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Melamine-assisted synthesis of ultrafine Mo2C/
Mo2N@N-doped carbon nanofibers for enhanced
alkaline hydrogen evolution reaction activity
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ABSTRACT Noble metal-free electrocatalysts with high ac-
tivity are highly desirable for the large-scale application of
hydrogen evolution reaction (HER). Mo2C-based nanomater-
ials have been proved as a promising alternative to noble
metal-based electrocatalysts owing to the Pt-resembled d-band
density and optimal intermediates-adsorption properties.
However, the aggregation and excessive growth of crystals
often occur during their high-temperature synthesis proce-
dure, leading to low catalytic utilization. In this study, the
ultrafine Mo2C/Mo2N heterostructure with large surface and
interface confined in the N-doped carbon nanofibers (N-
CNFs) was obtained by a melamine-assisted method. The sy-
nergistic effect of Mo2C/Mo2N heterostructure and plenty
active sites exposed on the surface of ultrafine nanocrystals
improves the electrocatalytic activity. Meanwhile, the N-CNFs
ensure fast charge transfer and high structural stability during
reactions. Moreover, the in-situ synthesis method strengthens
the interfacial coupling interactions between Mo2C/Mo2N
heterostructure and N-CNFs, further enhancing the electronic
conductivity and electrocatalytic activity. Owing to these ad-
vantages, Mo2C/Mo2N@N-CNFs exhibit excellent HER per-
formance with a low overpotential of 75 mV at a current
density of 10 mV cm−2 in alkaline solution, superior to the
single-phased Mo2C counterpart and recently reported Mo2C/
Mo2N-based catalysts. This study highlights a new effective
strategy to design efficient electrocatalysts via integrating
heterostructure, nanostructure and carbon modification.

Keywords: Mo2C, hydrogen evolution reaction, heterostructure,
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INTRODUCTION
Hydrogen (H2) is a renewable and abundant energy car-
rier that is regarded as a promising substitute for non-
renewable fossil fuels in the future [1–3]. Electrochemical
water splitting is considered as one of the most promising
hydrogen production techniques, which can be divided
into two half-reactions: the oxygen evolution reaction
(OER) and hydrogen evolution reaction (HER) [3–7].
However, the practical application of HER is limited by
its large overpotential. Interest in searching electro-
catalysts has been arising recently. Pt-based electro-
catalysts can effectively accelerate the electrochemical
process of HER, but it is too scarce and expensive to
generalize [8,9]. Therefore, the key challenge to large-
scale H2 production lies in developing low-cost and
highly efficient electrocatalysts based on earth-abundant
elements.

Transition metal compounds have been widely studied
as electrocatalysts for HER in recent years [10,11].
Among these compounds, Mo2C and Mo2N are out-
standing due to their similar d-band density with Pt, good
hydrophilia and chemical stability [12–14], hence, arising
concentrated interests. For example, NiO/β-Mo2C/re-
duced graphene oxide (RGO) [15], α-MoC [16], and
Mo2C-Mo3C2 [17] were synthesized and employed as
electrocatalysts to achieve high HER performance. How-
ever, most excellent HER catalytic activity was reported in
acid media, where HER starts from a favorable process:
2H3O

+ + 2e− + M → Had + 2H2O [18,19]. So far, the
production of H2 in the industry conducted under alka-
line conditions, in which the HER starts from a more
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thermodynamically difficult process: 2H2O + 2e− + M →
2M-Had + 2OH− [18,19]. Thus, the development of Mo2C-
or Mo2N-based electrocatalysts with enhanced catalytic
activity for HER in alkaline solution is highly imperative.
Nevertheless, the traditional synthesis methods of Mo2C
or Mo2N always suffer from excessive growth and ag-
gregation at high temperatures, which lead to the low
utilization of catalysts [13,20–22].

