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Executive Summary 

The Factory Floor Testbed (FFTB) is an experimental project in distributed construction robotics 
which at the high level looks to develop robots capable of building reconfigurable node and truss 
structures. The objective of this project is to work at both the hardware and software levels to 
develop and complete a demonstration of the system’s potential. This task requires the control of 
a single robotic tile in the proper reception, passing and placement of node and truss resources 
through path planning and low level Python control. The second stage of this project is the high 
level control algorithms used to regulate the FFTB in the construction of the multi-tile reference 
structure while rejecting structure errors and resource disturbances. This algorithm and 
accompanying simulation were developed in the Computation and Control Language (CCL), 
which is utilized because of its distributed control abilities through its multi-threaded 
characteristics.  
 
With this project, we illustrate the successful use of CCL in the control of a distributed system. A 
high level algorithm is implemented and simulated, meeting all desired criteria for proper 
structure assembly, modularity and disturbance rejection. This is mated with the hardware to 
create a hardware in the loop test, which demonstrates the extent of the project and a proof of 
concept for not only CCL as a powerful distributed system control language, but also for the 
CKBots and the FFTB as a first step for autonomous, modular construction robots. 

ii 
 



EE449 ‐ MS5 ‐ June 2010 
Kristjansson, Lawrence, Wood 
 

iii 
 

 

Table of Contents 

Executive Summary ................................................................................................................................ ii 

Project Overview .................................................................................................................................... 1 

Customer ............................................................................................................................................ 1 

Plan of Work ....................................................................................................................................... 1 

Literature Review and Related Work ..................................................................................................... 2 

System Model and Diagram ................................................................................................................... 2 

Plant.................................................................................................................................................... 2 

Actuators ............................................................................................................................................ 3 

Sensors ............................................................................................................................................... 4 

Control Resources .............................................................................................................................. 4 

High Level System............................................................................................................................... 5 

Low‐Level System .............................................................................................................................. 7 

Kinematics...................................................................................................................................... 8 

Performance Specification and Experimental Results .........................................................................12 

Operation Speeds .............................................................................................................................12 

Success Rates....................................................................................................................................12 

Controller Design and Simulation.........................................................................................................13 

Implementation ............................................................................................................................... 16 

Design ...................................................................................................................................................16 

Hardware..........................................................................................................................................16 

Software ...........................................................................................................................................17 

High Level .....................................................................................................................................17 

Simulation.....................................................................................................................................19 

Low Level‐HIL Integration.............................................................................................................21 

Conclusions...........................................................................................................................................23 

References............................................................................................................................................24 

Appendices ...........................................................................................................................................25 

Appendix A: CCL Source Code with Distributed Control Algorithm ‐ DynamicFFTB.ccl ...................25 

Appendix B: C++ Simulator Source Code – FFSim.cc ........................................................................36 

Appendix C: FIFO Reading Source Code with Embedded Python – receiver.c.................................54 

Appendix D: Path Planning of Robotic Arm – FFTB_cntrl.py ............................................................55 



EE449 ‐ MS5 ‐ June 2010 
Kristjansson, Lawrence, Wood 
 

Project Overview 

The Factory Floor Testbed (FFTB) is an experimental project in distributed construction robotics 
which at the high level looks to develop robots capable of building reconfigurable node and truss 
structures. Each FFTB is composed of multiple tiles, where each tile has a single robotic arm 
which can maneuver trusses and nodes to either pass resources or build part of the structure. 
Each completed floor of the test bed can be raised by an elevator subsystem so that the next level 
can be built. These levels are then connected with vertical trusses to form a connected and 
supported multi-level structure. This general formula is the foundation upon which larger 
structures and buildings are to be built. 

 
Ultimately, the goal of the project is the successful integration of numerous robotic tiles 
communicating and working in unison in the construction of a multi-tile structure by regulating 
materials and responding to disturbances in both structure integrity and resource allocation. The 
complex tile interactions resulting from such a distributed system introduces unique control 
problems, but at the high level system integration and at the low level hardware control. Though 
the project began as an experiment in high level distributed assembly algorithms, the actual 
scope of our project evolved over the months, and at times included high level algorithm design, 
low level robotic arm control, hardware modification and development of software interface 
library development. 
 
This paper addresses all key project milestones in a relatively chronological order, beginning 
with the customer and their needs, and the resulting plan of work. From here, we take a look at 
the system model, including the plant and all relative actuators, sensors and control resources at 
both the high and low level. Once all hardware is introduced, controller design is discussed and 
the resulting simulations of these designs are presented. Lastly, we describe the final hardware 
and software designs at both the high and low level and present the final control demonstration 
and end with some final thoughts and conclusions on the project.  

 

Customer 

The customer of this project was originally UW EE associate professor Eric Klavins, who leads 
the Self Organizing Systems (SOS) lab. The customer role was quickly passed, however, to the 
advising graduate students for this project - Nils Napp and Fay Shaw - after the project scope 
began to develop. The customer needs for this project were generally vague and evolving with 
response to hardware and software limitations, but the fundamental goal was to develop a FFTB 
system, designed with CCL, which could autonomously control the construction of a multi-tile 
structure. The steps to achieving this goal are described below in the plan of work. 

 

Plan of Work 

The SOS lab received a single robotic tile assembled in the FFTB configuration. With this 
experimental test unit, the goal of this project is multi-tiered, with numerous milestones leading 
to the final goal described above. These milestones are as follows: 
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 Establish communication with all robotic modules, calibrate the system and install all 
supporting software. 

 Path plan joint movement for passing and placement of node and truss modules. 
 Design and implement algorithms necessary to control the construction process of the 

hardware tile in the building of a simple structure.  
 Develop a distributed assembly algorithm simulation in CCL which utilizes multiple 

robotic tiles to construct at larger reference structure exemplifying characteristics of a 
distributed system. These include: 

o Sensor Feedback 
o Inter-tile communication 
o Randomness 
o Response to structure failure 
o Response to resource disturbances 
o Software expandability 

 Incorporate control of the hardware tile in the simulation loop. Simulated tiles and 
physical tile communicate and interact in the construction of a multi-tile reference 
structure. 

 
Although the concentration of work was modified throughout the quarter, all changes were in 
response to hardware failures and software difficulties, and ultimately resulted in engineering 
solutions to these problems so that we could continue with the original plan of work as outline 
above.  

Literature Review and Related Work 

The CKBot modular robotic components comprising the robotic arm have been designed and 
developed by the MODLAB at the University of Pennsylvania[5][9]

. The MODLAB has 
demonstrated a factory floor tile building a simple chair structure. However, their 
implementation does not consider a full distributed system with several tiles working together in 
the creation of a higher order structure. The SOS lab at the University of Washington has 
developed simulations using CCL for the FFTB. Our role was to further develop the distributed 
algorithms controlling the FFTB and to integrate the hardware tile provided by the MODLAB as 
a HIL.  

System Model and Diagram 

The following sections describe the physical system hardware, including the plant, actuators, 
s, controller resources and the high and low level system models.  sensor

Plant 

The system of interest and plant for this project is the FFTB illustrated in Figure 1. The FFTB is 
comprised of four Factory Floor pads connected to form four quadrants with a Builder Arm 
secured at the origin. Each quadrant (or pad) of the FFTB has a node cradle to assist accurate 
node placement by the Builder Arm. Similarly, the FFTB also has four truss cradles in between 
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each pair of node cradles. The node and truss cradles surround the Builder Arm, forming a 
square-like frame. On the outer corners of the node cradles are elevators for use in the raising 
and lowering of structures. Currently the scope of this project does not include the use of 
integrated elevators (UPenn, who designed the FFTB has not issued the elevators as of now), and 
so all elevator operations will be simulated by human hand. The locations of the elevators 
obstruct Builder Arm movement. To account for this, placeholders for the elevators have been 
installed so that planning of the Builder Arm trajectory considers this physical constraint. 

 
Figure 1: Robotic Testbed 

Actuators 

The actuato
base, follow

rs of the system are embedded within the Builder Arm. The arm is constructed with a 
ed by a series of linked Connector Kinetic roBotic (CKBot) modules, and an end-

effector, which operates as the “hand” of the Arm. These can be seen in Figure 2a and Figure 2b. 
 
       
 
 
 
 
 
 
 
 
          
 Figure 2a: CKBots 

 
 Figure 2b: End‐effector
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The base of the Builder Arm contains a geared servo motor, which allows 270° of rotation for the 
arm. This limits the accessibility of the arm to only three of the four surrounding node cradles. 
The fourth node cradle must therefore be handled by a neighboring arm. 
 
Three U-BAR CKBots provide the “elbow” joints of the Builder Arm. These contain servo 
motors with ±90° of rotation and provide movement control for extending and lowering the arm. 
Connected to the last U-BAR is an L-7 CKBot, which also has a servo motor with ±90° of 
rotation. The rotation of the L-7 is used to rotate the end-effector of the Builder Arm. 
 
The end-effector of the Builder Arm is used to manipulate the nodes and trusses. It has a dual 
purpose servo motor to allow different interactions between nodes and trusses. The servo motor 
extends a pair of pins to release magnetically attached nodes. The servo motor also moves a 

hich is used to grab and release trusses. clamp, w

Sensors 

The system utilizes two sets of contact switches located on the node and truss cradles. An empty 
cradle has an open switch and outputs 0 VDC or a digital logic low. When a node is placed on 
the cradle, the weight of the node closes the switch and outputs a digital logic high. The 

tact switch is the same for trusses. operation of the con

Control Resources 

MODLAB at the University of Pennsylvania provides a Python-based CKBot GUI for control of 
the Builder Arm. This software package will initially be used to control the movement of the 
Builder Arm in the preliminary stages of the project so that movement and trajectory 
characterizations of the Builder Arm may quickly be realized. As the project progresses, 
however, software will be developed with Computation Control Language (CCL), which was 
developed for the purpose of controlling independent modules that have high levels of 
interaction amongst themselves. The sensors are interfaced with a Phidget I/O board. 
 
The system block diagram is illustrated in Figure 3. The CKBot Modules have a built in PD 
controller that stabilizes position of the arm, and was developed by the University of 
Pennsylvania. The challenge of this project is to control the overall plant in the construction of 
larger structures.  
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Workstation
‐

Program Execution
Controller

PCAN Bus
‐

PC to Hardware
Communication

CKBot Modules
‐

Robotic Arm

Phidget I/O Board
‐

Sensory Interface

PD Controller

 
Figure 3: System Bloc

High Level System 

k Diagram 

The high level control goal is for this project is for small Factory Floor “tiles” to build small 
structures such that the larger distributed system (the testbed itself) will construct a larger desired 
structure. A “tile” consists of a single robotic arm responsible for the placement of individual 
nodes and trusses. The scope of this problem revolves around the structure assembly of a single 
tile within the factory floor where the other tiles will be simulated.  

All resources that a tile manipulates are given a reference expression defined as follows: 
Truss X (Tx): placed on southern border of tile  
Truss Y (Ty): placed on western border of tile 
Truss Z (Tz): placed vertically on the node 
Node (N):  placed I in southwest cradle 
 

Each tile is therefore in control of the placement of three trusses and a single node as depicted in 
Figure 4. The black octagon represents the CKBot arm, and the small wedges indicate the 
locations of the elevators used for lifting a constructed floor. The shaded resources indicate the 
trusses and nodes that the arm of a single tile would place. The number of nodes and trusses were 
limited two these four resources in order to make the higher level distributed system more 
efficient and optimized.  
 
The arm was only in control of these four resources because in the high-level control of the 
distributed system each of the tile’s behavior needs to be strictly defined in order for them to 
operate as a whole. The chosen set of rules allowed placement into all resource locations without 
redundancy allowing a single control algorithm for each tile with limited special cases and 
conflicts. 
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Figure 4: Node and Truss Defined 

 
Once the robotic arm has placed all resources such that the base floor structure matches the 
desired structure, the elevators will lift the completed structure so that the next can be formed. 
After the next floor is constructed, the floor held by the elevators is lowered on top. The overall 
structure within that tile is subsequently lifted and the process continues until the overall desired 
structure is met.  The high level system receives feedback on the placement of a resource from 
pushbuttons in the cradles for nodes and trusses. 
 
The high level input is simply a reference structure. A binary representation of whether a node or 
truss should be placed at a given location within the previously defined framework. Input is 
provided from top down due to the nature of building up. The outputs of the system are the 
contact switches used to determine the completion of the actual structure, and are otherwise used 
to compare the reference structure to the actual structure. If there is a failure in the placement, 
the system will simply respond by performing the same action. 
 
