5.0 mL ethanol, and then sonicated for 30 min to form a slurry after removing the ethanol under stirring. These procedures allowed the ethylcellulose to penetrate and disperse between TiO2 microspheres or nanoparticles. For the mixture TiO2 paste, beads (0.25 g) and nanoparticles (0.25 g) with weight ratio of 1:1 were employed, followed by the same procedures as stated above. Finally, the doctor blade technique was employed to coat the resulting slurry on FTO glass substrates (∼3 mm in thickness, 27 Ω/square), and then the films were sintered at 500 °C for 30 min in air with a heating rate of 5 °C/min. The thickness of the TiO2 films, measured from the cross sectional image of SEM, was ∼17 μm. The active area of the TiO2 films was approximately 0.36 cm² (0.6 cm × 0.6 cm square).

2.3. Fabrication of CdS/CdSe QDs co-sensitized photoanodes

For the growth of CdS QDs, the TiO2 films were first immersed into 0.1 M cadmium acetate ([Cd(CH3COO)2] methanol solution for 1 min, rinsed them with methanol and dried in air. Successively, the films were dipped into 0.1 M sodium sulfide (Na2S) solution mixed with water and methanol (1/1, volume ratio) for another 1 min to allow S2− to react with the pre-adsorbed Cd2+, leading to the formation of CdS QDs. Then, the electrodes were again rinsed with methanol and dried. The two-step dipping procedure is termed as one successive ionic layer absorption and reaction (SILAR) cycle. Four cycles were employed to obtain a suitable amount of CdS QDs on the films. The CdS QDs layer serves as a seed layer facilitating the subsequent CdSe QDs growth. As for the CdSe QDs deposited on the CdS-coated TiO2 films, a chemical bath deposition (CBD) method was employed. Briefly, 0.1 M sodium selenosulphate (Na2SeSO3) aqueous solution, 0.1 M Cd(CH3COO)2 aqueous solution, and 0.2 M trisodium salt of nitroliatriacetic acid (N(CH3)2COONa3) solution were mixed together with a volume ratio of 1:1:1. Then the CdS-coated TiO2 films were vertically immersed into the solution for the deposition of a CdSe layer under dark condition at 24 °C for 3 h. After the deposition of CdSe, a ZnS passivation layer was deposited by dipping alternatively into 0.1 M zinc acetate (Zn(CH3COO)2) and 0.1 M Na2S solutions for 1 min/dip with two SILAR cycles. The deposition of ZnS is to improve the stability of the photoanodes.

2.4. Preparation of electrolyte and counter electrodes

The polysulfide electrolyte employed in this study was composed of 1 M S and 1 M Na2S in de-ionized water. The counter electrode was a CuS film fabricated on the brass foil. The
preparation process of the Cu2S electrode can be described as follows: brass foil was immersed into 37% hydrochloric acid (HCl) solution at about 70°C for 30 min, then rinsed with water and dried in air. After that, the etched brass foil was dipped into 1 M S and 1 M Na2S aqueous solution (the electrolyte) for about 5 min, resulting in a black Cu2S layer forming on the foil. The solar cells were prepared by sandwiching a Cu2S counter electrode and a QD-sensitized photoanode using a scotch tape spacer (~50 μm in thickness) and permeating with the polysulfide electrolyte.

2.5. Characterization of materials and QDSCs

Morphology of the samples was characterized by a scanning electron microscope (SEM, JSM-7000) equipped with energy dispersion X-ray (EDX) used to analyze the element contents and distribution, and transmission electron microscopy (TEM, Tecnai G2 F20). X-Ray Diffraction (Bruker F8 Focus Powder XRD with Cu Kα radiation) was used to verify the crystal phase and estimate the crystal size of the mesoporous TiO2 beads. The diffractometer was set at 40 kV working voltage and 40 mA tube current, scanned from 20-200° at a rate of 0.02° s⁻¹. Nitrogen adsorption-desorption isotherms were measured using a Quantachrome NOVA 4200e system, with samples degassed at 250 °C overnight under vacuum before tests. The multi-point Brunauer–Emmett–Teller (BET) method was used to calculate the specific surface area. A thermal scientific UV–Vis–NIR spectrophotometer (Evolution 300 PC) fitted with an integrating sphere accessory was employed for the analysis of reflectance properties of the TiO2 films. The photovoltaic properties were measured using an HP 4155A programmable semiconductor parameter analyzer under AM 1.5 simulated sunlight with the power density of 100 mW/cm².

