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Abstract— For this project, we designed several control sys- Nutrient Flow, u(t)
tems for a predator-prey chemostat: one obtained using root I
locus methods and three which rely on full-state feedback, v

including one that utilizes the LQR optimal control technique.
We also quantified the desired performance of the system and
its robustness to disturbances and sensor noise. We applied

all three controllers as well as the performance and robustness /
analysis to both a linear and a nonlinear model of the chemostat, i

and applied the observer-based controller to a nonlinear model Rotifer

which incorporates inaccuracies in measured parameters, ob- Concentration, b(t)

servation delay, and limits on the rate of nutrient addition.

Fig. 1. System in which thehemical environment isstatic, a chemostat
Nutrients flow in at a rate:(¢), algae consume the nutrients and reproduce,

|. PREDATOR-PREY SYSTEM rotifers consume the algae and die from consuming the nutrighte rotifer
concentrationp(t), is measured with apectrofluorimeter

We designed and analyzed a variety of control systems for
a predator-prey system in which tloherrical environment \_ Note that all figures
is stafic, a chemostat(see Figure 1). Nutrients flow into The underlying sy|haye captions! clear when we
the chemostat and mix with a soup of organisms; wastgote that the concemraron or aigag; ], 15 Toughly 180
is removed to keep the level of fluid inside the containeput of phase with the concentration of rotifer, as Figure 3
constant. illustrates. This means that the maximum algae population
Our system contains both rotifers (theedator) and algae approximately coincides with the minimum rotifer popula-
(the prey) with concentrations(t) anda(t), respectively [1]. tion, and the maximum rotifer with the minimum algae, one
We distinguish the concentration of nutrient§t) and we  of the defining characteristics of a predator-prey system.
control the rate at which nutrients are added to the system,we would like to be able to control the concentrations of
u(t). nutrients, algae, and rotifers to conduct various expertse
To model the system, we assume the following: in particular experiments with constant concentrationd an
1) Nutrients are digested at a rate proportional to theith b = 1. Accordingly, we wish to design compensators to
product of the concentrations of nutrients and algae.hold the system at a natural equilibrium point in the face of
2) Algae reproduce at a rate proportional to the rate gfossible external “impulses”, including environmentédéets
nutrient consumption, and they are eaten by rotifers atlike temperature variation and internal effects like eviolu
rate proportional to the product of their concentrationsand deterioration of nutrients.
3) Rotifers reproduce at a rate proportional to the rate at We begin by defining a set of desired performance spec-
which they eat algae, and die when genetic mutatiorifications, then identify a system equilibrium point and

make the nutrients poisonous to them. linearize the system about that point. Then we create a
4) We can measure the concentration of rotifers in thbattery of compensators for the system using root locus, ful
system using a spectrofluorimeter [2]. state, and optimal control methods and apply them to both a
This leads us to a set of governing differential equations dfn€ar and nonlinear model of the system using MATLAB's
the forma = f(z, u): Simulinktoolbox. We analyze the effect of nutrient contam-

ination and fluorescent deterioration on the performance of
the root locus-based controller, and apply an observezebas

) ” u— kina controller to a more realistic model of the system which
&=\ a | =| kana—kab—ksa |. (1) jncorporates parameter uncertainty, observation delag, a
b ka3ab — kqnb limits on the rate of nutrient addition.

and the output equatiop = b(¢t). The (assumed constant)
physical parameters are measuredkas~ 0.5, ky ~ 0.7,
ks ~ 0.5, kg = 0.9, a = 1.1, B = 2.0. As the rotifer population grows and threatens that of the
We simulated this system using a constant nutrient adlgae, the algae respond by evolving to make themselves
dition ratew(t) = 1. Figure 2 shows the concentration ofdistasteful to their predators [3]. Accordingly, we wish to
nutrients, algae, and rotifer as a function of time. stabilize the concentration of rotifers at 1.0 to preverd th

Il. PERFORMANCESPECIFICATION
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Fig. 2. Concentration of nutrients, algae, and rotifersusrtime for the nonlinear system given by the equations iw(tt) the initial conditionngy =
2,a0 =1, b = 0.01.