The controller of the high level system operates such that each action of the robotic arm reduces 
the difference between the physical structure and the ideal reference structure as represented by 
the following equation. 

 
 
The high level system model is depicted in Figure 5. The “Action Chooser” uses the structure 
estimator to determine what action should be taken. The actions are retrieving and placing a 
node, horizontal truss, or vertical truss. The “Disturbance” incident on the Plant in this diagram 
represents the failure of a resource placement, or the removal of a resource previously placed. In 
the picture of the larger distributed system, the removal of a resource previously placed would be 
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the interaction of a higher priority tile in the FFTB requiring the resource for the construction of 
its structure.   

Action
Chooser

Plant
‐

Robotic Arm
PD Control

Reference
Structure

Structure
Estimator

‐
Contact Switches
8pt Feedback

Disturbance

Actual
Structure

 
Figure 5: High Level Control Loop 

 
 

Low­Level System 

The robotic arm inthe HIL is the low-level system that needs to be controlled in order to 
accomplish the high level task of building a structure. A block diagram of the system architecture 
for the Arm is shown below in Figure 6. 

 
Figure 6: Lower Level Contrl Loop 

 
The input commands for the robotic arm system is five reference angles—one for the base, three 
for each U-BAR joint, and one for the L-7 joint—as well as an open/close command for the 
truss-handling jaw on the end-effector. The outputs of the system are the five achieved angles of 
the arm, creating a pose as shown in Figure 7 below.  The state of the angle positions and 
velocities of the arm are held in the vector X. 
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Figure 7: Arm Internal State 

 
Where θ1 is the angle of the base rotation, 
θ2 is the angle of the bottom UBAR, 
θ3 is the angle of the middle UBAR, 
θ4 is the angle of the top UBAR, 
and θ5 is the angle of the L7. 

 
The controller for arm’s servo motors has been designed and implemented by the MODLAB in 
the form of PD controllers. However, the servo motors have difficulty achieving the torque 
required to lift the weight of the arm in an extended position, let alone while handling and 
manipulating resources, and so can fail in the placement of nodes and trusses. Fortunately, two 
newer version 1.4 U-BARs were given to us by the MODLAB and replaced the bottom and top 
UBAR joints. The servos in the new U-BARS have twice the torque and made resource 
manipulation easier. However, to ensure optimal path planning for the arm such that the torques 
on the joints are minimized, modeling the arm with forward kinematics were explored. The 
kinematics of the arm will be discussed in the following section. 
 

Kinematics 

Using forward kinematics, each joint of the Arm has been modeled so that the ith joint position is 
known in relation to the i-1th joint, and by extension to a fixed origin and frame.  Modeling the 
arm in this way creates a series of links, where each joint of the arm or point of interest (such as 
the end of the end-effector) is defined as a link. 
 
A model of the Arm with defined frames for each joint is shown below in Figure 8 using the 
Denavit-Hartenberg notation with the measured dimensions and masses in Table 1 to the right.  
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Figure 8: Arm Kinematics Framework 

 
Table 1: Arm Parameters 

 
 
 
  

 
The parameters relating a link, i, to the previous link, i-1, are defined below:  

αi-1 = the angle between Zi-1 & Zi measured along Xi-1 
ai-1 = the distance from Zi-1 to Zi measured along Xi-1 
di     = the distance from Xi-1 to Xi measured along Xi-1 
θi   =the  angle from Xi-1 & Xi measured along Xi-1 

 

Table 2 below holds the link parameters for each link, i, according to the model of the Arm 
above. 

 
Table 2: Arm Link Parameters 

 
 
In the table above, α1 corresponds to the angle of the base rotation, θ2 is the angle of the bottom 
UBAR, θ3 is the angle of the middle UBAR, θ4 is the angle of the top UBAR, and α5 is the angle 
of rotation for the L-7. 
 
Using the link parameters, the frame of link i is related to link i-1 with the transformation matrix: 

9 
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, 
which contains information describing the rotation the rotation of the frame for link i relative to 
the frame for link i-1 and a vector pointing from the origin of frame i-1 to the origin of frame i. 
Lastly, the position and frame of each link are related to a fixed based frame for the system with 
the equation: 

 
 
The centers of mass for the Arm are shown in Figure 9 below.  

 
Figure 9: Center of Mass on Arm 

 
Using the forward kinematics, the quasi-static torques for any position may be computed. The 
torques of interest are on the U-BARS, which are links 2, 3, and 4. The torques are computed 
using the cross product τ = F x R, where the torque on link 4 equals the torque applied by masses 
C and D on 4, mathematically written as τ4 = τ4C + τ4C. Similarly, τ3 = τ3B + τ3C + τ3D and τ2 = τ2A + 
τ2B + τ2C + τ2D. 
 
 Each of the servos can exert a maximum of 2.94 N-m of torque. Using the kinematics, the goal 
is to ensure that none of the paths the Arm takes will cause one of the torques to exceed this 
limit. 
 
Shown below in Figure10 and Figure 11 are the MATLAB simulation and torques. 
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Figure 10: Arm Torque Simulation ‐ Position 
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Figure 11: Arm Torque Simulation ‐ Magnitude 

 
U-BAR joint 1 corresponds to the bottom most joint. In the Figure 10 above, this joint is at a 90 
degree angle. The following two joints are joints 2, and 3. 
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Performance Specification and Experimental Results 

At a high level, the performance of the system can be evaluated in both an objective and 
subjective way due to the nature of the project. In this respect, the performance at the high level 
is difficult to define as a list of specifications. At a low level, however, the performance can be 
considered most concretely as a set of performance criteria, related to the operation speed and 
success rates of different tasks. These operations and the resulting performance of the system are 
outlined below. 
 

Operation Speeds 

Original low level operation speeds were tentative pending further characterization of the robot, 
but reasonable goals were estimated. After further path planning development and new 
placement and passing techniques, the original operation speeds were reduced. The original 
estimates and the final resulting operation speeds are outlined in Table 3 below. 
 

Table 3: Operation Speeds 

Operation Estimate (sec) Actual (sec) 
Node Placement 15 10 
Truss Placement Horizontal 20 8 
Truss Placement Vertical 20 6 
Node Pass (180˚) 30 15 
Truss Pass (180˚) 30 15 
Tile Completion ~120 ~80 
 
 

Success Rates 

Performance of the tile is highly dependent upon the failure rate of each specific operation. A 
failure is defined as the robotic arm mishandling a truss or node by not accurately placing each 
into their respective cradles. The nominal goal is to have zero failures.   
  

Initial characterization of the truss and node placement was well below the desired failure rate. 
After torque minimized path planning and replacement of two Ubar modules with newer, 
stronger modules, however, success rates were greatly increased. The original success rates and 
the final success rates obtained are outlined in Table 4 below. 
 

Table 4: Operation Success Rates 

Operation Original (%) Final(%) 
Node Placement 60 100 
Truss Placement Horizontal 80 100 
Truss Placement Vertical 70 100 

12 
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Tile Completion 30 100 
 
As illustrated in Table 4 and Table 5, the final resulting operational speeds and success rates 
exceeded our original goals and estimates, and consequently we consider the experimental 
results with respect to operational performance criteria to be a success. 

Controller Design and Simulation 

The objective of our controller is to implement a high level distributed assembly algorithm to 
manage inter-testbed communication of multiple robotic tiles in the assembly of a larger 
structure. Each individual tile, as well as the testbed as a whole, have control procedures for 
resource management and structure assembly. This section describes the distributed assembly 
algorithms designed for high level control and provides detailed explanations of their logic and 
the specific tile tasks and roles utilized in the design.   
 
Figure 12 below illustrates a block diagram of the controller design implemented for this project. 
Each individual tile has its own Large Scale Reference (LSR) structure input and feedback 
control, which in turn is broken down to a Small-Scale Reference (SSR) for each individual 
floor. There are NxN tiles in a testbed and NxN feedback control systems within a larger outer 
loop comprising the Global Reference Structure (GRS) as the input and the full testbed structure 
as the output.   
 

13 
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All tiles within the testbed will have access to the overall GRS, which designates the placement 
of nodes and trusses on each tile for each floor. This will be used to coordinate resource 
management between each tile as well as provide a priority scheme in which tiles can be given 
jobs to complete individual tasks. From the global reference of the overall structure, an 
individual tile will extract relevant information for their structure as a LSR. This LSR is the node 
and truss placement for each floor of a given tile. Defined from the LSR is a SSR which is the 
node and truss information of the current floor being constructed by a tile. 
 
Prior to construction of a structure a set of preconditions must be met. The first precondition is 
that the testbed must be complete. There cannot be an empty tile vertically enclosed within the 
testbed. This means that within a column there cannot be an empty tile between the first and last 
tile of a column of tiles. It is important to note that although a rectangular testbed is not required, 
for simplification the following discussion will assume such. The second precondition is that the 
GRS must be checked for physical attainability. For example, all trusses placed within the 
structure need to be terminated by a node at both ends. The final precondition is that resources 
enter the testbed at a single face (through each tile of said face). 
 
After the preconditions are met, tiles are assigned priority by rows. The back row of tiles 
(opposite face to the entry of resources) is given the highest priority. Each following tile is given 
one priority lower than the next where the front row of tiles (the entry point of resources) is 
given lowest priority. An assignment system is then used to give individual tasks to each tile in 
the testbed, and each tile maintains a level of completion indicator.  
 
The jobs and levels of completion are as follows: 

Table 5: Job Designation and Completion Status

 
 
To begin, all tiles with priority 1 are given Builder rights and  
all tiles of lower priority become Passers as shown in Figure 13.  

Figure 13: Job Initialization 

14 
 



EE449 ‐ MS5 ‐ June 2010 
Kristjansson, Lawrence, Wood 
 

The Passer job simply instructs an arm to pass 
resources across its own respective tile. All passes 
are directly between arms between adjacent tiles. 
This requirement is because trusses cannot be placed 
into a cradle without an adjacent node. Passers pass 
resources to tiles of higher priority. Further, direct 
passing between arms eliminates the removal of a 
resource that would have changed the state of the 
current tile as well as adjacent tiles. Removing a 
resource from cradles as a form of passing leads to a 
string of potential problems that direct passing easily 
resolves. The Builders receive resources from the 
Passers and place them into their respective cradles 
based on the SSR. When a Builder has completed the 

placement of all resources for the SSR, Builder rights are 
passed to the next priority tile within its column. The tile that passes its Builder rights becomes 
Floor Complete (FC) as shown in Figure 14. A tile cannot reach FC unless all tiles of higher 
priorities have reached FC to ensure that the necessary tiles remain available to pass resources. 
This pattern continues until all tiles of the testbed become FC. At this stage each tile confirms 
their status by verifying that the actual structure matches the SSR and then communicates the 
confirmed floor completion. When all floors are confirmed the elevators are used to 
simultaneously lift the floors of all tiles as one. 

Figure 14: Floor Complete and Builder    
Passing 

 
If upon confirmation a tile determines that a previously placed resource is not registered in its 
cradle that tile goes into Repairer mode (R). In this mode all tiles of lower priority are changed to 
Emergency Passers (EP) interrupting the previous job. Repairer mode requests the missing 
resource and the EPs retrieve the resource from the entry point. The EPs operate the same way as 
a standard Passer the only difference is that EPs have higher priority replacing any existing job 
with the EPs. Further, EPs have higher priority than a Repairer. If a tile is switched to EP that 
means a tile of higher priority is a Repairer, and thus requires resources to be passed. Also, a tile 
can become Repairer at anytime when in FC status. A FC simply checks its cradles for resources 
and verifies them to the SSR. See Figure 15 for an example of Repairer mode. 
 
The Complete (C*) status for a given tile indicates that the 
tile has completed the placement of all resources in its LSR. 
Similar to FC, the C* status can only be achieved if all tiles 
of higher priority have reached C* to ensure that they 
remain active to pass resources. 
 
Resources are placed randomly, with the only required condition 
being that a vertical truss may only be placed after a node has 
been positioned on the floor level corner where the vertical truss 
is to be located. If this condition were not required, there would 
be no node present to anchor the vertical truss upon placement. 
 