The electrochemical impedance spectroscopy (EIS) was carried out through the Solartron 1287A coupling with the Solartron 1260 FRA/impedance analyzer to investigate electronic and ionic processes in QDSCs.

3. Results and discussion

Fig. 1a shows the morphology of the as-prepared microsphere precursors, the surfaces of which were quite smooth without noticeable pores or crystalline features. The precursor beads were amorphous and possessed a small specific surface area of 2.64 m²/g based on our previous work [38]. Here it is important to indicate that some data about the beads in the present paper are from Ref. 38, as the same beads materials were employed. We will label the reference in the Figure Captions when the picture or figure curves from the previous work are used. After hydrothermal crystallization, rough surfaces and connected mesopores have emerged in the microspheres, as shown in Fig. 1b, and these mesoporous beads were ~850 nm in diameter on average, exhibiting a little polydisperse. The TEM image (Fig. 1c) shows that the beads were composed of packed TiO2 nanocrystallites and interconnected mesopores, which opened a possibility of facile dye/QDs deposition into the inner part of mesoporous beads. The distinct selected area electron diffraction (SAED) pattern shown in the inset indicated a highly crystalline framework of TiO2 with anatase phase. High-resolution TEM image (Fig. S1) also allowed the identification of the lattice fringes with d-spacing 0.352 nm correlated to the (101) planes of the anatase TiO2. The schematic geometrical structure of the beads is illustrated in Fig. 1d, which demonstrates the mesoporous features provided by the aggregation of elongated TiO2 nanocrystallites with the estimated average size of ~17 nm as displayed in TEM image.

Fig. 2a compares the XRD patterns of the mesoporous TiO2 beads and commercial TiO2 nanoparticles (Degussa P25). The mesoporous beads exhibited well-resolved diffraction peaks of the anatase TiO2, while the pattern of P25 nanoparticles showed both anatase and
rutile phases. The corresponding crystal sizes are estimated by applying the Scherrer equation to the broadened (101) anatase and (110) rutile peaks. As shown in Fig. 2a, the anatase TiO$_2$ nanocrystals in the beads revealed a crystal size of ~17 nm, close to the size of the P25 nanoparticles with anatase phase, however, much smaller than of the size of rutile TiO$_2$ as large as ~29 nm. It is known that the larger particle size will lead to a lower surface area, and this is consistent with the typical nitrogen sorption isotherms of the mesoporous beads and P25 nanoparticles as shown in Fig. 2b. The BET surface area of mesoporous beads (86.6 m2/g) was almost two times that of P25 nanoparticles (47.0 m2/g), clearly suggesting that extremely high specific surface areas were built into these mesoporous spherical structures. Type IV isotherm with H1 type hysteresis loop at relative pressures P/P$_0$ = 0.8-0.9 was observed for mesoporous beads, indicating the presence of large mesopores [31,40]. A mean diameter of 21.0 nm has been obtained for the mesopores in the beads, very close to the values reported in the literature [31,40]. In order to evaluate the difference in the surface area between the films made from mesoporous beads and P25 nanoparticles, a dye-unloading experiment was further explored (Fig. S2). The result implied that the dye loading ability (or specific surface area) of the beads film was about two times that of nanoparticles film. Similar results has also been reported by Chen et al. [31].

Fig. 3a and b show the surface morphologies of the photoanode films made from mesoporous TiO$_2$ beads and P25 nanoparticles. It was found that the spherical morphology of the mesoporous beads was well preserved in the construction of the photoanodes and bound together after the sintering process; no obvious pulverization was observed. These results indicated that the as-prepared TiO$_2$ beads was constructed of interconnected nanocrystallites with strong interaction forces between adjacent particles, giving rise to a robust mesoporous structure. This feature is of great importance in view of practical applications of these TiO$_2$ beads, as the ultrasonic treatment is commonly used for the preparation of TiO$_2$ paste or slurry. The large voids displayed among the beads on the film indicate a “open structure” of the photoanode, which has been suggested to facilitate the diffusion of the electrolyte within the film [41]. The “highway” provided by these large voids allows fast diffusion of the electrolyte throughout the thick TiO$_2$ layer. Furthermore, the internal pores with the diameter of ~21 nm in the beads also seems to be reasonable for electrolyte diffusion as the diffusion distance in the beads is very short. In contrast, a compact film surface was revealed by P25 photoanode consisting of TiO$_2$ nanoparticle. A measurement of the ion diffusion constants performed by Kim et al. revealed that the hierarchical TiO$_2$ pore structure really induced relatively more efficient diffusion of the electrolyte compared with the dispersed nanoparticles [41].

