
gro

Tutorial 3

Signals

• Declaring Signals

• Sending Signals

• Sensing Signals

• Absorbing Signals

• Reaction-Diffusion

• Bioprocessing example

Declaring Signals

include gro

ahl := signal(5, 0.1);

This line defines a signal
called “ahl”.

signal() takes two arguments:
 degradation rate
 diffusion rate

By itself, declaring a signal doesn’t do anything! It only defines a signal for use later in
the program, either by a cell or the environment (main loop). Don’t set the diffusion
rate too high or you will run into numerical integration errors.

Sending Signals with Cells

include gro

ahl := signal(5, 0.1);

program signaler() := {

 true : {

 emit_signal(ahl,0.2)

 }

};

ecoli ([], program signaler());

A cell can send a signal using the
emit_signal() function. It has two
arguments:
 The signal to use
 How much to release

These cells constantly emit signal. Try varying the parameters – what happens as
you vary the diffusion and degradation rates of the signal, but keep their ratio the
same?

Receiving Signals
include gro

ahl := signal(5, 0.1);

k := 2; // reporter scaling factor

program signaler() := {

 true : {

 emit_signal(ahl,0.2)

 }

};

program receiver() := {

 gfp := 0;

 rate(k*get_signal(ahl)) : {

 gfp := gfp + 1

 }

};

ecoli ([x:=50,theta:=3.14/2], program signaler());

ecoli ([x:=-50], program receiver());

This program has two cell types. The new cell
type, “receiver”, produces gfp at a rate
proportional to the signal it receives

To have a cell sense a signal, use
get_signal(). This function takes
one argument: the signal to
detect.

Setting Environment Signals
include gro

ahl := signal(5, 0.1);

k := 10; // reporter scaling factor

program receiver() := {

 gfp := 0;

 rate(k*get_signal(ahl)) : {

 gfp := gfp + 1

 }

};

program main() := {

 true : {

 set_signal(ahl,50,-50,1)

 }

};

ecoli ([], program receiver());

When defining a signal in main, use
set_signal(). set_signal() takes four
arguments:
 the signal to set
 x coordinate
 y coordinate
 the amount of signal to release

Coordinates in gro have the origin in the center of the screen, with x coordinates
increasing from left to right and y coordinates increasing from top to bottom.

Absorbing Signals
include gro

ahl := signal(5, 0.1);

k := 2; // reporter scaling factor

program signaler() := {

 true : {

 emit_signal(ahl,0.2)

 }

};

program receiver() := {

 gfp := 0;

 true : {

 absorb_signal(ahl,0.1)

 }

 rate(k*get_signal(ahl)) : {

 gfp := gfp + 1

 }

};

ecoli ([x:=50,theta:=3.14/2], program signaler());

ecoli ([x:=-50], program receiver());

To have cells absorb a signal, use
absorb_signal(), which takes two
arguments:
 signal to absorb
 how much signal to absorb

This program is identical to the receiving signals program, but receiver cells eat up the
signal. Absorption is useful both for accuracy and multicellular behaviors: cells that eat up a
nutrient signal should absorb it, and signal removal is found in many natural multicellular
signaling circuits.

Reaction-Diffusion
include gro

ahl := signal(5, 0.1);

antiahl := signal(1, 0.1);

reaction({ahl,antiahl},{antiahl},10);

program signaler() := {

 true : {

 emit_signal(ahl,2)

 }

};

program receiver() := {

 gfp := 0;

 rate(get_signal(ahl)) : {

 gfp := gfp + 1

 }

};

program main() := {

 true: {

 foreach i in range 10 do {

 set_signal(antiahl,0,(200-40*i),10)

 } end;

 }

};

ecoli ([x:=50,theta:=3.14/2], program signaler());

ecoli ([x:=-50], program receiver());

reaction() defines how
signals interact and takes 3
arguments:
 A list of reactants
 A list of products
 The reaction rate

Reaction-diffusion reactions are based on
chemicals that can (1) react with each other (or
themselves) and (2) diffuse. Basic pattern
formation can be generated via reaction-diffusion
alone.

It can also be used for simpler behaviors: this
program is identical to the receiving signals
program, but with a line of “anti-ahl” signal that
destroys ahl separating sending and receiving
cells. How does this change the behavior of the
receiver cells?

Example: Bioprocessing
include gro

set_theme (bright_theme << [signals := { { 1,0,0 }, { 0,1,0 } , { 0,0,1 } }]);

biomass := signal(0, 0);

enzyme := signal(4,0.3);

food := signal(5, 0.1);

reaction({biomass,enzyme},{food,enzyme},5);

set("ecoli_growth_rate",0.0);

program bioprocessor() := {

 true : {

 set("ecoli_growth_rate",get_signal(food)),

 emit_signal(enzyme,1)

 }

};

program main() := {

 t := 0;

 true: { t := t + dt }

 foreach i in range 2000 do {

 set_signal(biomass,rand(400),(rand(800)-400),10)

 } end;

};

ecoli ([], program bioprocessor());

Biomass is red, enzyme is
green, food is blue

In this simulation, food (and
therefore growth) can only
come from degradation of

the biomass via an excreted
enzyme

Cell growth rate depends on nutrient
availability

Uneven distribution of non-
diffusing feedstock

Run the code! See what happens to the growing cell distribution by changing the
diffusion rates.

Example: Bioprocessing

Red, non-diffusing biomass
particulates

Green ‘enzyme’ that reacts
with biomass to produce

food

Blue food that determines
the growth rate