Figure 15: Disturbance Rejection ‐ Repair Mode
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Implementation 

The control algorithm will be implemented using the Computational and Control language 
(CCL). Each individual tile of the Factory Floor Testbed involved in the building of a structure 
will be provided with a copy of the CCL program, which will issue actions (such as ‘Pass’ or 
‘Place’). These actions are communicated by the program to each individual robotic tile over a 
Controller Area Network (CAN) Bus using Robotics Bus, a local communication bus protocol 
for robots. The CCL program is able to estimate the state of the testbed surrounding each tile 
through the use of a Phidget I/O Board. Logical inputs for the Phidget Board determine the 
presence of nodes and trusses on the floor level currently being built through the activation of 
contact switches after resource placement. Since there is currently only one tile available for 
testing, the project will be implemented as a Hardware-in-the-loop (HIL) simulation. This 
implies that the single physical tile may represent any of the tiles within a program and all other 
tiles will be handled by the simulation. 

Design 
The following sections explain the hardware and software design challenges presented by this 

describe the methods used to address these obstacles and reach project completion.  project and 

Hardware 

With respect to hardware, little design decision was left to our team. In general, the CKBot 
modules were fully developed by the MODLAB at the University of Pennsylvania, as were the 
layout and design of the FFTB and use of the Phidget I/O board as a sensor data interface. It is 
important to consider, however, that even though the hardware was provided and our 
development for the project was devoted almost entirely to software, there have been many 
challenges presented by the hardware.  
 
One of these challenges was the inability to place a truss without the previous placement of a 
corresponding node to anchor the placement. This problem arose because the end effecter of the 
robotic arm has magnets, which attach to the truss and hold it in place when grasped. The truss 
cradle, however, does not have corresponding magnets. Consequently, the only way to remove a 
truss from the end effecter is to have a magnetic node in place at one or both ends of the truss 
placement location which can pull the truss away from the end effecter.  
 
This constraint severely limited the assembly possibilities in our high level algorithms since we 
had to ensure this situation never occurred. A solution to this problem was to enable truss 
removal without the help of a node. This was realized with the attachment of properly placed 
magnets on the truss cradles, and is an addition which can be seen in Figure 16 and Figure 17. 
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Figure 16: Modified Truss Cradle  Figure 17: Modified Truss Cradle ‐ Truss Placement
               
 

In addition to these modifications, the hardware was also improved upon by the replacement of 
two original Ubar modules with new, stronger modules provided by the MODLAB at the 
University of Pennsylvania. These additions greatly increased path planning possibilities and the 
consistency of the resource placements because the servos were no longer operating at their 
limits and constantly failing.  
 
Ultimately, the hardware design was limited in this project, as was expected, but there were 
many hardware failure and difficulties that were necessary to address either by removing and 
reinstalling modules, rewiring and soldering the microcontroller circuitry, or by working around 

re inadequacies with software. the hardwa

Software 

The following sections are a look at the high level software design and resulting simulations, as well as 
 design and hardware integration. the low level

High Level 

The high level software and control of the FFT is implemented using CCL. The implementation 
of which is discussed in the following section per the algorithms detailed in the MS3 Report. 
 
CCL is a guarded command language and is designed for the control of distributed systems. 
Some of the advantages of using CCL include its ability to run multiple programs in parallel. 
That is, if one program were to be written that describes all the algorithms and behaviors of a 
single tile, this program can be extended and implemented for each tile in the FFT. Another 
advantage of CCL is its keen use of guarded commands. The guarded commands are composed 
of simple Boolean expressions that when evaluated, protect the resources used in the Boolean 
expression. This prevents programs from performing two conflicting tasks on the same resource, 
such as two tiles commanded to move a node to two different locations.  
 
For the FFT, the behavior of each individual tile is composed of the following set of programs: 

1. Check Tile Completion 
2. Resource Control 
3. Messaging 
4. Raise Floor 
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The jobs designed for the CCL implementation are the following: 

1. Builder 
2. Passer 
3. Repairer 
4. Emergency Repairer 

 
The completion states are as follows: 
1. Floor Complete 
2. Structure Complete 

 
The “Check Tile” program deals with determining the completion of a tile, that is, it compares 
the resources (nodes and trusses) currently placed within a tile with the global reference of the 
structure. If the tile is complete, the job of the tile is changed to “Floor Complete” and a message 
is sent to the subsequent tile in the column that passes build rights. This program is also is used 
for disturbance rejection. If a previously placed resource is missing, the job of the tile changes to 
a “Repairer,” and a message is sent to the next tile in the column that an error has been detected 
and should change its job to “Emergency Passer.” Further, this program also can indicate that the 
error was resolved and allow all following tiles to return to their previous states. This program 
integrates signals from the Phidget I/O board for the indication of cradle states. 
 
The “Resource Control” program defines the conditions and behavior of the placement of 
resources within a tile as well as the passing of resources between tiles. For a pass, the tile 
checks whether or not the preceding tile is currently holding a resource before initiating the pass. 
During build cases, the status of each of the cradles is checked, and the resource is placed 
randomly based on the reference structure. However, in order for the arm to place a vertical truss 
(Tz), a node needs have been placed.  The Resource Control program interfaces with the Python 
CKBot control for the actuation of the arms as discussed in detail in the Low-Level software 
section. 
 
The “Messaging” program essentially acts as a mailbox that each tile checks in order to update 
its current job or receive updates on information regarding surrounding tiles. A tile receives build 
rights (changes job to builder) from messages as well as a message indicating an error from 
preceding tiles. This program also saves the state of the previous job in the case of a switch to an 
“Emergency Passer” job. 
 
The final program that composes the behavior of an individual tile is “Raise Floor.” This 
program checks the completion of all tiles, ensuring that the tiles are in “Floor Complete” status 
and then raises the elevators as a unit. On a floor lift the jobs of all tiles are reinitialized. 
 
The CCL implementation is designed so that each tile in the FFTB operates individually from all 
other tiles, hence the need for job passing through a messaging system. In a large-scale 
implementation entirely composed of hardware in the loop each robotic module would have its 
behavior programmed directly onboard, for instance on a gumstix, and each tile would 
communicate through an Ethernet connection. The high-level control framework was developed 
in pursuit of this future goal. 
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For more information on the jobs of a tile, or its states, refer to the MS3 Report. 
 

Simulation 

 
The CCL framework is used in a simulator written in C++. The simulator emulates the hardware 
by providing definitions of the resources, and attributes of the tile to the CCL Testbed 
framework. The simulator does not strictly define cradles and the arm as entities to interact with 
resources; these components are instead abstracted away by providing additional resource 
definitions. For instance, there is a definition of a “Node” and a “Node_G”. The “Node” 
definition represents a node in a cradle, while the “Node_G” definition represents a node in a 
robot arm gripper. In this way, the passing of resources between positions can be captured. The 
simulator defines the following resources: 

1. Node – node in cradle 
2. Node_G – node in an arm's gripper 
3. Truss_X – truss placed along the x-axis of a tile 
4. Truss_Y – truss placed along the y-axis of a tile 
5. Truss_Z – truss placed vertically on top of the node in a tile 
6. Truss_G – truss in an arm's gripper 

 
The definition of a tile has been modified slightly to better suit the simulation. A tile is composed 
of an arm, two truss cradles (one for x-axis placement, and one for y-axis placement), and a node 
cradle. Figure 18 below depicts a single filled tile with a node in the gripper of the arm. Figure 
19 shows how the tiles fit together to form a piece of the FFTB.  

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 18: Simulation of Single 
Tile  

 
 Figure 19: Grid of Simulated Tiles 
 
 
 
Due to the separation of the CCL framework from the simulator, a simulated tile and a physically 
realized tile are entirely interchangeable, allowing both to operate concurrently. Thus, in the final 
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simulation, one of the tiles in the outputs shown in Figure 19 above may be selected and used for 
a Hardware-in-the-Loop (HIL) simulation. The HIL will be the single physical Factory Floor 
Tile in our possession. The goal is to then show that the HIL can perform the tasks of building a 
physical structure (determined by its representation as a physical tile) and that it appropriately 
interacts with the surrounding tiles to do so (determined by its representation as a simulated tile 
in the terminal).  

 
As structures are constructed in the FFTB, whether simulated or hardware in the loop, an ASCII 
representation of the completion is displayed on the computer running the simulation as 
indicated in Figure 20.  
 
All tiles run independently, one of the key features of CCL, and one of the many reasons for 
choosing this language for this distributed system. As seen in Figure 20, the tiles are all in 
different states. The ASCII representation of the state of the FFTB can be visualized in a three 
dimensional rendering as seen in Figures 21 and 22. The three dimensional representation was 
used to ensure the system matched the provided reference structure on completion. The grey 
resources in Figure 21 represent the resources in the gripper of an arm of a tile, and are the 
resources being passed between tiles. The green cubes are placed nodes, and the red bars are 
placed trusses. 

 

 
Figure 20: Command Line Simulation Execution 
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Figure 21: Visualization rendering of the construction of a chair. Grey resources are being passed between tile CKBots, 
and the colored resources are placed. 

 
Figure 22: Visualization rendering of the completed structure. 

 

Low Level‐HIL Integration 

The following section discusses the low-level software that is used to issue position and 
movement commands to the CKBots and introduce a physical tile and arm as a hardware-in-loop 
(HIL) element in the greater system. Figure 23 below shows a block diagram of the low-level 
software and HIL Integration scheme.  
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Figure 23: Low Level‐HIL Integration Block Diagram 

 
The CKBots receive position commands via the Robotics Bus, an interface developed by the 
MODLAB at the University of Pennsylvania that extends the CANOpen protocol for CAN bus.  
A CKBot Python library has been provided by the MODLAB which contains an implementation 
of the Robotics Bus as well functions such as set_pos(), which allows the position angle of a 
module to be set to a value between ±90°. Rather than rewriting the Robotics Bus and CKBot 
functions in a C-type language for calls by the high-level CCL application, it was decided to use 
the MODLAB’s Python library and make calls to it through an embedded Python interpreter in a 
C source file. However, when the embedded Python was compiled against the CCL libraries, the 
CCL definitions and settings conflicted with the linking of .so files critical for the execution of 
embedded Python. To resolve this, the embedded Python implementation was separated from the 
CCL implementation. The two are now coupled through a named pipe, or FIFO. In this 
implementation, the CCL application issues commands to the HIL through FFSim.cc, a C++ 
extension of CCL that writes the command as a String to a FIFO. The program, receiver.c, 
contains the embedded Python interpreter, and reads and executes the Strings from the FIFO as 
literal Python commands. 
  
The commands written to and read by the FIFO are abstract in that they represent functions that 
encompass the series of movements required for an arm to receive, manipulate, and/or pass 
resources. Examples of such a commands include receive_node(), which receives a node passed 
from the tile to the South as well as place_node(), which places a node in the node-cradle 
location between Truss-X and Truss-Y. The path planning implementation for these functions 
and others called through the FIFO are contained within the file FFTB_cntrl.py. FFTB_cntrl.py 
uses the set_pos() to coordinate the movement of the arm. 
 
The truss and node cradles utilize contact switches, which output a digital signal indicating the 
presence (or lack of) a resource at that location. The digital signals are inputted to a Phidget I/O 
Board and sent to the computer over USB. ContactSwitch.c reads the values from the Phidget 
Board for use in the guarded commands and high-level controls by the CCL application, closing 
the loop for the high-level control of the HIL. 
 
  

22 
 



EE449 ‐ MS5 ‐ June 2010 
Kristjansson, Lawrence, Wood 
 

Conclusions 

The objective of this project was to design a distributed assembly algorithm which would control 
FFTB construction of a multi-tile structure by regulating materials and responding to 
disturbances in both structure integrity and resource allocation for each individual tile. The plan 
was to build a simulation of this algorithm in CCL which was easily expandable, modular, 
random and robust, with disturbance rejection to both structure integrity and resource input. 
 
From numerous setbacks due to failing modules to software interface issues limiting CCL to 
CKBot communication, there were many difficulties encountered throughout the project 
evolution. Through reactive engineering, however, and creative low level hardware manipulation 
techniques, we were able to implement our control algorithm in CCL, interface this to the low 
level Python, and control the hardware in the software simulation. 
 