Fig. 3c and d showed EDX spectra of two sensitized photoanodes indicated the successful deposition of CdS, CdSe, and ZnS. The atom ratios of the elements, listed in Table 1, revealed that the CdS, CdSe, and ZnS amount loaded onto the beads film was higher than that of P25 film. The mapping images of Cd element along the cross-section are shown in Fig. 3e and f (see Fig. S3 for the mapping images of S and Se elements). It can be seen that, Cd element presented a uniform and homogenous distribution in both of the photoanodes. The higher concentration of Cd element in the beads film further confirmed stronger QD loading ability of the mesoporous TiO$_2$ beads than that of P25 TiO$_2$ nanoparticles. As it is well known that the QD loading amount is closely related to the specific surface area of TiO$_2$, the mesoporous TiO$_2$ beads film is expected to allow higher QD loading in view of the higher surface area of the beads compared to that of P25 nanoparticles. However, considering the relatively small amount of TiO$_2$ employed in the beads film due to the large voids formation and the certain challenge of the formation of QDs in the innermost part of the beads, the QD amount loaded onto the beads film was only a little larger than that for P25 film, not simply proportional to the specific surface area of the TiO$_2$ (the BET surface area of mesoporous beads was about two times that of P25 nanoparticles).

Four groups of photoanode films were prepared for QDSC application in this study: (a) a single-layer of mesoporous TiO$_2$ beads, (b) a single-layer of standard Degussa P25 TiO$_2$ nanoparticles, (c) a double-layer configuration composed of a ~10 µm P25 layer, and (d) a single-layer of the mixture of beads and P25 nanoparticles (weight ratio=1/1). Fig. 4 displays the cross section SEM images of the four photoanodes with the same thickness ~17 µm. Obviously, the two layers in the double-layer configuration (Fig. 4c) were in conformal attachment with no sign of delamination, and the mixture structure (Fig. 4d) also allowed the filling of the nanoparticles in the voids existed between the mesoporous beads.

For the mesoporous beads structure shown in Fig. 4a, the strong light scattering of the beads with large surface area significantly enhances the photon capturing capability of the film. However, the large voids between submicrometer-sized mesoporous beads could be filled, at least partially, to increase the accessible surface area to load more QD sensitizers, and the incompact connections between adjacent mesoporous beads and poor contact between TiO$_2$ film

Table 1

<table>
<thead>
<tr>
<th>Photoanode</th>
<th>Cd, at%</th>
<th>Se, at%</th>
<th>S, at%</th>
<th>Zn, at%</th>
<th>Ti, at%</th>
<th>O, at%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads</td>
<td>9.70</td>
<td>5.48</td>
<td>5.45</td>
<td>1.80</td>
<td>24.93</td>
<td>52.64</td>
</tr>
<tr>
<td>P25</td>
<td>7.29</td>
<td>5.01</td>
<td>3.90</td>
<td>1.70</td>
<td>28.27</td>
<td>53.84</td>
</tr>
</tbody>
</table>

![Fig. 2](image_url) (a) XRD patterns and (b) Nitrogen sorption isotherms of mesoporous TiO$_2$ beads [38] and P25 nanoparticles.
and the FTO substrate might also be improved for charge transfer through the incorporation individually dispersed TiO$_2$ nanoparticles [41,42]. The TiO$_2$ nanoparticle film (Fig. 4b) has been widely used in DSCs or QDSCs because of its appreciable surface area and good electron transport, but the high transparency and negligible light scattering due to the small particle size will result in poor light harvesting, as previously discussed. Therefore, both single-layer configurations made of TiO$_2$ beads or nanoparticles need further optimization for high efficiency QDSCs.

