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Chemical Reactions are Stochastic
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—— Single trajectory with 10 molecules

— Average of 150 trajectories

At equilibrium:

*There are as many A molecules as B
molecules.

*The humber of forward reactions
balances the number of reverse
reactions.

In bulk, with a few nanomoles of
molecules in solution, you do not see the
fluctuations.

But if had only a few molecules, you would
see things differently.
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Example: Single Molecule DNA Kinetics
Are Observable
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R. Jungmann, C. Steinhauer, M. Scheible, A.
Kuzyk, P. Tinnefeld, F. C. Simmel, Single-
Molecule Kinetics and Super-Resolution
Microscopy by Fluorescence Imaging of
Transient Binding on DNA Origami, Nano
Letters 10, 4756-4761 (2010)



Example: Low Copy Numbers in Cells
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Example: Chemical Robotics
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What Can You Make?

* Low copy number systems give you integer-
valued variables.

— So you can have states and registers.

* Low copy number systems can flip coins.

— So you can implement randomized algorithmes.



Example:
Computation via Register Machines

|

Stat-C‘S ASYO, LS‘]..‘ ceen ‘S'n,
registers Rg, R1, ..., Rm
inc(z,r, 7)

if the state is i, then increase register v and go to state j

dec(i,r, j, k)

iof the state is 1 and register r is greater than zero, then decrease register
r and go to state j; otherwise go to state k

Si+ M, = S,
S; = Sy,

David Soloveichik, Matthew Cook, Erik Winfree and Jehoshua Bruck, Computation with finite stochastic chemical
reaction networks, NATURAL COMPUTING. Volume 7, Number 4, 615-633, 2008.




Example: Multiplication

FIGURE 6. A register machine that multiplies the initial contents of
registers 0 and 1. Register 3 holds the final value and register 2 is swap
space.

Klavins: Course notes.



Behavior of the Multiplier
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(© Klavins: Course notes.



Multiplication

Division

6 tMa My <M
2

Table 1: Averaged Simulation Data

M1=5 M1=2 M1=2 M1=10
M2=2 M2=2 M2=5 M2=10

Add 6.83 3.88 6.99 19.39

NS C Sub 3.04 0.17 0.22 1.09

Mult 9.02 3.56 8.76 87.9

Div 2.26 1.08 1.09 4.21

Less 0.14 0.09 1.28 1.54

Greater 1.08 0.14 0.24 2.24

Equals 0.01 0.87 0.26 1.02

___________ And 0.96 1.02 1.25 1.89
INV Inv 0.13 0.17 0.15 0.33
Or 0.99 0.94 1.1 1.19

/ Xor 0.18 0.1 0.04 0.33
Zuyuan Zhang:

Term project, 2009.

Figure 3: Entire BALU State Diagram



Toward Synthetic Development

Leader Election

Electing a leader in a group of

identical processes.

k’ Undecided
) :

Single leader +
undecided

(~3é

Single leader +
multiple followers

A simple approach:

U uL UF
e
L FL FF

Better would be to include conflict resolution.



A Leader Election Circuit




A Leader Election Circuit in gro

http://depts.washington.edu/soslab/gro



Another gro Program

ahl := signal ( 8, 6 );

program leader() := {

e
o
]

0,
o;
t := 2.4 ]; // protected variable
set ( "growth_rate"”, 0.00 );

true : { p.t :=p.t + dt }
p.t > 2.5 : { emit_signal ( ahl, 100 ), p.t =0 }

1
program follower() := {

gfp 1= 05
rfp := 0,
p :=[ mode :=0, t :=0 ];
set ( "growth_rate", 0.04 );

p.mode = @ & get_signal ( ahl ) > 0.01 :

{ emit_signal ( ahl, 100 ), p.mode := 1, p.t :=0 }
p.mode =1 : { p.t :=p.t +dt }
p.mode =1 & p.t > 2.25 : { p.mode := 0 }

m
()
o
=
~
™
x
]
S

= @, theta := 0 ], program leader() );
10, theta := @ ], program follower() );

m
()
o
"
~™
™
*
]
=
]

http://depts.washington.edu/soslab/gro
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Questions

* Convergence: In probability, in mean and
variance, via a Lyapunov Function.

* Correctness: Do individual trajectories do behave
as expected?

* Refinement: What does it mean for a stochastic
process to a refinement or coarse-graining of
another stochastic process?



Probability vs. Time

Assumptions:

*The probability of when a given pair of molecules reacts in the next
dt seconds is independent of time.

*A given molecule is equally likely to interact with every other
molecule in the system.