To date, the main effective strategy is compositing
nanostructured Mo2C or Mo2N with carbon substrate to
increase edge-sites and electronic conductivity [23–26].
Song et al. [27] prepared N-doped carbon nanotubes
(CNTs)-supported Mo2C nanoparticles, which exhibited
outstanding HER performance. The Mo2C nanoparticles
possess high electrocatalytic activity and the N-doped
CNTs ensure fast electron transfer. It is generally con-
sidered that electrocatalytic reactions always occur at the
surface and interface, so the electrocatalytic properties
essentially depend on the composition and surface
structure, which are always associated with hetero-
structure, element doping and ultrafine nanosize [28–30].
Therefore, to maximize the utilization of electrocatalysts,
ultrafine Mo2C or Mo2N crystals are expected to expose
more edge sites. Meanwhile, heterostructures with
abundant interface or element doping also improve the
catalytic activity through the modified electronic state
[31–36]. For example, He et al. [37] designed Mo2C-
MoOx on carbon cloth in which the carbon cloth pro-
vided high conductivity and Mo2C-MoOx heterojunction

improved the catalytic activity, resulting in enhanced
HER performance compared with the single phase
counterparts. However, the crystals that grow on the
surface of carbon cloth tend to fall off during long-time
reaction, resulting in instability. And the intrinsic elec-
trocatalytic activity of MoOx in HER is inferior to that of
Mo2C as a candidate component to construct the het-
erostructure. As same as Mo2C, Mo2N possesses Pt-re-
sembled d-band density, which makes the synthesis of
Mo2C/Mo2N heterostructure attractive [12–14]. However,
the construction of ultrafine molybdenum carbide/nitride
heterostructure within nitrogen-rich carbon is difficult
and has rarely been reported up to now.

In this study, an ultrafine Mo2C/Mo2N heterostructure
evenly confined with N-doped carbon nanofibers (Mo2C/
Mo2N@N-CNFs) was fabricated via melamine-assisted
electrospinning technique and subsequent thermal treat-
ments as illustrated in Fig. 1. Polyacrylonitrile (PAN) was
employed as the carbon source to form Mo2C and carbon
nanofibers. As the nitrogen source, small melamine mo-
lecules can encircle molybdenum ions in solution by
electrostatic interaction, which not only facilitates the in-
situ introduction of Mo2N, but also prevents Mo2C
crystals from excessive growth. Ultrafine Mo2C/Mo2N
heterostructure provides large surface and interface,
hence, facilitating the exposure of active sites and en-
suring short mass diffusion paths. The nitrogen-rich
doped CNF coating benefits fast electron transfer and
structure stability. Moreover, the in-situ formed Mo2C/

Figure 1 Schematic illustration of the synthesis method and the structure of Mo2C/Mo2N@N-CNFs.
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Mo2N from N-C precursor results in the strong contact
between the nanocrystals and the N-C substrate, further
facilitating the electron transport during the HER process.
As expected, the Mo2C/Mo2N@N-CNFs display high
electrocatalytic activity in alkaline media, such as a low
overpotential of 75 mV, which is much superior to that of
Mo2C@N-CNFs. Moreover, it also shows competitive
performance among recently reported Mo2C- or Mo2N-
based electrocatalysts in HER.

EXPERIMENTAL SECTION

Synthesis of Mo2C@N-CNFs and Mo2C/Mo2N@N-CNFs
All chemical reagents and solvents were used as received
without further purification. Platinum carbon was pur-
chased from Alfa Aesar. The rest of the chemicals were
bought from Aladdin. In an optimized synthesis, 0.20 g of
(NH4)6Mo7O24·4H2O, 0.15 g melamine and 0.4 g of
polyacrylonitrile (PAN, Mw = 1,500,000) were dissolved
in 5 mL of N,N-dimethylformamide (DMF) with stirring
for 12 h to form a homogeneous solution. Then, the so-
lution was inhaled into an injector with a stainless steel
needle followed by electrospinning treatment at 10 kV.
The flow rate was 5 μL min−1 and an aluminum foil 15 cm
from the needle was used to collect the sample. Finally,
the as-collected sample was directly carbonized under Ar
atmosphere at 800°C for 4 h with a heating rate of
5°C min−1 to obtain Mo2C/Mo2N@N-CNFs. For com-
parison, the Mo2C@N-CNFs were synthesized in the
same way without adding melamine into the solution.