From this project, we have illustrated the successful use of CCL in the control of a distributed 
system. A high level algorithm was implemented and simulated, meeting all desired criteria for 
proper structure assembly, modularity and disturbance rejection. In addition, to further illustrate 
this task, low level control and path planning was implemented to allow a single hardware tile to 
be controlled properly in the physical reception, passing and placement of node and truss 
resources. Combining these two efforts, we designed and executed the simulation with the 
hardware in the loop, where the hardware tile properly passed resources and built its section of 
the larger structure while all other virtual tiles properly built their sections in time with the 
hardware. This demonstration was presented for our demo and is the culmination of the project, 
which ultimately met all goals and needs expressed by the customer. 
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Appendices 

 

Appendix A: CCL Source Code with Distributed Control Algorithm ‐ DynamicFFTB.ccl 

 
include standard.ccl 
include list.ccl 
include ff.ccl  
include math.ccl 
include libff.ccl 
include iproc.ccl 
 
kglobal := 5;      // Speed the simulator runs 
drawField := true; // Used for image of simulation 
 
// Dimensions of the Testbed 
 // Requirements: 
 // XDIM must be > 0 
 // YDIM must be > 1 
xdim:=2; 
ydim:=2; 
zdim:=5; 
 
STEALTIME := 10; // How often a resource is stolen from a tile 
 
// Definitions for Jobs 
PASSER := 0; 
BUILDER := 1; 
FLOORCOMP := 2; 
EMERPASSER := 3; 
REPAIRER := 4; 
STRUCTCOMPLETE := 5; 
 
// Message Definitions 
mBuildRights := 1; 
mBroken := 2; 
mResolved := 3; 
 
FLOOR := 0; 
MAXFLOOR := zdim-1; 
FloorCompletion := 0; 
headcount := {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
JobReset := 0; 
 
// Location of Hardware in Test 
HIT := 1; 
 
// Job list for Debugging 
JOBS := {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; //FOR DEBUGGING 
 
// Initializations 
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initPassers := (xdim*(ydim-1))-1; 
initBuildersA := xdim*(ydim-1); 
initBuildersB := xdim*ydim-1; 
 
 
/////////////////////////////////////////////////////// 
///////////////////REFERENCES////////////////////////// 
/////////////////////////////////////////////////////// 
 
 
/* Reference Structure: 
 * Each Small Scale Reference provides the placement of a node and 3 trusses 
for each floor. 
 *  
 */ 
 
//SSR[flr][resource] -> resource (node, trussx, trussy trussz) 
SSR1   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR2   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR3   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR4   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR5   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR6   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR7   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR8   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR9   := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR10  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR11  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR12  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR13  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR14  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR15  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR16  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR17  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR18  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR19  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
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SSR20  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR21  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR22  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR23  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR24  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
SSR25  := {{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 1},{1, 1, 1, 
1},{1, 1, 1, 1}};  
 
 
 
 
/*------------------------------------------------------*/ 
 
/*~~~~~~~~~~~LARGE SCALE~~~~~~~~~~~*/ 
 
LSR := {SSR1, SSR2, SSR3, SSR4, SSR5, SSR6, SSR7, SSR8, SSR9, SSR10, SSR11, 
SSR12, SSR13, SSR14, SSR15, SSR16, SSR17, SSR18, SSR19, SSR20, SSR21, SSR22, 
SSR23, SSR24, SSR25 }; 
/*------------------------------------------------------*/ 
 
 
 
/////HELPER FUNCTIONS FOR MAILBOXES//////////////////////// 
mailID := (lambda x. (lambda y.   x*ydim+y)); 
 
inbounds := (lambda x. lambda y.  
  if ( x>=0 ) & (x < xdim) & (y >=0 ) & (y < ydim)  
  then true  
  else false  
  end); 
 
dir2dx := (lambda dir.  
       if dir=EAST  
          then -1  
   else if dir=WEST  
        then 1  
        else 0  
   end  
        end); 
 
 
dir2dy := (lambda dir.  
       if dir=NORTH  
          then 1  
   else if dir=SOUTH  
        then -1  
        else 0  
   end  
        end); 
 
jobUpdate := (lambda currJob. lambda prevJob. lambda msg. 
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  if ( msg = mBuildRights ) 
   then BUILDER  
   else if (msg = mBroken) 
   then EMERPASSER 
   else prevJob 
  end 
  end); 
 
fun testLSFlrCom y . 
 if y = 0  
  then 1 
  else 0   
 end; 
 
fun resetJob y. 
 if y = ydim-1  
  then BUILDER 
  else PASSER 
 end; 
 
fun checkCount headcount. 
 if (sumlist headcount) = (xdim*ydim) 
  then 0 
  else 1 
 end; 
 
/* inputResource: inputs a node or a truss into a tile on the bottom row of 
the FFTB. 
 *  ~Currently provides 50% nodes 50% trusses, proves FFTB can handle 
randomization, 
 *  however, more trusses should be placed than nodes in actual 
implementation.  
 */ 
program inputResource(x,y) := { 
 include ffFun.ccl 
 resInput := 0; 
 
 (rate (kglobal)) & (checkEmpty THIS NODE_G) & (checkEmpty THIS TRUSS_G) 
& (y = 0) & (resInput = 0) : { 
  resInput := 1, 
  insertXY(x,y, TRUSS_G), 
   
  drawField := true, 
 }; 
 (rate (kglobal)) & (checkEmpty THIS NODE_G) & (checkEmpty THIS TRUSS_G) 
& (y = 0) & (resInput = 1) : { 
  resInput := 0, 
  insertXY(x,y, NODE_G), 
 
  drawField := true, 
 }; 
 
}; 
 
/* MessagingXY: acts as a 'mailbox' for each tile to receive messages from 
adjacent modules. 
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 * Messages contain job updates. This function retains the previous job of a 
tile given a 
 * repair message. 
 */ 
program MessagingXY(x,y,Job):={ 
     include ffFun.ccl 
 
 currJob:=Job; 
 prevJob:=Job; 
 passMsg:=false; 
 currMsg:=0;  
 update:=true; 
  
 update:{ 
  update:=false, 
 }; 
 
 (rate (kglobal)) & (inboxFF THIS) :{ 
  currMsg:=(recvFF THIS).msg, 
  prevJob := currJob, 
  currJob := jobUpdate currJob prevJob currMsg, 
  JOBS[x*ydim+y] := currJob, 
 
  update:=true,   
 }; 
 (rate (kglobal)) & ((currJob = REPAIRER)|(currJob = EMERPASSER)) & (y > 
0) : { 
  sendFF SOUTH mBroken; 
 }; 
  
  
}; 
 
 
 
/* CheckTileCompletion 
 */ 
program CheckTileCompletion(x,y) := { 
 include ffFun.ccl 
 needs currJob; 
 
 
//LSR[CurrentTile][FLOOR] => [0]-node [1]-trussx, [2]-trussy, []3-trussz 
  
 // Check if tile is complete based on given reference. If it is move to 
"Floor Complete" 
 (rate (kglobal)) & (HIT != x*ydim+y) & ((LSR[x*ydim+y][FLOOR][0] = 
0)|(checkFilled THIS NODE)) & ((LSR[x*ydim+y][FLOOR][1] = 0)|(checkFilled 
THIS TRUSS_X)) & ((LSR[x*ydim+y][FLOOR][2] = 0)|(checkFilled THIS TRUSS_Y)) & 
((LSR[x*ydim+y][FLOOR][3] = 0)|(checkFilled THIS TRUSS_Z))  & (currJob = 
BUILDER) : { 
  currJob := FLOORCOMP, 
  JOBS[x*ydim+y] := currJob, 
  sendFF SOUTH mBuildRights, 
  FloorCompletion := FloorCompletion + testLSFlrCom y, 
 }; 
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 // Check if tile is complete if "Repairer" (for disturbance rejection) 
 (rate (kglobal)) & ( ((LSR[x*ydim+y][FLOOR][0] = 0)|(checkFilled THIS 
NODE)) & ((LSR[x*ydim+y][FLOOR][1] = 0)|(checkFilled THIS TRUSS_X)) & 
((LSR[x*ydim+y][FLOOR][2] = 0)|(checkFilled THIS TRUSS_Y)) & 
((LSR[x*ydim+y][FLOOR][3] = 0)|(checkFilled THIS TRUSS_Z)) ) & (currJob = 
REPAIRER) : { 
  currJob := FLOORCOMP, 
  sendFF SOUTH mResolved, 
 }; 
 
 // Check for faults in the tile construction, become Repairer if broken 
 (rate (kglobal)) & ( ((LSR[x*ydim+y][FLOOR][0] = 1)&(checkEmpty THIS 
NODE)) | ((LSR[x*ydim+y][FLOOR][1] = 1)&(checkEmpty THIS TRUSS_X)) | 
((LSR[x*ydim+y][FLOOR][2] = 1)&(checkEmpty THIS TRUSS_Y)) ) & (currJob = 
FLOORCOMP) : { 
  currJob := REPAIRER, 
  sendFF SOUTH mBroken, 
 }; 
 
 // HARDWARE: Check if tile is complete based on given reference. If it 
is move to "Floor Complete" 
 (rate (kglobal)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][0] = 
0)|(NodePhidgetState() = 1)) & ((LSR[x*ydim+y][FLOOR][1] = 
0)|(TrussXPhidgetState() = 1)) & ((LSR[x*ydim+y][FLOOR][2] = 
0)|(TrussYPhidgetState() = 1)) & ((LSR[x*ydim+y][FLOOR][3] = 
0)|(TrussZPhidgetState() = 1))  & (currJob = BUILDER) : { 
  currJob := FLOORCOMP, 
  JOBS[x*ydim+y] := currJob, 
  sendFF SOUTH mBuildRights, 
  FloorCompletion := FloorCompletion + testLSFlrCom y, 
 }; 
 
}; 
 
 
// RESOURCE CONTROL:  
program ResourceCntrl(x,y, Job) := { 
 include ffFun.ccl 
 needs currJob; 
  
 currJob := Job; 
 JOBS[x*ydim+y] := currJob; 
 
/////////VIRTUAL/////////////////  
 
//PASSING 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS TRUSS_G) & 
(checkEmpty NORTH TRUSS_G) & (checkEmpty NORTH NODE_G) & ((currJob = 
PASSER)|(currJob = EMERPASSER)) : { 
  moveTruss TRUSS_G NORTH TRUSS_G, 
  drawField := true 
 }; 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS NODE_G) & 
(checkEmpty NORTH TRUSS_G) & (checkEmpty NORTH NODE_G) & ((currJob = 
PASSER)|(currJob = EMERPASSER)) : { 
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  moveTruss NODE_G NORTH NODE_G, 
  drawField := true 
 }; 
 
 
//BUILDING 
 // Check conditions for placement of Truss X 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((LSR[x*ydim+y][FLOOR][1] = 1)&(checkEmpty THIS TRUSS_X)) & ((currJob = 
BUILDER)|(currJob = REPAIRER)) : { 
  moveTruss TRUSS_G THIS TRUSS_X, 
  drawField := true 
 }; 
 // Check conditions for placement of Truss Y 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((LSR[x*ydim+y][FLOOR][2] = 1)&(checkEmpty THIS TRUSS_Y)) & ((currJob = 
BUILDER)|(currJob = REPAIRER)) : { 
  moveTruss TRUSS_G THIS TRUSS_Y, 
  drawField := true 
 }; 
 // Check conditions of placement of Truss Z 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((LSR[x*ydim+y][FLOOR][3] = 1)&(checkEmpty THIS TRUSS_Z)) & (checkFilled THIS 
NODE) & ((currJob = BUILDER)|(currJob = REPAIRER)) : { 
  moveTruss TRUSS_G THIS TRUSS_Z, 
  drawField := true 
 }; 
 // Check conditions of placement of Node 
 (rate (kglobal)) & (checkFilled THIS NODE_G) & 
((LSR[x*ydim+y][FLOOR][0] = 1)&(checkEmpty THIS NODE)) & ((currJob = 
BUILDER)|(currJob = REPAIRER)) : { 
  moveTruss NODE_G THIS NODE, 
  drawField := true 
 }; 
  
 
//Discard 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS NODE_G) & 
((checkFilled THIS NODE)|(LSR[x*ydim+y][FLOOR][0] = 0)) & (currJob = BUILDER) 
: { 
  removeXY (x, y, NODE_G), 
  drawField := true 
 }; 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((checkFilled THIS TRUSS_X)|(LSR[x*ydim+y][FLOOR][1] = 0)) & ((checkFilled 
THIS TRUSS_Y)|(LSR[x*ydim+y][FLOOR][2] = 0)) & ((checkFilled THIS 
TRUSS_Z)|(LSR[x*ydim+y][FLOOR][3] = 0)) & (currJob = BUILDER) : { 
  removeXY (x, y, TRUSS_G), 
  drawField := true 
 }; 
 //SPECIAL CASE 
 (rate (kglobal)) & (HIT != x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((checkFilled THIS TRUSS_X)|(LSR[x*ydim+y][FLOOR][1] = 0)) & ((checkFilled 
THIS TRUSS_Y)|(LSR[x*ydim+y][FLOOR][2] = 0)) & (checkEmpty THIS NODE) & 
(currJob = BUILDER) : { 
  removeXY (x, y, TRUSS_G), 
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  drawField := true 
 }; 
 