Example: Consider a system with one A and one B and the reaction:

k
A+B—C

kdt is the probability that the reaction will occur in the next dt seconds. The
two assumptions imply that the time of the reaction is distributed as an
exponential random variable with p.d.f. and c.d.f.

f(t) = ekt
- Probability that the

reaction has occurred by
time t.



The Master Equation

Initially 1 A and 1 B:

state 1 state 2
A:l k| A:0
B:1 B:0
C:0 C:1

k
A+B—C



More Molecules

Initially 4 A’s and 3 B’s:

Po —12k 0 00 Po Note: easy to solve via
p2 || 0 6k 2k 0 || p z(t) = e”'z(0)
pg 0 0 2k 0 P3
1.0k o
08 j{ X0, . -
0.6 ‘..'2
0'47&{ 4 p,(1)
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k1
A+B — (C
k2
LN
C =D
ks
——llx‘l ICQ 0
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Another Example
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[state 1

\ D:0 )

40 4k,
22 .

B:2

C:0 k

state 2
A:l
B:1
C:1

A:l
B:1
C:0

\ D:1 )

Note: It is easy to reason about this network for a given initial state. But what if we
want to say something about its behavior for arbitrary initial states? There is a
different Markov process for each one!

Also: There may not be a finite number of states, even for a given initial condition.

' state 3
B:0
2k, C:2
i C:0

k|| 2k,

I state 5
| A:0
B:0
k. C:1

D:1

state 6
A:0
B:0
C:0
D:2




The Register Machine Example
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Running Example:
Controlling Gene Expression

Open Loop .

B
- g X 2y

Goal: Control mean and variance of X.
Negative Feedback

L, r can be any function
I - a constant
= - a function of (the random variable) X

- a function of other species yet to be introduced
Other Control Schemes? - etc.



Stationary Distribution of An Infinite System

k1 k2,
g—X—0

po = —kipo +kopy

Pr = kipo —(k1+ko)p +2kopo

p2 = k1p1 — (k1 4 2k2)p2  3kaps

P3 = k1p2 —(k1 + 3ko)ps  4kaps

First Egn:

* ]I.’l
P1 =

o iy 12
l‘ * v * l1 *
k2 P2 = 2/ P1 = WPO
Second Eqgn: “k2 <Ry ) X
(X)" E np, = a

0 = —kyp] + 2kops

Sum of 15t n Egns:

o n

pn = —p; Where a = kq/ko
n. a E i

Using the fact that p is a probability distribution:

iy
X0 . X0 an, . . X Q n 1 e O‘n e 'u, X = A_z
gpnzg —pozl(:)g — = — Pn = €
n! cnl P n!

n=0 n=0 n—

Note: Mean and variance can not be independently tuned by k,. We ' ko
need a better choice of control.



Solving Infinite Master Equations

* Although easy in simple cases, in general steady state distributions involve
finding roots of high order polynomials symbolically.

 Some approaches:
— Truncate the master equation (tends to work for numerical solutions)
— Look at moments, instead of the full distribution
— Simulate
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Moment Dynamics

Say we have n reactions with rates \;(z) and updates x — ¢;(z) fori =1
to n.

Then
= P07 @07 (@) = P ()

is the Master Equation.

Let 1¥(x) be a test function with expected value

=) ¥(x)p(@)
Taking the derivative, I
= ZZ P(@)p(¢; (@) (@; (@) - ZZ $(@)p(z) M ()
_ ZZ Py (y ZZ’# )p(z)A
= ZZ[( (2)) = ¥(@)]p(x) A (2)
_ ZM@ ) = $(X)IA(X))

a(w



Example (No Control): o = x = o

E<\> = ((X+1)—X)u+ (X —-1) - X)kX)
= W kXD
| = u—k({(X)
Wi
SN = (X412 = Xu+ (X = 1) = XEX)
= >\ +1u 4 (—2X + DkX)
) = 2(Xu) + (u) — 2(X?) + k(X)
= u+ (2u+k)(X) —2(X?)
Wy W,
[\ —k 0 111 1Y\
( [19 ) - ( 2u+ k =2k ) ( (12 ) T ( 1)
Uu
,U"l — —
/ Note: Mean and variance can not be
y independently tuned by u. We need a better
\/,UQ — p% =0 — Z choice of control.



Example (Feedback): o =% x 25

r— kX is impossible to implement (a rate can’t be negative).

But,
a) We are interested in the local behavior of the stationary distribution
for smallish fluctuations and r — kX is the constant and linear part of whatever

f(X) we do implement.

b) If uis non-linear, the moments don’t close:

\; \ If rates are not unimolecular or constant, then
s X? some moments of order n will depend on higher
o= S X3 order moments.
" X, X,
' X7 : This is also when the master difficult.
\ : ) : Moment equations may still help.