Rotifer versus Algae

c3 ko+ks
2 n* aky
o a* (k2+ks3)ka
% * (katk3)?ka
@} Ta?Bhaks
51
= B. Linearization
T
% If we think of (1) as having the form: = f(z,u), we can

Algae Concentration linearize the system around its equilibrium point by definin
i ] ) ) A, B, andC matrices

Fig. 3. Concentration of rotifer vs. concentration of algaer 30 hours.
The two populations fluctuate out of phase, exhibiting on¢hef defining
characteristics of a predator-prey system.

af u=u* 8f u=u* 8y u=u*
A= = B=— C=—= 5
al’ r=x* 7 au r=x* ’ 8‘% r=x* ( )
algae from evolving too swiftly. It takes, on average,5 .
hours for a significant fraction of the algae to evolve. T@"d Writing
keep evolution from invalidating our model of the system,
we wish to stabilize the rotifer population in under 5 hours Ze = Axe + Bue, ye = Cxy, (6)
with the smallest overshoot possible overshoot. At the bare
minimum, then, wherex, = x — x*. In particular,
Po < 50%, T, < 5 hours. (2) _(k2tka)ks  kotks 0
afk «
A= (k2+k3)2k‘4 0 _ (katksz)ks
If possible, however, we'd like to attain more stringent ff’;; . bk
requirements, namely T B 0
1 1
PO<TO%,TS<1h0ur. (3) B=[o0],c=(0 0 1).
0
If we approximate the system as second-order, then we wish
to place the dominant second-order polespat= —4 + C. Natural Response

1.82;. If we substitute the measured system parameters for the

variables inA, its eigenvalues are
IIl. ERRORCOORDINATES AND LINEARIZATION

We wish to control the behavior of this system near asince two of the poles lie in the right half-plane, our
equilibrium point which seté = 1. Solving the equations in desired equilibrium point isinstable meaning that unless
(1) with » = 0, @ = 0, andb = 0 nearb = 1 yields (besides we manage to set the system’s state precisely at that point,
the trivial solution at the origin) the desired equilibriumit will not remain near there. Therefore, we must control the
point, system to keep it near the desired state.
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Fig. 5. Root locus of the compensated chemostat system.
increased (you create ‘poles at infinity’) and the system is
still unstable.
D. Transfer Function One possible solution to this problem would be to change
We can obtain a transfer function for the plant system frorthe chemostat system itself. Since the zeros of the plant are
the matrices in (5) using the equatioiis) = C(glfA)*lB determined solely by the system'’s input-output relatigmsh

and the measured system parameters: we experimented with the transfer function obtained byralte
ing the B and C matrices. The easiest modification to realize
(s) = —0.95 4+ 1.08 _ (8) Physically would be to add more sensors, so we focused
s3 +0.701s% 4 2.225 + 1.93 on theC' matrix. The simplest resulting transfer function is
IV. ROOTLocUSDESIGN obtained when we measure the algae concentration instead

We’'ll create our first controller for the chemostat s sterr?]c the rotifer concentration. One can imagine achieving thi
. . y in the physical system by genetically altering the algae to
using root locus design. The open-loop root locus of th

: o Sroduce GFP instead of the rotifers, then using the same
system is shown in Figure 4.

Unfortunatel 0 thods t tto b measurement technique as before.
ntortunately, root locus methods turn out 10 be par ;s nogification yields the transfer function

ticularly unsuitable for this particular system. Most okth

usual tricks—most notably PID control—don’t even make Gals) = 0.771s + 0.884

the system stable, let alone yield the desired performance. “ s3 +0.701s2 + 2.22s + 1.93°
We found that the configuration shown in Figure 5 was ong particular, the zero has now been moved to the left half-
of the simplest that seemed to reliably stabilize the systerplane, where our usual root locus techniques apply quite

(10)

The compensator has transfer function well. We designed a physically-realizable lead compemsato
Cots) - 055+ 1 o to control this system,
1008 + 1 G o(s) = 1.3s+1 1)
with a gain of75. However, this configuration does not even ’ %5 +1

remotely achieve our desired performance specificatia: tlwith a gain of3.3. The linear and nonlinear system’s im-
impulse response over 50 hours is shown in Figure 6. Thsulse responses are given in Figure 8. Our hastily-designed
linear and nonlinear systems perform qualitatively simila controller yields the desired settling time, though thecpat
having roughly the same percent overshoot and settling timgvershoot still needs some work.