 
/////////HARDWARE///////////////// 
 
//PASSING 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS TRUSS_G) & 
(checkEmpty NORTH TRUSS_G) & (checkEmpty NORTH NODE_G) & (currJob = PASSER) : 
{ 
  retrieveTruss(), 
  usleep(5000000); 
 
  passTruss(), 
  usleep(5000000); 
 
  drawField := true 
 }; 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS NODE_G) & 
(checkEmpty NORTH TRUSS_G) & (checkEmpty NORTH NODE_G) & (currJob = PASSER) : 
{ 
  retrieveNode(), 
  usleep(5000000); 
   
  passNode(), 
  usleep(5000000); 
 
  drawField := true 
 }; 
 
 
//BUILDING 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((LSR[x*ydim+y][FLOOR][1] = 1)&(TrussXPhidgetState() = 0)) & ((currJob = 
BUILDER)|(currJob = REPAIRER)) : { 
  retrieveTruss(), 
  usleep(5000000); 
 
  placeTrussX(), 
  usleep(5000000); 
 
  drawField := true 
 }; 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((LSR[x*ydim+y][FLOOR][2] = 1)&(TrussYPhidgetState() = 0)) & ((currJob = 
BUILDER)|(currJob = REPAIRER)) : { 
  retrieveTruss(), 
  usleep(5000000); 
  placeTrussY(), 
  usleep(5000000); 
 
  drawField := true 
 }; 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((LSR[x*ydim+y][FLOOR][3] = 1)&(TrussZPhidgetState() = 0)) & 
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(NodePhidgetState() = 1) & (checkFilled THIS NODE) & ((currJob = 
BUILDER)|(currJob = REPAIRER)) : { 
  print ("Z being placed \n"); 
  retrieveTruss(), 
  usleep(5000000); 
  placeTrussZ(), 
  print ("Z being placed \n"); 
  usleep(5000000); 
 
  drawField := true 
 }; 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS NODE_G) & 
((LSR[x*ydim+y][FLOOR][0] = 1)&(NodePhidgetState() = 0)) & ((currJob = 
BUILDER)|(currJob = REPAIRER)) : { 
  retrieveNode(), 
  usleep(5000000); 
  placeNode(), 
  usleep(5000000); 
 
  drawField := true 
 }; 
  
 
//Discard 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS NODE_G) & 
((checkFilled THIS NODE)|(LSR[x*ydim+y][FLOOR][0] = 0)) & (currJob = BUILDER) 
: { 
  removeXY (x, y, NODE_G), 
  drawField := true 
 }; 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((checkFilled THIS TRUSS_X)|(LSR[x*ydim+y][FLOOR][1] = 0)) & ((checkFilled 
THIS TRUSS_Y)|(LSR[x*ydim+y][FLOOR][2] = 0)) & ((checkFilled THIS 
TRUSS_Z)|(LSR[x*ydim+y][FLOOR][3] = 0)) & (currJob = BUILDER) : { 
  removeXY (x, y, TRUSS_G), 
  drawField := true 
 }; 
 //SPECIAL CASE 
 (rate (kglobal)) & (HIT = x*ydim+y) & (checkFilled THIS TRUSS_G) & 
((checkFilled THIS TRUSS_X)|(LSR[x*ydim+y][FLOOR][1] = 0)) & ((checkFilled 
THIS TRUSS_Y)|(LSR[x*ydim+y][FLOOR][2] = 0)) & (checkEmpty THIS NODE) & 
(currJob = BUILDER) : { 
  removeXY (x, y, TRUSS_G), 
  drawField := true 
 }; 
 
 
//////HARDWARE UPDATE SIMULATION 
 
//BUILDING 
 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][1] = 
1)&(TrussXPhidgetState() = 1)) & (checkEmpty THIS TRUSS_X) : { 
 
  moveTruss TRUSS_G THIS TRUSS_X, 
  drawField := true 
 }; 
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 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][2] = 
1)&(TrussYPhidgetState() = 1)) & (checkEmpty THIS TRUSS_Y) : { 
 
  moveTruss TRUSS_G THIS TRUSS_Y, 
  drawField := true 
 }; 
  
 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][3] = 
1)&(TrussZPhidgetState() = 1)) & (checkEmpty THIS TRUSS_Z) : { 
 
  moveTruss TRUSS_G THIS TRUSS_Z, 
  drawField := true 
 }; 
 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][0] = 
1)&(NodePhidgetState() = 1)) & (checkEmpty THIS NODE) : { 
 
  moveTruss NODE_G THIS NODE, 
  drawField := true 
 }; 
  
 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][0] = 
1)&(TrussXPhidgetState() = 0)) & (checkFilled THIS TRUSS_X) : { 
  removeXY(x, y, TRUSS_X); 
  drawField := true 
 }; 
 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][0] = 
1)&(TrussYPhidgetState() = 0)) & (checkFilled THIS TRUSS_Y) : { 
  removeXY(x, y, TRUSS_Y); 
  drawField := true 
 }; 
 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][0] = 
1)&(TrussZPhidgetState() = 0)) & (checkFilled THIS TRUSS_Z) : { 
  removeXY(x, y, TRUSS_Z); 
  drawField := true 
 }; 
 (rate (kglobal*5)) & (HIT = x*ydim+y) & ((LSR[x*ydim+y][FLOOR][0] = 
1)&(NodePhidgetState() = 0)) & (checkFilled THIS NODE) : { 
  removeXY(x, y, NODE); 
  drawField := true 
 }; 
 
 
 
}; 
 
/* RaiseFloor: Check conditions for raise floor, the bottom row of tiles 
should be Floor Complete. 
 * On floor raise, jobs are re-initialized. 
 */ 
program RaiseFloor(x,y) :=  { 
 include ffFun.ccl  
 needs currJob; 
  
 tilecounted := 0; 
 floorcompletecount := 0; 
 curfloor := 0; 
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 (rate (kglobal)) &(FloorCompletion = xdim)&(FLOOR < 
MAXFLOOR)&(checkFilled THIS NODE) : { 
  // RAISE FLOOR! 
  lift THIS, 
  FloorCompletion := 0, 
  curfloor := curfloor + 1, 
  JobReset := 1, 
  FLOOR := FLOOR + 1; 
  print ("Floor: ", FLOOR, "\n"); 
 }; 
 
 (rate (kglobal)) &(JobReset = 1) : { 
  currJob := resetJob y, 
  headcount[x*ydim+y] := 1, 
  JOBS[x*ydim+y] := currJob, 
  JobReset := checkCount headcount, 
 }; 
 
 (rate (kglobal)) &(JobReset = 0) : { 
  headcount := {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
 }; 
}; 
 
 
// Groups the list of a tiles characteristics together, for each tile to have 
similar behavior 
program tileXY(x,y,Job) :=  inputResource(x,y) + ((ResourceCntrl(x,y,Job) + 
(CheckTileCompletion(x,y) + MessagingXY(x,y,Job) sharing currJob) sharing 
currJob) + RaiseFloor(x,y) sharing currJob); 
 
program field() := { 
 a := initCKBot(); 
 b := interfacekit_simple(); 
 c := neutralState(); 
     
 drawField:{ 
  dispff(), 
  drawField:= false, 
 }; 
}; 
 
// Initialize Passers 
program PASSERS() := compose x in (table (lambda x. {x /xdim, x%xdim }) 0 
initPassers): tileXY(x[1],x[0],PASSER); 
 
// Initialize Builders 
program BUILDERS() := compose x in (table (lambda x. {x /xdim, x%xdim }) 
initBuildersA initBuildersB): tileXY(x[1],x[0],BUILDER); 
 
// Run Simulation 
program main() := PASSERS() + BUILDERS() + field(); 
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Appendix B: C++ Simulator Source Code – FFSim.cc 

 
#include "FFSim.hh" 
 
CPhidgetInterfaceKitHandle ifKit; 
 
FFSim::FFSim(){ 
  int idxX=0; 
  int idxY=0; 
  int idxZ=0; 
  int pos[3]; 
   
  X_DIM_IN = X_DIM; 
  Y_DIM_IN = Y_DIM; 
  Z_DIM_IN = Z_DIM; 
   
 
// Dynamic alloc of moudules array 
   
  modules = new FFMod ***[X_DIM_IN]; 
 
// Allocate an array for each element of the first array 
for(int x = 0; x < X_DIM_IN; ++x) 
{ 
    modules[x] = new FFMod**[Y_DIM_IN]; 
 
    // Allocate an array of FFMod for each element of this array 
    for(int y = 0; y < Y_DIM_IN; ++y) 
    { 
        modules[x][y] = new FFMod*[Z_DIM_IN]; 
 
    } 
} 
printf("DYNAMIC DONE\n"); 
 
  pFFStruct = new FFStructure(); 
 
  for(idxX=0; idxX < X_DIM_IN; idxX++){ 
    for(idxY=0; idxY < Y_DIM_IN; idxY++){ 
      for(idxZ=0; idxZ < Z_DIM_IN; idxZ++){ 
 pos[0]=idxX; 
 pos[1]=idxY; 
 pos[2]=idxZ; 
 modules[idxX][idxY][idxZ]= new FFMod(this); 
 modules[idxX][idxY][idxZ]->setPosition(pos); 
      } 
    } 
  } 
 
  for(idxX=0; idxX < X_DIM_IN; idxX++){ 
    for(idxY=0; idxY < Y_DIM_IN; idxY++){ 
      connectToNeighbors(idxX,idxY); 
    } 
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  } 
   
  printf("INIT DONE\n"); 
  init(); 
} 
 
/* setXYZdim: sets the dimensions of the FFTB 
 * Allocates an array for FFMods, and connects neighboring tiles 
 */ 
void FFSim::setXYZdim(int setXDim,int setYDim,int setZDim){ 
  
  int idxX=0; 
  int idxY=0; 
  int idxZ=0; 
  int pos[3]; 
  static int i = 0; 
   
   
   
  X_DIM_IN = setXDim; 
  Y_DIM_IN = setYDim; 
  Z_DIM_IN = setZDim; 
   
  printf("Ok NOW SETTING\n"); 
   
// RESET THE MODULES MAKE BY CONSTRUCTOR TO MATCH USER INPUT 
  
// Dynamic alloc of moudules array 
   
  modules = new FFMod ***[X_DIM_IN]; 
 
// Allocate an array for each element of the first array 
for(int x = 0; x < X_DIM_IN; ++x) 
{ 
    modules[x] = new FFMod**[Y_DIM_IN]; 
 
    // Allocate an array of FFMod for each element of this array 
    for(int y = 0; y < Y_DIM_IN; ++y) 
    { 
        modules[x][y] = new FFMod*[Z_DIM_IN]; 
 
    } 
} 
 
 printf("MY X = %d, y=%d,z=%d \n",X_DIM_IN,Y_DIM_IN,Z_DIM_IN); 
   
    for(idxX=0; idxX < X_DIM_IN; ++idxX){ 
    for(idxY=0; idxY < Y_DIM_IN; ++idxY){ 
      for(idxZ=0; idxZ < Z_DIM_IN; ++idxZ){ 
 
printf("MY X = %d, y=%d,z=%d \n",idxX,idxY,idxZ); 
 pos[0]=idxX; 
 pos[1]=idxY; 
 pos[2]=idxZ; 
 modules[idxX][idxY][idxZ]= new FFMod(this); 
 modules[idxX][idxY][idxZ]->setPosition( pos); 
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      } 
    } 
  } 
   
 
printf("SETTING DONE\n"); 
printf("MY X = %d, y=%d,z=%d \n",idxX,idxY,idxZ); 
//printf("MY X = %d, y=%d,z=%d \n",pos[0],pos[1],pos[2]); 
 
 
//while(1); 
 
  for(idxX=0; idxX < X_DIM_IN; idxX++){ 
    for(idxY=0; idxY < Y_DIM_IN; idxY++){ 
      connectToNeighbors(idxX,idxY); 
    } 
  } 
   
 
   