Two configurations of the photoanode via combined use of the mesoporous TiO$_2$ beads and nanoparticles were fabricated for QDSC application. The double-layer structure, as shown in Fig. 4c, is different from that in conventional double-layer DSC/QDSC, including a 12 μm thick nanoparticle film serving as an active layer covered by a 4 μm thick light scattering layer comprised of ~400 nm particles (i.e., a “12 μm + 4 μm” mode) [36]. In the double-layer structure here, the active layer is the mesoporous beads instead of the nanoparticles, as such, to maximize the benefits of mesoporous beads to QDSCs in terms of high surface area and strong light scattering. The bottom nanoparticles layer thinner than the top beads layer is proposed to absorb the light reflected by the mesoporous beads. Such a double-layer structured photoanode has a “7 μm + 10 μm” mode and is consistent with the optimal double-layer structure to maximize light harvesting suggested by Zhang et al. [21]. As illustrated in the schematic of Fig. 5a, the low reflectance of bottom nanoparticle layer should allow the passage of unabsorbed light into the upper beads layer, and the remarkable diffuse reflection in the beads layer significantly extends the traveling distance of light within the photoanode film and thus increases the opportunities for incident photons to be captured by the sensitizer. The light reflected back by the beads can be effectively utilized by the nanoparticle layer between the FTO and beads film. A photon-localization effect may also occur on these films when the light scattering is confined in closed loops. As for the mixture structure consisting of the mixed mesoporous beads and TiO$_2$ nanoparticles shown in Fig. 4d, submicrometer-sized mesoporous beads introduce the light scattering centers without sacrificing the accessible surface area for QD loading compared to the conventional scatterers with low surface area. The incorporation of P25 nanoparticles makes full use of the large voids between the
Fig. 4. Cross section SEM images of four photoanode films prepared by (a) a single-layer of mesoporous TiO₂ beads, (b) a single-layer of standard Degussa P25 TiO₂ nanoparticles, (c) a double-layer configuration composed of a ~10 μm beads layer on top of a ~7 μm P25 layer, and (d) a single-layer of the mixture of P25 and beads (weight ratio=1/1).

Fig. 5. Schematic drawings showing the benefits of the combined use of mesoporous TiO₂ beads and P25 nanoparticles in two designed photoanodes: (a) double-layer configuration, and (b) mixture configuration.

neighboring beads, as demonstrated by the schematic drawing in Fig. 5b, and thus will further increase the amount of QDs loaded per unit photoanode area without increasing the film thickness. Moreover, such a mixture structure might be conducive for the formation of better connection between the beads and better contact between the TiO₂ film and FTO substrate, and thus improve the electron transport in the photoanode and reduce the charge recombination. The improved double-layer and mixture configurations for the photoanodes as shown in Fig. 4c and d are expected to address the drawbacks in the single-layer films simply consisting of mesoporous beads or P25 nanoparticles and thus improve the performance of QDSCs. In DSCs, the similar double-layer and mixture structures have already been employed and proved to promote the power conversion efficiency. In the work performed by Huang et al. [40] and Yu et al. [43], the highest efficiencies were obtained with double-layer structured photoanodes in which the mesoporous beads film serves as the active layer. Xi et al. achieved the enhanced performance in DSCs with the mixture photoanode configuration made of TiO₂ beads and nanoparticles [42].

Fig. 6 shows the J-V curves of the cells assembled from the as-prepared four photoanodes. The open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and overall power conversion efficiencies (η) of those QDSCs are collected in Table 2. It was found that the cells made from mesoporous beads and P25 films displayed the power conversion efficiencies of 4.05% and 4.07%.