Materials characterization
The X-ray diffraction (XRD, Rigaku D/max 2500) pat-
terns, Raman spectra (Raman microscope, Horiba Jobin
Yvon, Lab Ram Aramis), X-ray photoelectron spectro-
scopy (XPS, AXIS-ULTRA DLD-600W system), scanning
electron microscopy (SEM, Quanta FEG 250), transmis-
sion electron microscopy (TEM, JEOL JEM-2100F) ima-
ges, high-resolution TEM (HRTEM) images, selected area
electron diffraction (SAED) image and energy dispersive
X-ray (EDX) element mapping data were performed to
investigate the crystal structure, chemical composition
and morphologies of the as-synthesized samples.

Electrode fabrication and electrochemical measurements
The electrochemical measurements were carried out in a
typical three-electrode system attached to a CHI660C
workstation at room temperature. Carbon rod and a sa-
turated calomel electrode (Hg/Hg2Cl2 in saturated KCl,
SCE) were used as counter and reference electrodes, re-

spectively. For working electrodes, first, the as-synthe-
sized catalysts and PVDF powder in a weight ratio of 9:1
in N-methyl-2-pyrrolidone (NMP) were mixed to form a
homogeneous suspension. Then, the suspension was
spread uniformly onto Ni foam and dried at 60°C in
vacuum for 6 h. The loading of catalysts for each elec-
trode was about 2 mg cm−2. The electrolyte was 1.0 mol
KOH aqueous solution. Linear sweep voltammetry (LSV)
was recorded at a scan rate of 5 mV s−1 and the initial
electric potential was set as −0.1 V vs. reversible hydrogen
electrode (RHE). The conversion from the measured
potential vs. Hg/HgCl2 electrode to the potential vs. RHE
follows Nernst equation: E (vs. RHE) = E (vs. Hg/HgCl2)
+ 0.05916pH + 0.244 V. Tafel Plots can be calculated
from the corresponding LSV curves. Tafel slopes were
fitted to Tafel equation (η = blog(j) + a, where η, b and j
stand for the overpotential, Tafel slope and current den-
sity, respectively).The long-life time test was carried out
by i-t curve at a constant working potential of −1.30 V for
20 h. Electrochemical impedance spectroscopy (EIS) was
tested at the open-circuit voltage with frequency from
0.01 to 1,000,000 Hz and an amplitude of 10 mV. Cycle
voltammetry (CV) measurements were conducted in a
voltage region from 0.1 to 0.2 V at various scan rates of
10, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 mV s−1

to obtain the double-layer capacitance (Cdl).

RESULTS AND DISCUSSION
Fig. 2a shows the XRD patterns of the as-synthesized
samples. For Mo2C@N-CNFs, diffraction peaks at 34.4°,
37.9°, 39.4°, 52.1°, 61.5°, 69.6°, and 74.6° are ascribed to
(100), (002), (101), (102), (110), (103), and (112) planes of
Mo2C (JCPDS No. 35-0787), respectively. The weak
broad peak at around 25.0° can be attributed to the car-
bon in the composite. For Mo2C/Mo2N@N-CNFs, except
for the peaks of Mo2C, peaks at 37.7°, 43.2°, 64.1°, and
74.5° are observed, which can be assigned to (112), (200),
(204), and (312) planes of Mo2N (JCPDS No. 25-1368),
indicating the formation of Mo2C/Mo2N in the compo-
site. In addition, compared with sharp peaks in Mo2
C@N-CNFs, the broaden peaks in Mo2C/Mo2N@N-CNFs
implying the smaller crystal size. In Raman spectra
(Fig. 2b), both samples show the characteristic bands of
carbon at 1350 (D-band) and 1580 cm−1 (G-band), which
arise from the disordered carbon structure and ordered
sp2 carbon structure, respectively [17,34]. The intensity
ratio of the D and G bands of Mo2C/Mo2N@N-CNFs
(ID/IG≈1.146) is higher than that of Mo2C@N-CNFs
(ID/IG≈1.064), demonstrating that the addition of nitro-
gen successfully increased the defect of carbon in the
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composite.
To get further insight into the chemical composition of

