gro

Tutorial 3

Signals

Declaring Signals
Sending Signals
Sensing Signals
Absorbing Signals
Reaction-Diffusion
Bioprocessing example

Declaring Signals

This line defines a signal

lled “ahl”. .
called “a include gro

signal() takes two arguments: \ ahl :=signal(5, 0.1);

degradation rate
diffusion rate

By itself, declaring a signal doesn’t do anything! It only defines a signal for use later in
the program, either by a cell or the environment (main loop). Don’t set the diffusion
rate too high or you will run into numerical integration errors.

Sending Signals with Cells

include gro

ahl :=signal(5, 0.1);

program signaler() := { A cell can send a signal using the

. it_signal() function. It has two

true - emit_signa

: { : — arguments:
emit_signal(ahl,0.2) The signal to use

}} How much to release

ecoli ([], program signaler());

These cells constantly emit signal. Try varying the parameters — what happens as
you vary the diffusion and degradation rates of the signal, but keep their ratio the
same?

Receiving Signals

include gro

ahl :=signal(5, 0.1);
k :=2; /l reporter scaling factor

: __ To have a cell sense a signal, use
program signaler() := { get_signal(). This function takes

true.Z { ' one argument: the signal to
emit_signal(ahl,0.2) detect.

}
h

program receiver() := {
gfp :=0;
rate(k*get_signal(ahl)) : {
ofp:=gfp +1
}
I

ecoli ([x:=50,theta:=3.14/2], program signaler());
ecoli ([x:=-50], program receiver());

This program has two cell types. The new cell
type, “receiver”, produces gfp at a rate
proportional to the signal it receives

Setting Environment Signals

include gro

ahl := signal(5, 0.1); When defining a signal in main, use
set_signal(). set_signal() takes four
arguments:

the signal to set

x coordinate

k := 10; // reporter scaling factor

program receiver() :={

gfp :=0; . y coordinate
rate(k*get_signal(ahl)) : { the amount of signal to release
gfp:=gfp +1
}
I
program main() :={
true : {
set_signal(ahl,50,-50,1)
}
Ji

ecoli ([], program receiver());

Coordinates in gro have the origin in the center of the screen, with x coordinates
increasing from left to right and y coordinates increasing from top to bottom.

Absorbing Signals

include gro _
To have cells absorb a signal, use

absorb_signal(), which takes two
arguments:

signal to absorb

how much signal to absorb

ahl :=signal(5, 0.1);
k :=2; /l reporter scaling factor

program signaler() :={
true : {
emit_signal(ahl,0.2)
}
b

program receiver() :={
gfp :=0;
true : {
absorb_signal(ahl,0.1)
}
rate(k*get_signal(ahl)) : {
gfp:=gfp+1
}
h

ecoli ([x:=50,theta:=3.14/2], program signaler());
ecoli ([x:=-50], program receiver());

This program is identical to the receiving signals program, but receiver cells eat up the
signal. Absorption is useful both for accuracy and multicellular behaviors: cells that eat up a
nutrient signal should absorb it, and signal removal is found in many natural multicellular
signaling circuits.

Reaction-Diffusion

include gro

ahl :=signal(5, 0.1);

antiahl := signal(1, 0.1); P
reaction({ahl,antiahl},{antiahl},10);

program signaler() :={
true : {
emit_signal(ahl,2)
}
b

program receiver() :={
ofp :=0;
rate(get_signal(ahl)) : {
gfp:=gfp +1
}
I

program main() :={
true: {
foreach iin range 10 do {
set_signal(antiahl,0,(200-40%i),10)
} end;
}
%

ecoli ([x:=50,theta:=3.14/2], program signaler());

ecoli ([x:=-50], program receiver());

reaction() defines how
signals interact and takes 3
arguments:
A list of reactants
A list of products
The reaction rate

Reaction-diffusion reactions are based on
chemicals that can (1) react with each other (or
themselves) and (2) diffuse. Basic pattern
formation can be generated via reaction-diffusion
alone.

It can also be used for simpler behaviors: this
program is identical to the receiving signals
program, but with a line of “anti-ahl” signal that
destroys ahl separating sending and receiving
cells. How does this change the behavior of the
receiver cells?

Example: Bioprocessing

include gro
Biomass is red, enzyme is o
green, food is blue -3 | set_theme (bright_theme <<[signals :={{1,0,0},{0,1,0},{0,0,1}}1]);
biomass := signal(0, 0);
In this simulation, food (and enzyme : signal(4,0.3);
therefore growth) can only food :=signal(5, 0.1);
come from degradation of > | reaction({biomass,enzyme},{food,enzyme},5);
the biomass via an excreted set("ecoli_growth_rate",0.0);
enzyme
program bioprocessor() :={
' true : {
Cell growth rate depends on nutrient o set("ecoli_growth_rate",get_signal(food)),
availability emit_signal(enzyme,1)
}
I
program main() := {
t:=0;

true: {t:=t+dt}
foreach i in range 2000 do {

Uneven distribution of non- _ _
diffusing feedstock —_—> set_signal(biomass,rand(400),(rand(800)-400),10)
} end;

¥

ecoli ([], program bioprocessor());

Run the code! See what happens to the growing cell distribution by changing the
diffusion rates.

Example: Bioprocessing

Red, non-diffusing biomass o
particulates =3

Green ‘enzyme’ that reacts
with biomass to produce
food

Blue food that determines o -'. -
the growth rate —