Table 2
<p>|</p>
<table>
<thead>
<tr>
<th>Photoanodes</th>
<th>Voc (V)</th>
<th>Jsc (mA/cm²)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads [38]</td>
<td>0.54</td>
<td>13.89</td>
<td>0.54</td>
<td>4.05</td>
</tr>
<tr>
<td>P25</td>
<td>0.58</td>
<td>13.27</td>
<td>0.53</td>
<td>4.07</td>
</tr>
<tr>
<td>Double-layer</td>
<td>0.55</td>
<td>14.85</td>
<td>0.53</td>
<td>4.33</td>
</tr>
<tr>
<td>Mixture</td>
<td>0.58</td>
<td>15.14</td>
<td>0.53</td>
<td>4.65</td>
</tr>
</tbody>
</table>
respectively, exhibiting little difference. However, it is noteworthy that the beads film delivered a J_{SC} of 13.89 mA/cm2, a little higher than 13.27 mA/cm2 for P25 film and a V_{OC} of 0.54 V, slightly smaller than 0.58 V for P25 film. The lower V_{OC} for mesoporous beads compared to P25 nanoparticles, might be attributed to the poor connection between the beads and poor contact between the TiO$_2$ film and FTO substrate, which hindered the electron transport. Although it is believed that the electron transport within a single mesoporous bead should be highly efficient in view of the close attachment of primary nanocrystallites, the drawback of this structure would be the difficulty in the electron transport between neighboring beads due to the small contact area [41]. However, the high QD loading and strong scattering effect of the beads compensated for this drawback and led to a considerable photocurrent and overall power conversion efficiency. Compared to the similar power conversion efficiency obtained here for the QDSCs based on the beads and nanoparticles films, Chen et al. reported a significant higher efficiency (7.20%) for the mesoporous beads as the photoanode in DSCs than that of derived from P25 nanoparticles (5.66%) [31]. This is likely to be associated with some obvious differences between two types of solar cells when porous beads are applied. For example, it may be relatively easy for dye molecules to penetrate into the innermost part of the beads to form full coverage through self-assembly, while QDs are relatively bulky and may have great difficulty to diffuse into the innermost part of the tortuous mesopores, and there is not a strong driving force for QDs to self-assemble to a fully coverage monolayer.

The photoanode with double-layer configuration showed an impressive improvement of the cell performance (4.33%) compared to mesoporous beads film, resulting from an increased J_{SC} of 14.85 mA/cm2. Such an optimized double-layer structure improved the utilization of incident light compared to the single-layer mesoporous beads and P25 films, and thus gave rise to increased photocurrent. As for the photoanode film prepared from the mixture of mesoporous beads and P25 nanoparticles, a power conversion efficiency as high as 4.65% was achieved, nearly 13% enhancement compared to that of mesoporous beads or P25 films. This can be explained by the effective light scattering of the beads as the scattering centers, increased accessible surface for QD loading and improved electron transport in the photoanode due to the better connection between the neighboring beads, as illustrated in Fig. 5. These results indicate that the combined use of mesoporous beads and P25 nanoparticles for the preparation of photoanodes can significantly improve the cell performance.

Diffuse reflectance spectra of the four TiO$_2$ photoanode films before and after CdS/CdSe QDs sensitization are shown in Fig. 7, which reflect their different light scattering capabilities. All of the photoanode films before QDs sensitization exhibited high diffuse reflectance in the visible range of 400-500 nm, while a distinctly rapid decline in light scattering was observed for P25 film in the wavelength range from 500 to 900 nm due to the small TiO$_2$ particle size. In contrast, the film composed of mesoporous TiO$_2$ beads had higher diffuse reflection capabilities in the visible and near-infrared region, suggesting that the incident light was significantly scattered within the film due to the comparable bead size to the wavelength of visible light. As expected, the diffuse reflectance of the double-layer and mixture films lay between those of beads and P25 films. Mesoporous beads as the upper layer or scattering centers suppressed the transmittance at longer wavelengths. After QDs sensitization, the reflectance spectra followed the same trend, and the remarkable drop over the wavelength ranging from 400 to 650 nm mainly resulted from the strong light absorption by CdS/CdSe QDs.