Mo2C/Mo2N@N-CNFs and electron effect between
Mo2C, Mo2N and N-CNFs, XPS was conducted. The XPS
survey spectrum shows the presence of Mo, C, N, and O
elements in Mo2C/Mo2N@N-CNFs (Fig. S1, Supplemen-
tary information). As shown in Fig. 2c, the Mo 3d spec-
trum can be deconvoluted into six doublets,
corresponding to Mo–C (228.4/231.5 eV), Mo–N
(229.1/232.1 eV), and Mo–O (233.3/235.8 eV) [38–41].
Compared with Mo–C, the Mo atom with Mo–N bond
exhibits higher chemical valence states, which may show
better catalytic activity, and the Mo–O bond can be as-
cribed to oxidation of the surface exposed to air. The
spectrum of N 1s (Fig. 2d) is resolved to four pairs of
peaks. Except for three peaks corresponding to pyridinic
N (398.5 eV), pyrrolic N (399.4 eV) and graphitic N
(401.4 eV), the peak located at 397.5 eV can also be ob-
served, corresponding to Mo–N species [41,42]. In terms
of peak area, pyridinic N and pyrrolic N are the dom-
inating types of doped N, which are beneficial to the
electronic conduction and catalysis. By the way, the Mo
3p peak located at 394.9 eV is next to the N 1s spectra.
The C 1s spectrum demonstrates the presence of C=C,
C–C (284.8 eV), C=N (285.5 eV), and C–O (287.2 eV)
bonds in the carbon substrate [34,42], verifying the N-

doping in carbon again. And this assignment is also
consistent with the spectrum of O 1s in Fig. 2f.

The morphology and structure of the as-synthesized
nanofibers were investigated in detail. As depicted in
Fig. 3a and Fig. S2, both Mo2C@N-CNFs and Mo2C/
Mo2N@N-CNFs possess uniform fibrous morphology
with about 100 nm in diameter, inheriting the structure
of the precursor after electrospinning (Fig. S3). Fig. 3b
shows that Mo2C@N-CNFs is denser in the center of
nanofibers than Mo2C/Mo2N@N-CNFs. When we zoom
in, the enlarged view (Fig. 3c) clearly shows that dense
block of Mo2C aggregated and was wrapped in the center
of carbon nanofibers. The HRTEM of it (Fig. 3d, e) dis-
closes d-spacing of 2.6 Å in the lattice fringes, corre-
sponding to the (100) plane of Mo2C. And a thick carbon
layer uniformly coats around the crystal. The SAED
patterns confirm the dense block is Mo2C multi-crystal
again. Interestingly, the internal morphology structure of
Mo2C/Mo2N@N-CNFs is obviously different from that of
Mo2C@N-CNFs. As shown in Fig. 3f, numerous nano-
particles were uniformly encapsulated in the carbon na-
nofibers. It can be concluded that introducing melamine
preventing Mo2C from excessive growth into aggregation
bulks. HRTEM (Fig. 3g, i) images disclose d-spacing of
2.6 and 2.4 Å in the lattice fringes, which are re-
presentative of the (100) and (112) planes of the Mo2C

Figure 2 (a) XRD patterns and (b) Raman spectra of Mo2C@N-CNFs and Mo2C/Mo2N@N-CNFs; (c) Mo 3d, (d) N 1s, (e) C 1s, and (f) O 1s XPS
spectra of Mo2C/Mo2N@N-CNFs.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

May 2021 | Vol. 64 No. 5 1153© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020



and Mo2N, respectively, indicating that two phases mixed
in the composite. Fig. 3h further illustrates the Mo2C/
Mo2N heterostructure, where Mo2C and Mo2N are in-
timately connected through the interface (marked by
yellow dot line). The corresponding fast Fourier trans-
form (FFT) result (inset in Fig. 3h) confirms that two
sides of the interface are the fringes corresponding to the
(101) plane of Mo2C and the (112) plane of Mo2N, re-
spectively. The interface always induces the optimization
of electronic configuration and adsorption free energy
through the interfacial electron transfer through hetero-
interfaces, achieving synergistic effect to improve elec-
trocatalytic activity [13,37]. Fig. 3j confirms again that
Mo2C crystals in Mo2C@N-CNFs gathered in the center
of N-CNFs, while the elemental mapping of Mo2C/Mo2N
@N-CNFs shows the uniform distribution of elements.