: Various approximations exist (e.g. cumulant

,[1 — A,u — B truncation).



Example: Feedback o X 2 g

Define test functions
Mo = <X>
ox = (X?) — (X)

Use (—1<u"> = (L1) to get
dt
Ly =r— b+ 1)
d 2
70X =T + (B = k)ux —2(8+ k)ox

The stationary distribution satisfies:

. ri3 . r
pW'=——— and K" =

(k + B)? k+ 3

Tunable, but
- mean sensitive to degradation rate
- variance coupled to .

1 Standard
=1 Deviation
X Window
10 \ 4
A
6 ili 10
k=2
X
10+
8_
6k
4t
ZF
0 2‘ 4 6 8‘ 10



Aside: Mathematica Code

In[1:= Import["/Users/ericklavins/Presentations/DNAl7 /Reactions.m"]

In[20]:= species = {"X"};
reactions = {
{uou’ llx“’ r—kx},
{llxlI’ "O“’ B}
}i

sys = {species, reactions};

In[33:= ¢v = CumulantVector [sys]
ce = CumulantDynamics [sys];
ce // TableForm
ss = Solve[SteadyState[ce], cv][1]

outdgl= {xxx[t], xx[t]}
Out[35)//TableForm=
xx'[t] =r-kxx[t] - Bxrx[t]
xxx' [t] =r-kxx[t] + Bxrx[t] -2 kkxgx[t] -2 B kxx[t]
rp r

Out[36]= {Kxx[t] 4 (k ‘ B)z ’ Kx[t] > X + /3}

In[52):= soll = NDSolve[(ce /. {r-»10, k-1, B>0.1}) U {x"xx* [0] =0, xvx+ [0] =0}, ev, {t, O, 10}];
gl = MeanVarPlot["X", soll, 0, 10];

Reactions.m includes:
*Mass action kinetics
*Markov Processes and Master Equations
*Gillespie Simulations
*Moment and Cumulant Dynamics Analysis



Backto o — X

Idea: Proportional-Integral Control

u=~Z—kX

k

7 — r X «— This is now a continuous integrator.
o At steady state, z=X.

* Z «in large supply
* Reverse rate saturates

hWX,Z) =

What about the mixed discrete/
continuous system?

v/™M

(Kz + Zm)(lfx +X")

R

)

hpx, 1z)
OhX,Z

0X
()hf; Z 7

o p=p*
a+~4 —kX.

(X

p=p*

— [x)

— Hz)



Mixed Continuous / Discrete

Suppose we have a concurrent continuous process

2= (X1, X 2).

Then the L can be extended to

o
L¢ — 8_?; (Xla "'9Xn> Z) —l_ Z(wnew T 2/})k;i

d

— () = (L1)) still works!
dt



Proportional-Integral Control

N
g— X — 9
=X —-r
u=hl—kp(X —r)—k;iz|
<4Y> —k — I"P —A'] 0 0 0 <‘\r> II'P
J [ (Z) 1 0 0 0 0 (Z) —1 | )
ﬁ <X2> == k — l\'p + 2/\']37’ —/\'] —2k — 2/\'p —2/\'1 0 <1\72> + /\'p 1
“ (xz) —r kpr 1 —k—kp —k; (XZ) 0
2 )\ 0 —or 0 o 0o J\ ) o)
E> Stable (eigenvalues in left half plane) = convergence in mean and variance.
g
The mean value of X converges to r (insensitively). 30
(Z)=(X)—r=0=(X)"=r 25]
20
E> The steady state standard deviation is tunable via &, s :
10

kr + kr?2 + kpr?
JYQ — JY 2 — — — -2
V(X2 —(X)2=0 \/ Py '




Simulations

g— X — U0

— T

= X

Z

—]Cp(X — T’) — k]Z]

|

h

U =

kp = 2.0

60 80 100

40

0

o

kp =0.1

a0 60 80 100

20

(X)
20
15
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A Class of Network Structures

External Low copy protein
signal
(ligand)

High copy
“integrator”

Arbitrary network
(pos/neg)

Pl Control in the literature
*Alon’s chapter on chemotaxis
*Napp, Burden and Klavins: Control of Stochastic Robotics
*Two component systems in general



A Class of Network Structures

| wi(X,2) B
Gene expression: & X, — O A Stochastic
(Discrete)
n Hybrid System
Regulation: ui(X,Z) =v;Z; — Z kij X
j=1 ... with closed
. : moment
I n: . — g— .
Integ(cg;_tnlgus) Z,L =T, Xz dynamics.