} 
 
void FFSim::resetTime(){ 
  startTime=clock(); 
} 
 
void FFSim::connectToNeighbors(int x, int y){ 
  
 printf("MY X = %d, y=%d,z=%d \n",X_DIM_IN,Y_DIM_IN,Z_DIM_IN); 
 printf("doing what?\n"); 
 printf("MY X = %d, y=%d, \n",x,y); 
  
  if( (y+1) <  Y_DIM_IN ) {printf("caseNORTH\n"); modules[x][y][0]-
>setNeighbor(modules[x][y+1][0],NORTH);  };  
  if( (y-1) >= 0     ) {printf("caseSOUTH\n"); modules[x][y][0]-
>setNeighbor(modules[x][y-1][0],SOUTH);  };  
  if( (x+1) <  X_DIM_IN ) { printf("caseEAST %d\n",X_DIM);  modules[x][y][0]-
>setNeighbor(modules[x+1][y][0],EAST); };  
  if( (x-1) >= 0     ) {  printf("caseWEST\n"); modules[x][y][0]-
>setNeighbor(modules[x-1][y][0],WEST);  };  
  } 
 
 
void FFSim::init(){ 
  outStream=  &(std::cout); 
  resetTime(); 
} 
 
void FFSim::modulesToStructure(){ 
  int idxX=0; 
  int idxY=0; 
  int idxZ=0;   
  int currPos[3] = {0,0,0}; 
  static int numCalled = 0; 
  pFFStruct->clear(); 
  pFFStruct->setTime((clock()-startTime)/1000000); 
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  for(idxX=0; idxX < X_DIM_IN; ++idxX){ 
    for(idxY=0; idxY < Y_DIM_IN; ++idxY){ 
      for(idxZ=0; idxZ < Z_DIM_IN; ++idxZ){  
     
 modules[idxX][idxY][idxZ]->getPos(currPos); 
    if( modules[idxX][idxY][idxZ]->checkFilled(THIS,NODE)  
 || modules[idxX][idxY][idxZ]->checkFilled(THIS,NODE_G)  
 || modules[idxX][idxY][idxZ]->checkFilled(THIS,TRUSS_X)  
 || modules[idxX][idxY][idxZ]->checkFilled(THIS,TRUSS_Y) 
     || modules[idxX][idxY][idxZ]->checkFilled(THIS,TRUSS_Z) 
 || modules[idxX][idxY][idxZ]->checkFilled(THIS,TRUSS_G) 
 || modules[idxX][idxY][idxZ]->checkElevatorUp(THIS) 
 || (currPos[0] == X_DIM_IN-1 && currPos[1] == Y_DIM_IN-1 && currPos[2] 
== Z_DIM_IN-1)){     
   
   
   pFFStruct->addModule( modules[idxX][idxY][idxZ]); 
  } 
      } 
    } 
  } 
  ++numCalled; 
   
  if (numCalled > 1){ 
  printf("MY MOD_STRT X = %d, y=%d,z=%d 
\n",currPos[0],currPos[1],currPos[2]); 
  // while(1); 
  } 
 
} 
 
 
void FFSim::structureToModules(){ 
  std::list<FFMod *> * pModList; 
  std::list<FFMod *>::iterator i; 
  FFMod * pMod; 
  int pos[3]; 
 
  pModList = pFFStruct->getModuleListP(); 
   
  for( i = pModList->begin(); i!= pModList->end(); i++){ 
    (*i)->getPos(pos); 
    
    if( (0<=pos[0]) && (pos[0]<X_DIM_IN) && 
 (0<=pos[1]) && (pos[0]<Y_DIM_IN) && 
 (0<=pos[2]) && (pos[0]<Z_DIM_IN)){ 
      pMod=modules[pos[0]][pos[1]][pos[2]]; 
     
      if( (*i)->checkFilled(THIS,NODE)){ 
 pMod->insert(NODE); 
      } 
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 if( (*i)->checkFilled(THIS,NODE_G)){ 
 pMod->insert(NODE_G); 
      } 
      if( (*i)->checkFilled(THIS,TRUSS_X)){ 
 pMod->insert(TRUSS_X); 
      } 
      if( (*i)->checkFilled(THIS,TRUSS_Y)){ 
 pMod->insert(TRUSS_Y); 
      } 
      if( (*i)->checkFilled(THIS,TRUSS_Z)){ 
 pMod->insert(TRUSS_Z); 
      } 
      if( (*i)->checkFilled(THIS,TRUSS_G)){ 
 pMod->insert(TRUSS_G); 
      } 
    }    
  } 
} 
 
void FFSim::output(){ 
  modulesToStructure() ; 
  *outStream<<*pFFStruct; 
} 
 
 
void FFSim::input(std::istream * pistr){ 
  *pistr>>*pFFStruct; 
  structureToModules(); 
} 
 
FFMod * FFSim::getPModule(int x, int y){ 
  if( (x>=0) && (x<X_DIM_IN) && (y >= 0) && ( y<Y_DIM_IN)){ 
    return modules[x][y][0]; 
  }else{ 
    printf("WARNING: Deleting non-existent raw material.\n"); 
    fflush(stdout); 
    return NULL; 
  } 
} 
 
/* lift: Performs an elevator lift in the simulation 
 * Lifts all connected resources together as one block 
 */ 
void FFSim::lift(int x, int y){ 
  const int * pos; 
 
  std::list<FFRawMaterial*>::iterator i; 
   
  if( modules[x][y][0]->checkFilled(THIS, NODE)){ 
 
    listPToLift.clear(); 
    this->addToMoveList(x,y,0,NODE); 
     
   
   
    //detach the modules 
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    for( i = listPToLift.begin(); i !=listPToLift.end(); i++){ 
      (*i) -> clearMark(); 
      pos = (*i)->getPosition(); 
    (*i)->detach(modules[pos[0]][pos[1]][pos[2]]); 
    } 
   
     
    for( i = listPToLift.begin(); i !=listPToLift.end(); i++){ 
      pos = (*i)->getPosition(); 
      if((pos[2]+1)<Z_DIM_IN){ 
 (*i)->attach(modules[pos[0]][pos[1]][pos[2]+1]); 
      }else{ 
 printf("WARNING: Lifting raw material above Z_DIM_IN.\n"); 
 fflush(stdout); 
      (*i)->~FFRawMaterial(); 
      } 
    }        
  }// end if 
   
  modules[x][y][0]->bElevatorUp=true; 
   
} 
 
void FFSim::lower(int x, int y){ 
  const int * pos; 
 
  int iMinZ = 1; 
  int iDZ = -1; 
 
  std::list<FFRawMaterial*>::iterator i; 
 
  // check if there is anything to do 
  if( !( modules[x][y][0]->checkElevatorUp(THIS) ) && (modules[x][y][1]-
>checkFilled(THIS,NODE)) ){ 
     
    listPToLift.clear(); 
    this->addToMoveList(x,y,1,NODE); 
     
     
    for( i = listPToLift.begin(); i !=listPToLift.end(); i++){ 
      pos = (*i)->getPosition(); 
      (*i)->detach(modules[pos[0]][pos[1]][pos[2]]); 
      if(pos[2]<iMinZ) {iMinZ= pos[2];} 
    } 
     
    if(iMinZ <= 0){ iDZ =0 ;} 
     
    for( i = listPToLift.begin(); i !=listPToLift.end(); i++){ 
      (*i)->clearMark(); 
      pos = (*i)->getPosition(); 
      (*i)->attach(modules[pos[0]][pos[1]][pos[2] + iDZ]); 
    } 
     
  } 
   
  modules[x][y][0]->bElevatorUp = false; 
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} 
 
char FFSim::getDisplayCharForModule(int x, int y, FFMod * mod){ 
  if(x==0 && (y==1 | y==2 | y==3) && (mod->pTrussY != NULL)) return '|'; 
  if(y==0 && (x==1 | x==2 | x==3 | x==4) && (mod->pTrussX != NULL)) return '-
'; 
  if(x==0 && y==0 && (mod->pNode != NULL )) return 'N'; 
  if(x==1 && y==1 && (mod->pTrussZ != NULL)) return 'z'; 
  if(x==2 && y==2 && (mod->pNodeG != NULL )) return 'N'; 
  if(x==3 && y==2 && ((mod->pNodeG != NULL )|(mod->pTrussG != NULL ))) return 
'g'; 
  if(x==2 && y==2 && (mod->pTrussG != NULL )) return 'T'; 
 
  else return ' '; 
} 
 
/* display: Draws the boarders and resources as ASCII characters of the FFTB. 
 */ 
void FFSim::display(){ 
  int i; 
  int idxModX; 
  int idxModY; 
  int idxX; 
  int idxY; 
 
  printf("%C",' '); 
  for(i=0; i < X_DIM_IN; i++){ printf("NORTH"); } 
  printf("%C",'\n'); 
  for( idxModY=Y_DIM_IN-1; idxModY>=0; idxModY--){  
    for( idxY=3; idxY>=0; idxY --){ 
      switch(idxY){ 
      case 3: printf("W"); break; 
      case 2: printf("E"); break; 
      case 1: printf("S"); break; 
      case 0: printf("T"); break; 
      }      
      for( idxModX=0; idxModX<X_DIM_IN; idxModX++){ 
 for( idxX =0; idxX < 5; idxX++){ 
   
printf("%C",getDisplayCharForModule(idxX,idxY,modules[idxModX][idxModY][0])); 
 }  
      } 
      switch(idxY){ 
      case 3: printf("E\n"); break; 
      case 2: printf("A\n"); break; 
      case 1: printf("S\n"); break; 
      case 0: printf("T\n"); break; 
      }      
    } 
  } 
  printf("%C",' '); 
  for(i=0; i < X_DIM_IN; i++){ printf("SOUTH"); } 
  printf("%C",'\n'); 
  fflush(stdout); 
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} 
 
 
void FFSim::addToMoveList(int x, int y, int z, int type){ 
   
  // Add current raw material in current location if it is unmarked 
  // and exists, then call addToMoveList on all the connected 
  // rawMaterials. 
 
  switch(type){ 
  case NODE: 
    if( (modules[x][y][z]->pNode != NULL)  
 && !(modules[x][y][z]->pNode->marked())){ 
      listPToLift.push_front(modules[x][y][z]->pNode); 
      listPToLift.front()->setMark(); 
      addToMoveList(x,y,z,TRUSS_X); 
      addToMoveList(x,y,z,TRUSS_Y); 
      addToMoveList(x,y,z,TRUSS_Z);    
 
 //     addToMoveList(x,y,z,TRUSS_G); // ADDED 
 //     addToMoveList(x,y,z,NODE_G); // ADDED 
    
      if((x-1)>=0) addToMoveList(x-1,y,z,TRUSS_X); 
      if((y-1)>=0) addToMoveList(x,y-1,z,TRUSS_Y); 
      if((z-1)>=0) addToMoveList(x,y,z-1,TRUSS_Z); 
 
//      if((z)>=0) addToMoveList(x,y,z,TRUSS_G);//ADDED... MAYBE? 
    } 
    break; 
  case TRUSS_X: 
    if((modules[x][y][z]->pTrussX != NULL)  
       && !(modules[x][y][z]->pTrussX->marked())){ 
      listPToLift.push_front(modules[x][y][z]->pTrussX); 
      listPToLift.front()->setMark(); 
      addToMoveList(x,y,z,NODE); 
 
//      addToMoveList(x,y,z,TRUSS_G); // ADDED 
//      addToMoveList(x,y,z,NODE_G); // ADDED 
 
      if((x+1)<X_DIM_IN ) addToMoveList(x+1,y,z,NODE); 
    } 
    break; 
  case TRUSS_Y: 
    if((modules[x][y][z]->pTrussY != NULL)  
       && !(modules[x][y][z]->pTrussY->marked())){ 
    
  /*Allows you to read in structure from a text file */ 
  //void initStructure(); 
   
   listPToLift.push_front(modules[x][y][z]->pTrussY); 
      listPToLift.front()->setMark(); 
      addToMoveList(x,y,z,NODE); 
 
 //     addToMoveList(x,y,z,TRUSS_G); // ADDED 
  //    addToMoveList(x,y,z,NODE_G); // ADDED 
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      if((y+1)<Y_DIM_IN ) addToMoveList(x,y+1,z,NODE); 
    } 
    break; 
  case TRUSS_Z: 
    if((modules[x][y][z]->pTrussZ != NULL)  
       && !(modules[x][y][z]->pTrussZ->marked())){ 
      listPToLift.push_front(modules[x][y][z]->pTrussZ); 
      listPToLift.front()->setMark(); 
      addToMoveList(x,y,z,NODE); 
 