The ultrasmall sizes of nanocrystals (mixed Mo2C and
Mo2N, Mo2C/Mo2N heterostructure) in Mo2C/Mo2N@N-
CNFs, correspond to the result of broad peaks in XRD,
which is beneficial for the exposure of active sites on
surface, improving the utilization of the catalyst. Mean-
while, the N-doped carbon coating guarantees fast elec-
tron transfer and structural stability during long-time
reaction [16,42,43].

The HER activity of the obtained catalysts was in-
vestigated in 1 mol L−1 KOH aqueous solution. Fig. 4a
shows the LSVs of Mo2C@N-CNFs and Mo2C/Mo2N@N-
CNFs together with the commercial Pt/C as reference.
The overpotential (η10, determined by the potential at a
current density of 10 mA cm−2) of Mo2C/Mo2N@N-CNFs
is 75 mV, much smaller than 123 mV of Mo2C@N-CNFs,
indicating a higher electrocatalytic activity. And the

Figure 3 (a) SEM image of Mo2C/Mo2N@N-CNFs. TEM images of (b1) Mo2C@N-CNFs and (b2) Mo2C/Mo2N@N-CNFs. TEM image of Mo2C@N-
CNFs: (c) enlarged morphology image, (d, e) HRTEM images. The insets of (d) and (e) show the interplanar spacing of 0.26 nm and SAED pattern of
selected regions, respectively. TEM images of Mo2C/Mo2N@N-CNFs: (f) morphology image, HRTEM images of (g) Mo2C crystals, (h) Mo2C/Mo2N
heterostructure (inset: FFT of the selected area) and (i) Mo2N crystals in Mo2C/Mo2N@N-CNFs sample. Elemental mapping (C, Mo and N) of
(j) Mo2C@N-CNFs and (k) Mo2C/Mo2N@N-CNFs sample.
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commercial Pt/C shows an overpotential of 29 mV,
consistent with the previously reported literature [44,45].
Tafel slope is a crucial parameter to assess the rate-lim-
iting step and kinetics in HER. Volmer, Heyrovsky, and
Tafel reactions are three types of rate-limiting steps of
HER, where the theoretical values of Tafel slopes are 120,
40 and 30 mV dec−1, respectively [44,45]. As shown in
Fig. 4b, the fitting linear portion of Tafel plots was de-
termined to be 10 mA cm−2. Both Mo2C@N-CNFs and
Mo2C/Mo2N@N-CNFs possess Tafel slopes less than
120 mV dec−1, but more than 40 mV dec−1 (109 and
88 mV dec−1, respectively), indicating the reaction is
Volmer-Heyrovsky mechanism. The smaller Tafel slope
of Mo2C/Mo2N@N-CNFs implies a favorable HER ki-
netics, representing the faster mass/charge transportation
during catalytic reaction [45].

As presented in Fig. 4c, the polarization curves after
1000 cycles and the first cycle are nearly overlapped, and
almost no current fluctuation could be observed in 20 h,
suggesting the high stability of Mo2C/Mo2N@N-CNFs
catalyst. It can be proposed that the N-CNFs coating
guarantees the high structural stability during long-time

HER. Moreover, the η10 of Mo2C/Mo2N@N-CNFs is
comparable to those of other molybdenum carbide/
nitride-based materials in alkaline solution recently re-
ported in Fig. 4d and Table S1 [35−44,46−50]. As a result,
the ultrafine Mo2C/Mo2N heterostructure shows quite
superior performance among them, which demonstrates
its advantages in electrocatalytic activity of HER.