Moments

Group the means and moments into vectors and matrices

p= (@> = (<X >> and M £ <<XXT> X2 T>>

iz (Z) (zXT) (zZT)

K= ( HXZT) 2 M — T

kzxT KzzT

Group the parameters

P £ diag(Bi,.... Bn) Degradation
I' £ diag(y1. ..., ) Integrator gain (tunable)
K £ {kij} Network (tunable)

N T

Reference inputs

r (711 ...mn )"



Moment Dynamics

Use the extended generator to get mean dynamics
d (px _(-P-K T\ (px n 0 .
dt \ pz —1 0/ \pz I
L= Apn+ Br

And the second moment dynamics

M =AM + MAT + C(p)

diag(Tpz + (P — K)ux) puxrT
(‘ (# - 7,#% ,UZTT 4 7‘)[1‘5



Properties

L= Apn+ Br
M = AM + MAT + C(p)

Theorem 1: The network converges in mean and variance
if and only if A 1s Hurwitz.

Theorem 2: The unique steady state mean sy 1s 7 and 18
msensitive to i, I', and P.

Theorem 3: The steady state covariance matrix in X can
be placed arbitrarily. That 1s, 1if W 1s positive definite, then
K and I' can be found so that in steady state K% - = W.



Example: One Gene

c) Proportional/integral control

vZ—-kX B f_poand ot — 1B
o Ly Ay [ r and s e

Mean and variance independently tunable




Example: Two Genes

Specification s

30F

— X,(1)

—X,(1)

1 1 1 L 1 | L L L | L L L | 1 !
20 40 60 80

e N |
e = X X B
- e ] ) / /
e al l | I

[l e @es

100

L 1 1 1 1 1 1 1 L 1 L 1 1 L
15 20 25



Example: Excitable Oscillator

12('):— —_— Xg([)
100 M _ Xg(’ )
I — X0
"/_>Z1 :XIA : 2‘:'2."_"3 80; I I\ |
SN AR L il
g k 0kO _ | . \ , N M VV V
K=|00k ) — i k
. (k 0 0) 40 ' \ WANANL U
13—>Z}|_ 5 Vi i Ik 1A \[ (TAVET AR LAY AL
/ v V=
20 1 A
a MJ \. w tﬂ i;%
" S 7 N 20(’)[

Ensemble dynamics: Damped oscillator (-a,+b.j, -a;-b,j ).

Stochastic dynamics: Sloppy oscillations with specific means.



Example #2

ki ks
%) X = %)
k4\l oz

@

Full state feedback controller with an integrator
=Y —r
U = h/[—k’pr — :l(?pyY — Z]

kp, < 0, k’py > ()




Example #2

k1 u k3
g— X=Y — U

¥
| )
I R

kp=-0.01, kp,=0.01 kp=-1, kp, =1



Open Moments

k1 U k3
g— X=Y — U
k4\l ks

Steady State Moment Equations Give

(Z)=(Y)—r=0 # (Y) =r
Example Second Moment

: , | ,
Y Z) = = (V) +(Y2) = (ks + ko) (Z) = ki (X2Z) = kpy (XY Z) k(X 22)

BN NS

Second Order Third Order ®

Idea: Approximate Higher Order Moments? => No general results.



Proving Convergence

(Z) = (X)—r=0= (X)" =1  WHEN THE SYSTEM IS ERGODIC

If the moments are closed, you can check for a stable steady state or just reason
about the mean and variance.

If not, some other argument must be used.



Lyapunov Criterion for Markov
Processes

Theorem (Meyn): If for some compact region C and positive
constant g, there exists a positive radially unbounded
function V(g,x) such that

LV (g, x) < —¢ V(g,x) ¢ C

then the process is ergodic. \

l.e., the expected value of
V decreases outside of C.

S. Meyn, R. L. Tweedie. Stability of Markovian processes Ill: Foster-Lyapunov criteria for continuous-time processes.
Advances in Applied Probability, 25(3):518-48, 1993. Thm 5.1.



The Controllable Region

min max
p min p max
y min y max

Can only reasonably expect to achieve rin [y, .., V,..]-



Integral Control Works for any SCRN

Theorem (Napp and Klavins): Suppose steady state distributions pn,
and ppee for constant INputs ., and u,,.,; respectively and suppose that

l. z2=Y —r;

2. u= h|—k;z] with k; > 0

3. Pmin S r S Pmaz - fsmooth

Then (Y) — r with finite variance.