 //     addToMoveList(x,y,z,TRUSS_G); // ADDED 
 //     addToMoveList(x,y,z,NODE_G); // ADDED 
 
      if((z+1)<Z_DIM_IN ) addToMoveList(x,y,z+1,NODE); 
    } 
    break; 
  default: 
    printf("WARNING: the type argument for addToMoveList is not a valid 
direction.\n"); 
    fflush(stdout); 
  } 
} 
 
void FFSim::setOutputStream(std::ostream * ostr){ 
  outStream=ostr; 
  *outStream <<"SETTING FF-SIMULATION TO THIS STREAM "<<std::endl; 
} 
 
/* The following set of functions outputs the python function calls to 
 * a file used for the FIFO bridge. 
 */ 
void FFSim::initCKBot () 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char execfile[] = "execfile(\'FFTB_cntrl.py\');"; 
 char cluster[] = "c = Cluster();"; 
 char populate[] = "c.populate();"; 
 
 FILE *f; 
 
 f = fopen(s, "w"); 
 
 fprintf(f, execfile); 
 fclose(f); 
 
 sleep(2); 
 
 f = fopen(s, "w"); 
 fprintf(f, cluster); 
 fclose(f); 
 
 sleep(5); 
 
 f = fopen(s, "w"); 
 fprintf(f, populate); 
 fclose(f); 
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 sleep(7); 
 
 
} 
 
 
void FFSim::neutralState() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "neutral_state();"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
} 
 
 
 
void FFSim::retrieveTruss() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "retrieve_truss();"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
 printf("RETRIEVE TRUSS \n"); 
} 
 
void FFSim::retrieveNode() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "retreive_node();"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
 printf("RETRIEVE NODE \n"); 
} 
 
 
void FFSim::placeNode() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "place_node();"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
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 fclose(f); 
 sleep(1); 
 printf("PLACE NODE \n"); 
} 
 
void FFSim::placeTrussX() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "place_truss(1);"; 
 
 FILE *f; 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
 
 printf("PLACE TRUSS X \n"); 
 
} 
 
void FFSim::placeTrussY() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "place_truss(2);"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
 printf("PLACE TRUSS Y \n"); 
} 
 
void FFSim::placeTrussZ() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "place_support_truss();"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
 printf("PLACE TRUSS Z \n"); 
} 
 
void FFSim::passTruss() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "pass_truss();"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
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 printf("PASS TRUSS \n"); 
} 
 
void FFSim::passNode() 
{ 
 char s[] = "/home/chief/factoryfloor/ccl-ff/ff/pytalk/fifo"; 
 char userInput[] = "pass_node();"; 
 FILE *f; 
 
 f = fopen(s, "w"); 
 fprintf(f, userInput); 
 fclose(f); 
 sleep(1); 
 printf("PASS Node \n"); 
} 
 
 
int AttachHandler(CPhidgetHandle IFK, void *userptr) 
{ 
 int serialNo; 
 const char *name; 
 
 CPhidget_getDeviceName(IFK, &name); 
 CPhidget_getSerialNumber(IFK, &serialNo); 
 
 printf("%s %10d attached!\n", name, serialNo); 
 
 return 0; 
} 
 
int DetachHandler(CPhidgetHandle IFK, void *userptr) 
{ 
 int serialNo; 
 const char *name; 
 
 CPhidget_getDeviceName (IFK, &name); 
 CPhidget_getSerialNumber(IFK, &serialNo); 
 
 printf("%s %10d detached!\n", name, serialNo); 
 
 return 0; 
} 
 
int ErrorHandler(CPhidgetHandle IFK, void *userptr, int ErrorCode, const char 
*unknown) 
{ 
 printf("Error handled. %d - %s", ErrorCode, unknown); 
 return 0; 
} 
 
//callback that will run if an input changes. 
//Index - Index of the input that generated the event, State - boolean (0 or 
1) representing the input state (on or off) 
int InputChangeHandler(CPhidgetInterfaceKitHandle IFK, void *usrptr, int 
Index, int State) 
{ 

47 
 



EE449 ‐ MS5 ‐ June 2010 
Kristjansson, Lawrence, Wood 
 

 printf("Digital Input: %d > State: %d\n", Index, State); 
 return 0; 
} 
 
//callback that will run if an output changes. 
//Index - Index of the output that generated the event, State - boolean (0 or 
1) representing the output state (on or off) 
int OutputChangeHandler(CPhidgetInterfaceKitHandle IFK, void *usrptr, int 
Index, int State) 
{ 
 printf("Digital Output: %d > State: %d\n", Index, State); 
 return 0; 
} 
 
//callback that will run if the sensor value changes by more than the 
OnSensorChange trigger. 
//Index - Index of the sensor that generated the event, Value - the sensor 
read value 
int SensorChangeHandler(CPhidgetInterfaceKitHandle IFK, void *usrptr, int 
Index, int Value) 
{ 
 printf("Sensor: %d > Value: %d\n", Index, Value); 
 return 0; 
} 
 
//Display the properties of the attached phidget to the screen.  We will be 
displaying the name, serial number and version of the attached device. 
//Will also display the number of inputs, outputs, and analog inputs on the 
interface kit as well as the state of the ratiometric flag 
//and the current analog sensor sensitivity. 
int display_properties(CPhidgetInterfaceKitHandle phid) 
{ 
 int serialNo, version, numInputs, numOutputs, numSensors, triggerVal, 
ratiometric, i; 
 const char* ptr; 
 
 CPhidget_getDeviceType((CPhidgetHandle)phid, &ptr); 
 CPhidget_getSerialNumber((CPhidgetHandle)phid, &serialNo); 
 CPhidget_getDeviceVersion((CPhidgetHandle)phid, &version); 
 
 CPhidgetInterfaceKit_getInputCount(phid, &numInputs); 
 CPhidgetInterfaceKit_getOutputCount(phid, &numOutputs); 
 CPhidgetInterfaceKit_getSensorCount(phid, &numSensors); 
 CPhidgetInterfaceKit_getRatiometric(phid, &ratiometric); 
 
 printf("%s\n", ptr); 
 printf("Serial Number: %10d\nVersion: %8d\n", serialNo, version); 
 printf("# Digital Inputs: %d\n# Digital Outputs: %d\n", numInputs, 
numOutputs); 
 printf("# Sensors: %d\n", numSensors); 
  
 for(i = 0; i < 8; i++) 
 { 
  CPhidgetInterfaceKit_getSensorChangeTrigger (phid, i, 
&triggerVal); 
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  printf("Sensor#: %d > Sensitivity Trigger: %d\n", i, triggerVal); 
 } 
 
 return 0; 
} 
 
 
int FFSim::interfacekit_simple() 
{ 
 int result, numSensors, i; 
 const char *err; 
 int InState; 
 
 //Declare an InterfaceKit handle 
// CPhidgetInterfaceKitHandle ifKit = 0; 
 ifKit = 0; 
 
 //create the InterfaceKit object 
 CPhidgetInterfaceKit_create(&ifKit); 
 
 //Set the handlers to be run when the device is plugged in or opened 
from software, unplugged or closed from software, or generates an 
errooperties(ifKit);r. 
 CPhidget_set_OnAttach_Handler((CPhidgetHandle)ifKit, AttachHandler, 
NULL); 
 CPhidget_set_OnDetach_Handler((CPhidgetHandle)ifKit, DetachHandler, 
NULL); 
 CPhidget_set_OnError_Handler((CPhidgetHandle)ifKit, ErrorHandler, 
NULL); 
 
 //Registers a callback that will run if an input changes. 
 //Requires the handle for the Phidget, the function that will be 
called, and an arbitrary pointer that will be supplied to the callback 
function (may be NULL). 
 CPhidgetInterfaceKit_set_OnInputChange_Handler (ifKit, 
InputChangeHandler, NULL); 
 
 //Registers a callback that will run if the sensor value changes by 
more than the OnSensorChange trig-ger. 
 //Requires the handle for the IntefaceKit, the function that will be 
called, and an arbitrary pointer that will be supplied to the callback 
function (may be NULL).operties(ifKit); 
 CPhidgetInterfaceKit_set_OnSensorChange_Handler (ifKit, 
SensorChangeHandler, NULL); 
 
 //Registers a callback that will run if an output changes. 
 //Requires the handle for the Phidget, the function that will be 
called, and an arbitrary pointer that will be supplied to the callback 
function (may be NULL). 
 CPhidgetInterfaceKit_set_OnOutputChange_Handler (ifKit, 
OutputChangeHandler, NULL); 
 
 //open the interfacekit for device connections 
 CPhidget_open((CPhidgetHandle)ifKit, -1); 
 
 //get the program to wait for an interface kit device to be attached 
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 printf("Waiting for interface kit to be attached...."); 
 if((result = CPhidget_waitForAttachment((CPhidgetHandle)ifKit, 10000))) 
 { 
  CPhidget_getErrorDescription(result, &err); 
  printf("Problem waiting for attachment: %s\n", err); 
  return 0; 
 } 
 
 //Display the properties of the attached interface kit device 
 display_properties(ifKit); 
 
 return 0; 
} 
 
 
int FFSim::NodePhidgetState() 
{ 
 int InState; 
 CPhidgetInterfaceKit_getInputState(ifKit, 6, &InState); 
 return InState; 
} 
 
int FFSim::TrussXPhidgetState() 
{ 
 int InState; 
 CPhidgetInterfaceKit_getInputState(ifKit, 5, &InState); 
 return InState; 
} 
 
int FFSim::TrussYPhidgetState() 
{ 
 int InState; 
 CPhidgetInterfaceKit_getInputState(ifKit, 4, &InState); 
 return InState; 
} 
 
int FFSim::TrussZPhidgetState() 
{ 
 int InState; 
 CPhidgetInterfaceKit_getInputState(ifKit, 0, &InState); 
 return InState; 
} 
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#ifndef _FFSIM_H 
#define _FFSIM_H 
 
 
#include <Python.h> 
#include <phidget21.h> 
 
#include <list> 
#include <stdio.h> 
#include <iostream> 
#include <fstream> 
#include <time.h> 
#include <stdlib.h> 
 
 
 
#include "FFDefs.hh" 
 
#include "FFRawMaterial.hh" 
#include "FFMod.hh" 
#include "FFStructure.hh" 
 
class FFStructure; 
class FFRawMaterial; 
class FFMod; 
 
class FFSim { 
   
private: 
 
 int X_DIM_IN; 
 int Y_DIM_IN; 
 int Z_DIM_IN; 
  
   
  FFMod **** modules; 
  double  startTime; 
 
  //Datatype for file input/output 
  FFStructure * pFFStruct; 
 
  // Output stream to file or pipe for  
  // visualization 
  std::ostream  * outStream; 
 
  //initialize modules and connect them 
  void connectToNeighbors(int x,int y); 
   
  std::list< FFRawMaterial * > listPToLift; 
 
  void addToMoveList(int x,int y,int z, int type); 
  char getDisplayCharForModule(int x, int y, FFMod * mod ); 
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  // wirte the current state of the modules  
  // and simulation time to  pFFStruct 
  void modulesToStructure(); 
 
  // set modules and simulation time from the  
  // FFStucture pointed to by pFFStruct 
  void structureToModules(); 
 
public:  
   
  // constructor 
  FFSim();  
 
  // copy constructuor 
  //   FFSim(const FFSim &); 
 
  void init(); 
 
 
// SETS XYZ DIM OF THE GRID 
  void setXYZdim(int setXDim,int setYDim,int setZDim); 
 
  FFMod* getPModule(int x, int y);    
    
  // Output ascii representation 
  // ------------------------------------ 
  void display(); 
 
 
  // A Module with a node, X-,Y-, and Z-truss  
  // looks like this ( 4 Rows x 5 Columns): 
    
/* 
      NORTH 
    
W     |         E 
E     |         A 
S     |z        S 
T     N----     T 
 
      SOUTH   
*/ 
 
  // Lift the structure from point (x,y) 
  // ------------------------------------ 
  // All Raw Materials that are connected to the NODE at (x,y,0) are 
  // lifted 
  void lift(int x, int y);   
 
  // Lower the structure from point (x,y) 
  // ------------------------------------ 
  // All Raw Materials that are connected to the NODE at (x,y,1) are 
  // lowered 
  void lower(int x, int y); 
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  // Read module configuration from file 
  // void readFile(string fileName); 
 