To further understand the mechanism of the enhanced
HER activity of Mo2C/Mo2N@N-CNFs electrocatalysts,
the electrochemical surface area (ECSA) and charge
transfer resistance (Rct) were investigated as displayed in
Fig. 5. To evaluate the ECSA of electrocatalysts, we cal-
culated the electrochemical double layer capacitance (Cdl)
of the electrocatalysts determined from the CV curves
tested at different scanning rates from 100–200 mV
(Fig. 5a, b). As can be seen in Fig. 5c, the Cdl of
30.01 mF cm−2 on Mo2C/Mo2N@N-CNFs is much higher
than that of Mo2C@N-CNFs (15.25 mF cm−2), which
implies a larger density of active sites for HER of the
former [17]. The major enriched active sites stem from
the interface in heterostructure and edge-sites on the
surface of ultrafine Mo2C/Mo2N. Meanwhile, their EIS

Figure 4 (a) Polarization curves and (b) Tafel slopes of Mo2C@N-CNFs, Mo2C/Mo2N@N-CNFs and the commercial Pt/C. (c) The first and 1000th

cycles polarization curves of Mo2C/Mo2N@N-CNFs; inset: long term stability at 1.13 V. (d) Comparison of η10 of Mo2C/Mo2N@N-CNFs with recently
reported MoxC or MoxN based electrocatalysts.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

May 2021 | Vol. 64 No. 5 1155© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020



and the corresponding equivalent circuits are shown in
Fig. 5d, in which the equivalent resistance of Mo2C/Mo2
N@N-CNFs is smaller than that of Mo2C@N-CNFs, de-
monstrating the Mo2C/Mo2N@N-CNFs possess fast
charge transfer rate [5]. The improved electronic con-
ductivity of Mo2C/Mo2N@N-CNFs can be ascribed to the
conductive N-CNFs coating and the strong interaction
between Mo2C/Mo2N and N-CNFs, which further boosts
the HER kinetics.

CONCLUSIONS
In summary, we reported a melamine-assisted facile
method to synthesize ultrafine molybdenum carbide/
nitride heterostructure encapsulated in N-CNFs for
highly efficient HER. By introducing melamine, single-
phased Mo2C or dual-phased Mo2C/Mo2N hetero-
structure can be regulated as well as the ultrafine nano-
size. Owing to the synergistic effect of Mo2C/Mo2N
heterostructure and the abundant active sites from the
interface or surface exposed in ultrafine nanocrystals, the
as-prepared Mo2C/Mo2N@N-CNFs possess excellent
HER activity. Moreover, the N-CNFs coating and the

intimate contact of Mo2C/Mo2N and N-C guarantee fast
electron transfer and structure stability, boosting the re-
action kinetics. Hence, Mo2C/Mo2N@N-CNFs deliver
superior HER performance as exemplified by a small
overpotential of 75 mV at η10, much better than those of
Mo2C@N-CNFs and other Mo2C/Mo2N-based catalysts
recently reported.
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氮掺杂碳纳米纤维包覆超细碳化钼/氮化钼异质
结构用于碱性条件下电催化析氢
陈婧1, 潘安强1*, 张文超2, 曹鑫鑫1, 卢柔1, 梁叔全1*, 曹国忠3*

摘要 高效非贵金属催化剂对于推进析氢反应(HER)的大规模工
业化至关重要. 碳化钼(Mo2C)因其类似铂的能带密度和优良的中
间产物吸附特性, 有望替代贵金属基材料成为具有前景的催化剂.
然而, 它在常规制备过程中存在严重的晶体过度生长和团聚问题,
导致催化效率低. 本研究利用三聚氰胺辅助法制备了含有丰富表
面和界面的超细碳化钼/氮化钼(Mo2C/Mo2N)异质结构, 并同时将
其嵌入到氮掺杂碳纳米纤维(CNFs)中. Mo2C/Mo2N异质结构的协
同作用与超细纳米晶表面暴露的丰富活性位点共同提高了电催化
活性, 而氮掺杂碳纳米纤维框架保证了快速的电荷转移和良好的
结构稳定性. 此外, 原位形成的Mo2C/Mo2N晶体与碳基质之间存在
较强的界面耦合作用, 进一步提高了电子电导率和电催化活性. 得
益于这些优势, Mo2C/Mo2N@N-CNFs在碱性溶液中表现出优异的
电催化析氢性能, 在电流密度10 mV cm−2时具有75 mV的低过电
势, 优于单相Mo2C@N-CNFs对比样以及近期报道的Mo2C/Mo2N基
催化剂. 这个合成方法集成了异质结构、纳米化和碳修饰策略, 为
设计高效率电催化材料提供了新的参考.
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