Fig. 8 shows the Nyquist plots of EIS for QDSCs with four different photoanodes measured under forward bias (-0.6 V) under dark condition. The two semicircles exhibited in the plots corresponded to the impedances of the electron ejection at the counter electrode/electrolyte interface and transport in the electrolyte at high frequencies (R_1, smaller semicircle), and the electron transfer at the TiO$_2$/QDs/electrolyte interface and transport in the TiO$_2$ film (R_2, bigger semicircle), respectively [44]. Apparently, the largest R_2 (121.3 Ω, based on the equivalent circuit model) was obtained for P25 film, while the beads film delivered the lowest R_2 (84.7 Ω) among the four photoanodes. As R_2 is commonly considered to be mainly determined by the charge recombination resistance, with partial contribution from transport resistance, large R_2 suggests...
the retarded backward reaction of injected electron transfer at the TiO₂/QD/electrolyte interface, i.e., reduced interfacial recombination [45–47]. However, for the mesoporous beads film, it is conjectured that the formation of QDs adsorbed onto the TiO₂ located in the inner part of the beads might not be as easy as that for the outer part. As the poor QD loading would cause the direct exposure of TiO₂ to the electrolyte, which might be responsible for the comparative low Rs, the beads film exhibited more serious charge recombination compared to P25 film. The charge recombination in the beads film can be suppressed when combined with P25 nanoparticles to prepare the double-layer and mixture photoanodes in consideration of the increased R₂ lies between those of beads and P25 photoanodes, especially for the photoanode with the mixture configuration.

Furthermore, for DSCs, it is generally accepted that a decrease in the frequency at the maximum imaginary resistance of the second semicircle (\(\omega_{\text{max}}\)) in the Nyquist plot is correlated with an increase in \(V_{\text{oc}}\), which is due to the retarded backward reaction at open circuit conditions under illumination. The \(V_{\text{oc}}\) of a DSC can be expressed by the following equation [45, 48]:

\[V_{\text{oc}} = \frac{RF}{\beta F} \ln \left(\frac{AI}{n_0 k_b T F I \left[1 + n_0 k_b T F I \right]^{-1}} \right) \] (1)

where \(R\) is the molar gas constant, \(T\) is the temperature, \(F\) is the Faraday constant, and \(\beta\) is the reaction order for \(I_s\) and electrons, \(A\) is the electrode area, \(I\) is the incident photon flux, \(n_0\) is the concentration of accessible electronic states in the conduction band, and \(k_b\) and \(k_t\) are the kinetic constant of the backreaction of the injected electrons with triiodide and the recombination of these electrons with oxidized dyes (\(D^*\)), respectively. For QDSCs, the redox couple is \(S_2^2/S_0^2^-\) instead of \(I_s/I_s^-\). Considering that \(\omega_{\text{max}}\) is the same as the backreaction constant \((k_b)\) [45,49], and that the \(S_2^2^-\) in the electrolyte is constant under our experimental conditions, \(V_{\text{oc}}\) will depend logarithmically on \(1/\omega_{\text{max}}\) as the long term \(n_0 k_b T F I\) can be neglected [45,48]. As displayed in Fig. 8, P25 and the mixture photoanodes delivered a larger \(\omega_{\text{max}}\) compared to the beads and double-layer photoanodes. Therefore, according to Eq. (1), the larger \(V_{\text{oc}}\) of QDSC employing P25 and mixture photoanodes could be obtained, which was consistent with the results obtained from \(J-V\) curves.

4. Conclusions

Submicrometer-sized mesoporous TiO₂ beads combined with TiO₂ nanoparticles offer unique advantages as photoanodes for QDSC application; mesoporous TiO₂ beads possess notably high specific surface area for high QD loading and effective light scattering giving rise to enhanced light harvesting; the incorporation of individually dispersed TiO₂ nanoparticles into the large voids between submicrometer-sized beads would lead to increased accessible surface for QD loading, better connection between the neighboring beads and retarded charge recombination in the photoanodes. The unique hierarchical pore structure of the beads would also facilitate electrolyte diffusion. Double-layer and mixture configurations were developed, in order to optimize the photoanode structure to reach the requirements of high QD loading, strong light scattering, efficient electron transport and quick electrolyte diffusion. Photovoltaic characteristics revealed that the photoanodes of double-layer and mixture configuration really delivered marked improvements (4.33% and 4.65%) in the cell performance, compared with the simple single-layer beads or nanoparticle films (4.05% and 4.07%). The as-prepared mesoporous TiO₂ bead structure offers great potential for the development of high efficiency QDSCs.

Acknowledgements

This work was supported in part by the National Science Foundation (DMR 1035196), the University of Washington TGIF grant, and the Royalty Research Fund (RRF) from the Office of Research at the University of Washington. R.Zhou would also like to acknowledge the fellowship from China Scholarship Council.

References

[6] P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light har-