 
  // Set the output stream used but output() 
  //---------------------------------------- 
  // Expects a pointer to an output stream 
  void setOutputStream(std::ostream * ostr); 
 
  // Write module configuration to output stream 
  // ------------------------------------------- 
   void output();  
   
 
  // Reset the simulation time  
  // ------------------------- 
  void resetTime(); 
 
 
  // Read structure from input stream 
  // -------------------------------- 
  //  
  void input( std::istream * pistr); 
 
  void initCKBot (); 
 
  void retrieveTruss(); 
  void retrieveNode(); 
  void placeNode(); 
  void placeTrussX(); 
  void placeTrussY(); 
  void placeTrussZ(); 
   
  void passNode(); 
  void passTruss(); 
   
  void neutralState(); 
   
  int interfacekit_simple(); 
  int NodePhidgetState(); 
  int TrussXPhidgetState(); 
  int TrussYPhidgetState(); 
  int TrussZPhidgetState(); 
   
}; 
 
 
 
#endif 
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Appendix C: FIFO Reading Source Code with Embedded Python – receiver.c 
 
#include "Python.h" 
#include <stdio.h> 
#include <sys/stat.h> 
#include <stdlib.h> 
#include <string.h> 
 
#define MAX_INPUT 100 //maximum number of characters to be read from a line 
in the FIFO 
 
int main (int argc, char **argv) 
{ 
 char s[] = "fifo"; //name of FIFO read from current directory 
 char *input = (char*)malloc(MAX_INPUT*sizeof(char)); //To hold Python 
command to be executed 
     
    FILE *f; 
     
    Py_Initialize(); //Initialize Python Interpretor 
     
    while(1) 
    { 
 f = fopen(s, "r"); 
 
     if(fgets(input, MAX_INPUT, f)); 
     { 
  input[strlen(input)-1] = '\0'; 
   
  PyRun_SimpleString(input); //Run input as command in Python 
Interpretor 
   
  printf("\n"); 
  
  if (!strcmp(input, "exit")) 
   break; 
  fclose(f); 
     } 
    } 
 
 
 return 0; 
} 
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Appendix D: Path Planning of Robotic Arm – FFTB_cntrl.py 
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# ASSUME EACH CALL TO NEW FUNCTION FROM NEUTRAL STATE 
 
from ctypes import * 
import sys 
import time 
from logical import * 
 
# Joint Numbers 
BASE = 1 
BOT = 2 
MID = 3 
TOP = 4 
HEAD = 5 
MOUTH = 6 
 
TxPos = -6000  #Position of X-Truss 
TyPos = 600   #Position of Y-Truss 
NodePos = -2700  #Position of Node/Z-Truss 
 
BackPos = 7300  #Position of cradle 180* from TrussX in back of tile 
 
curposBASE = TxPos  #NxD2 
curposBOT = 9000    #Nx20 
curposMID = 9000    #Nx84 
curposTOP = -9000   #Nx31 
curposHEAD = 0     #NxD5 
curposMOUTH = 9000  #NxB1 
 
motion_delay = 0.02 #delay between two motor movements 
 
#sets the position of the three Ubars 
def move_core (desposBOT, desposMID, desposTOP): 
  global BOT, MID, TOP 
  global curposBOT, curposMID, curposTOP 
  global motion_delay 
  complete = 0 
  #incrementally move to the desired position 
  while(complete != 1): 
    curposBOT = move_module (BOT, curposBOT, desposBOT) 
    curposMID = move_module (MID, curposMID, desposMID) 
    curposTOP = move_module (TOP, curposTOP, desposTOP) 
    c.at.Nx20.set_pos(curposBOT) 
    c.at.Nx84.set_pos(curposMID) 
    c.at.Nx31.set_pos(curposTOP) 
 
    time.sleep(motion_delay) 
    if curposBOT == desposBOT and curposMID == desposMID and curposTOP == 
desposTOP: 
      complete = 1 
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#Moves the curpos of a module (either BOT, MID, or TOP) a degree toward the  
#desired pos 
def move_module (module, curpos, despos): 
  global BOT, MID, TOP 
 
  if module == BOT: 
    if curpos < despos: 
      curpos = curpos +100 
    elif curpos > despos: 
      curpos = curpos -100 
  elif module == MID: 
    if curpos < despos: 
      curpos = curpos +100 
    elif curpos > despos: 
      curpos = curpos -100 
  else: # TOP 
    if curpos < despos: 
      curpos = curpos +100 
    elif curpos > despos: 
      curpos = curpos -100 
 
  return curpos 
 
 
#Releases control of each module, allowing the servos to go slack 
def go_to_sleep(): 
  global motion_delay 
  c.at.NxD2.go_slack() 
  time.sleep(motion_delay) 
  c.at.Nx20.go_slack() 
  time.sleep(motion_delay) 
  c.at.Nx84.go_slack() 
  time.sleep(motion_delay) 
  c.at.Nx31.go_slack() 
  time.sleep(motion_delay) 
  c.at.NxD5.go_slack() 
  time.sleep(motion_delay) 
  c.at.NxB1.go_slack() 
  return 0 
 
 
#Sets the Arm to a neutral state/pose from which other actions/states 
#can be called 
def neutral_state(): 
  c.at.NxB1.set_pos(9000) 
  time.sleep(0.5) 
  move_HEAD(0) 
  c.at.NxD5.set_pos(0) 
  move_core (9000, 9000, -9000) 
  time.sleep(0.5) 
  move_BASE(TxPos) 
  c.at.NxD2.set_pos(TxPos) 
  time.sleep(0.5) 
  move_HEAD(0) 
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  time.sleep(1) 
  return 0 
 
def move_BASE (despos): #NxA8 
  global curposBASE 
  global motion_delay 
  if curposBASE < despos: 
 while (curposBASE < despos): 
  curposBASE = curposBASE+100 
  c.at.NxD2.set_pos(curposBASE) 
  time.sleep(motion_delay-0.01) 
  else: 
 while (curposBASE > despos): 
  curposBASE = curposBASE-100 
  c.at.NxD2.set_pos(curposBASE) 
  time.sleep(motion_delay-0.01) 
  return 0 
 
def move_HEAD (despos): 
  global curposHEAD 
  global motion_delay 
  if curposHEAD < despos: 
 while (curposHEAD < despos): 
  curposHEAD = curposHEAD+100 
  c.at.NxD5.set_pos(curposHEAD) 
  time.sleep(motion_delay) 
  else: 
 while (curposHEAD > despos): 
  curposHEAD = curposHEAD-100 
  c.at.NxD5.set_pos(curposHEAD) 
  time.sleep(motion_delay) 
  return 0 
 
def move_MOUTH (despos): 
  global curposMOUTH 
  global motion_delay 
  if curposMOUTH < despos: 
 while (curposMOUTH < despos): 
  curposMOUTH = curposMOUTH+100 
  c.at.NxB1.set_pos(curposMOUTH) 
  time.sleep(motion_delay) 
  else: 
 while (curposMOUTH > despos): 
  curposMOUTH = curposMOUTH-100 
  c.at.NxB1.set_pos(curposMOUTH) 
  time.sleep(motion_delay) 
  return 0 
 
 
#retrieves a truss from the tile to the south over the X-Truss cradle 
def retrieve_truss(): 
# while (pos != desired position) ==> Requires feedback, call on position for 
bot 
  move_BASE (TxPos) 
  c.at.NxD2.set_pos(TxPos) 
  move_core (4000, 7000, -4000) 
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  time.sleep(3) 
 
#  print '...provide truss...' 
 
  move_MOUTH (-4000) #close jaw of end-effector, grabbing truss 
  c.at.NxB1.set_pos(-4000) 
  time.sleep(0.3) 
  move_HEAD (-7000) 
  time.sleep(0.3) 
  move_core (8200, 7000, -4000) 
#  move_core (8200, 7000, -4000) 
#  time.sleep(0.5) 
  move_core (8200, 7400, -7000) 
 
  time.sleep(0.5) 
  return 0 
 
 
#from the neutral state, places a truss in the X-Truss cradle if 'cradle' is 
#1,or the Y-Truss cradle if 'cradle' is 2 
def place_truss(cradle): 
  if cradle == 1: 
    adjustment = TxPos 
  elif cradle == 2: 
    adjustment = TyPos 
  else: 
    adjustment = 4700 
 
  move_BASE(adjustment) 
  time.sleep(.3) 
  if cradle == 1 or cradle == 3: 
    move_core (6000, 9000, -5000) 
  move_HEAD (0) 
  time.sleep(0.1) 
  move_core (2500, 9000, -7600) 
  c.at.NxB1.set_pos(5000) 
  move_MOUTH (5000) 
  move_core (-300, 8000, -7400) 
  time.sleep(0.1) 
  c.at.NxB1.set_pos(9000) 
  time.sleep(0.3) 
  move_core (9000, 8000, -9000) 
  time.sleep(0.1) 
  return 0 
 
 
#places a Z-Truss on top of a Node 
def place_support_truss(): 
  move_BASE(NodePos) 
  time.sleep(0.5) 
  move_core (7000, 6000, -7000) # bot, mid, top 
  time.sleep(0.3) 
  move_core (7000, 6000, -3500) 
  time.sleep(0.3) 
  move_HEAD(-9000) 
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  time.sleep(0.3) 
  move_core (3800, 6500, -3000) 
 
  time.sleep(0.3) 
  move_core (2800, 7500, -3000) 
 
#  move_MOUTH(9000) 
  c.at.NxB1.set_pos(9000) 
  time.sleep(0.7) 
  move_core (7000, 7500, -7000) 
  move_HEAD(0) 
  return 0 
 
 
#retrieves a node being passed from the tile to the South. 
#the node is received over the X-Truss cradle 
def retreive_node(): 
  move_BASE (TxPos) 
  c.at.NxD2.set_pos(TxPos) 
#  move_MOUTH(9000) 
  c.at.NxB1.set_pos(9000) 
  move_HEAD(-9000) 
 
  move_core (5000, 7000, -6000) 
  time.sleep(3) 
  move_core (8000, 8500, -8000) 
  time.sleep(0.5) 
  move_HEAD(0) 
  return 0 
 
#Places a Node in the node cradle between the X-Truss and Y-Truss cradles 
def place_node(): 
  move_BASE (NodePos) 
  c.at.NxD2.set_pos(NodePos) 
  time.sleep(0.3) 
  move_core (8000, 8500, -2000) 
  time.sleep(0.3) 
  move_core (2000, 5500, -1000) 
  time.sleep(0.1) 
  move_core (-5000, 4500, -500) 
  #move_core (3600, -5500, 1000) 
  time.sleep(0.5) 
  time.sleep(0.2) 
  c.at.NxB1.set_pos(-9000) #Close the end-effecter jaw,           

#pushing Node away with teeth 
  time.sleep(0.5) 
  move_core(-5000, 4500, 0) 
  move_core(2000, 4500, 0) 
  move_core (9000, 9000, -8500) 
  time.sleep(0.5) 
  c.at.NxB1.set_pos(9000)   #Open the end-effecter jaw 
  time.sleep(0.5) 
  return 0 
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#Passes a node to the tile to the North. The pass is made over the back 
#truss cradle, 180* from the X-Truss cradle. Pass is assumed to be a direct 
#passs between robot arms. 
def pass_node(): 
 c.at.NxD2.set_pos(BackPos) 
   c.at.NxB1.set_pos(9000) 
  move_HEAD(-9000) 
   move_core (5000, 7000, -3000) 
   time.sleep(3) 
   move_core (8000, 8500, -8000) 
   time.sleep(0.5) 
   move_HEAD(0) 
    
 
#Passes a truss to the tile to the North. The pass is made over the back 
#truss cradle, 180* from the X-Truss cradle. Pass is assumed to be a direct 
#passs between robot arms. 
def pass_truss(): 
# while (pos != desired position) ==> Requires feedback, call on position for 
bot 
  move_BASE (BackPos) 
  c.at.NxD2.set_pos(BackPos) 
  move_HEAD(0) 
  move_core (6500, 6500, -6000) 
 
  time.sleep(3) 
 
#  print '...provide truss...' 
 
  c.at.NxB1.set_pos(9000) 
  time.sleep(1) 
  move_core(6500, 6500, -6000) 
  move_core (9000, 9000, -9000) 
 
  time.sleep(0.2) 
  return 0 
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