Lmin - - Tmaz
~ —rt+c (Q)a T < Tmin
V(Qa ZC) — fsmooth(% .CE), Tmin < T < Tmax
r+ ct(q), T < Tomax

Napp&Klavins, 2010
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Data from Simulations and Experiments

P

i

What really
happens in the
cell

g— X0

A simple model

What about:

* A complex model?
* A refinement?
* An implementation?

Plan: Reason about
systems based on
the data they
produce.



Simulation Approaches

The Stochastic Simulation Algorithm (Gillespie’s SSA)

#P
Next reaction 1of s ——
P[t, j] = k; je Kt | e
/’Xv ety — Fid : / /
D; i = e idt = —=
Pi.j . i,j K, ol | ,—'/
I | [;'/ — single sample
‘ ‘ / s —— average of 20 samples
4_ J
. . [ | — mean
Time of the next reaction t o // standard deviation window
t i /
/ K.ie_K"”(IT —1—e Kt —p¢ [0, 1] ? ] /
0 1/ t
- 20 40 60 80 100 120 140

N
E Il‘i.jC_K‘it = I&'.iC_Kit
j=1

1. Choose an initial condition v equal to some vector of the copy numbers
’ 1 1 1 of the species in the reaction network.
= n \
I\_'/i 1 — ,‘ S(\t’ t - 00

For each reaction p applicable in v, determine the rate k.
Choose the next reaction via Equation 8.6.

Choose the At via Equation 8.7 and set ¢ to t + At.

Goto 3.

=

o ot



Simulation Approaches

Plain Old Euler Integration

*With mixed discrete / continuous systems, the SSA doesn’t directly work.
*And there is diminishing return for systems with many reactions.

Choose a timestep 6 such that d\,,., < 1 for the largest rate A,,,, in your
system.

e Enabled reactions 1, ..., N(¢) with rates A, ..., Ax ().

® Hi = Zj<‘z'. Ai-

e Choose r € [0,1]. 1

20 _Xj(l)

. . . . 100 H _X_»(’)

e Fire the reaction 7 such that p; is the larg | — X,0)

exists. Otherwise, do nothing. I |

! i

N 40 ™ i j
e =X I . ALY RYRYRVAVATALAYEIY
z(t +96) = z(t) + 6 f(z,q) V NP E L




gro Simulations

Pe

P={
guard,:command,

guard :command_

}

*Growth is continuous.

Signaling is continuous (finite element
sim).

*Physics via Chipmunk (which takes dt
as an argument at each step).

*Guards may have rand(0,1)<0.25

evaluated at each iteration.
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Approximation

In computer science, non-determinism has nice definitions for
abstraction, refinement, implementation, simulation, etc.

For stochastic processes, what does it mean for one process to
be an abstraction of another? A refinement? A coarse
graining?

Approximate Bisimulation: Turns bismulation into a metric on
processes. Distance zero means bismilar. Destance epsilon

means close.
® P2

°P1 ° pP3

W(P1,P3) > W(P2,P3)




Comparing Stochastic Behaviors

Let f be a metric on the spaceof trajectories ().

For any two probability distributions P2, and P2 on (), the Wasserstein
Metric is defined by

W(P,P,) = inf flw,n)dQ(w,n). e—— Hard to

QeJ(P1,P2) Jaoxn compute!
When (2 is finite, finding W amounts to solving the linear program

Minimize > Y f(wi.n;)Qi;
i

Subjectto Y Qi; = 1

; n
> Q=

Qi; =0

Thorsley and Klavins, “Approximating stochastic biochemical processes with Wasserstein pseudometrics”, IET Systems Biology, June 2009



Example: Abstracting Gene Expression
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[33] swaAIN Ps., ELOWITZ M.B., SIGGIA E.D.: ‘Intrinsic and extrinsic
contributions to stochasticity in gene expression’, Science,

2002, 99, (20), pp. 12795-12800

Thorsley and Klavins, “Approximating stochastic biochemical processes with Wasserstein pseudometrics”, IET Systems Biology, June 2009.
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The cell programming language

Welcome

gro is a language for programming, modeling, and specifying the behavior of cells in growing
Navigate micro-colonies of micro-organisms. Currently, gro is available only to alpha testers. Please check
back soon for the first official release.

About gro

Download Developed by The Klavins Lab, University Washington, Seattle, WA
Documentation Copyright © University of Washington. All rights reserved.
Dicscussion

Send klavins@uw.edu the email address

associated with your Google account so that you
may download gro!

*Mac OS X 10.5.8 and up
*Windows 7 + Cygwin




Running Example:
Control of Gene Expression

Outline
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