The problem with applying standard root locus techniques
to this system is that the system has a zero in the right half-
plane; this means the plant’s complex-conjugate poles afe Disturbances
typically drawn into the right-half plane as the closeddoo The chemostat system is largely safe from outside distur-
gain is increased. If one adds enough zeros in the left-hdiinces. However, the nutrient batch is susceptible to eonta
plane to counteract this effect, the system order is intpfici mination. As a consequence, we wish to analyze the effect a

V. DISTURBANCES AND SENSORPROBLEMS
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Fig. 10. Disturbance response of the linear and nonlinearetao@oot
locus-based compensator).

o

o

0 ! Fime (hourd N ® Since our root locus-based controller has such poor perfor-

mance, the effect of the disturbance takes a long time (more
Fig. 8. Impulse response of the modified linear and nonlinearefsoalith than 50 hours') to damp out

the root locus-based compensator given in (11). If we assume thaue(t) is small compared tar*, then

we can approximate this disturbance as a step input added
nt?etween our compensator and the system model (see Fig-

bad batch of nutrients would have on our controlled syste . .
y fre 11). The advantage to this method is that the closed-

to know whether we will have to interrupt an experiment i .S : .
contamination OCCUrS. loop tra_nsfer function is easily found by settiig(s) = 0
When the nutrients become contaminated, the e1‘fectiv'5<lanOl noting that
addition to nutrient concentration from added nutrients de
creases, algae which consume them reproduce more slowly,
and rotifers which consume them are less likely to beg
poisoned. Then if we assume that the algae will consume
contaminated nutrients at the same rate as they would for T(s) = Y(s) _ G(s) .
uncontaminated, nutrient contamination can be modeled as D(s) 14 G.(s)G(s)

a proportional decrease in the rate of nutrient addition: Using G(s) from (8) andG..(s) from (9) and our correspond-

ing choice for the gain we find (numerically) th@l(s) is
u(t) — du(t),0 <6 < 1. stable. Now using the disturbande(s) = §/s, the final-

value theorem yieldg(co) = 0.01306, so the disturbance

This modification affects our controlled system in two waysinduces a (relatively small) steady-state error.

first, it scales down the equilibrium rate of nutrient adfiti

u* — ou*; second, it scales down our error-coordinatd®- Sensor Problems

control signal,u.(t) — du.(t) (see Figure 9). A typical = We measure the concentration of rotifers using a spec-

response for the linear and nonlinear systems witft) = 0  trofluorometer. This device excites @reen fluorescence

andé = 0.5 is shown in Figure 10. protein (GFP) fluorophor [4] we've engineered the rotifers
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Fig. 13. Block diagram illustrating how a gain matrix is cootesl to a

Fig. 11. Block diagram of compensated system with step diange, an  system when using full-state feedback.

approximation to the disturbance model in Figure 9.

 Compensated System Sensitivity to Bleact third pole at—20. This is more than five times as negative as
the dominant poles, so a second-order approximation should
08 be valid. Using the gain matrix’ = (K; K> K3), we want
to solve
F“’; 0.6
i y (s+20)(s +4+ 1.865)(s + 4 — 1.867) = |sI — (A — BK))|
5o
for the three gains. Since the equation is linear in the gains
0.2 the (unique) solution is readily found< = (27.3 309 68.1).
This gain matrix is connected to the system in the manner
G() 02 04 06 08 1 illustrated in Figure 13.

leachi 1 . . .
Bleaching Factoy Figure 14 shows the responses of the linear and nonlinear

Fig. 12.  Sensitivity of root locus-controlled system witBspect to systems with feedback control to an impulse; the two systems

fluorophor bleachings(= o + jw = 0). respond nearly identically.
VII. OBSERVERDE-tI)-hIS ShO_U|d have

to produce. Over time, the continual activibfeachesthe The observability matrixdefined e_\en written out for
GFP, resulting in a smaller output than we would expect for £—]this Sy_Stem and the
a given concentratiorn(y = b) — (y = b), 0 <y < 1. ¢ Yanalysis of the

We can determine thesensitivity of the compensated 0= OAZ matrix explained.
system toy by defining the sensitivity of our systenf cA
as has rank 3, so the system is observable, which means we can

oT design an observer and use full-state feedback to conteol th
T 227 (12) system.

1T We want the observer’s settling time to be much less than

Now, sinceT'(s) = (G.(s)G(s))/(1 + G.(s)G(s)), we the chemostat’s, so we need to place the observer’'s poles
can compute this sensitivity quite easily with the aid of dar to the left of the plant's dominant poles. We found that
computer. Using software that works with symbolic expresi the observer poles are too negative, the observer agtuall
sions, we found the exact relationship between the seitgitivapproximates the nonlinear system quite poorly, becasse it

of the system and. With s = o + jw = 0 (the sensitivity dynamics are too fast; instead, we choose the place the poles
is always nearly 1 at moderate-to-high frequencies), at —6 on the real axis. Though this is less than ten times
as negative as the plant's dominant poles, it yields good

53(7) — i. (13) performance. Using the gain matrix = (L; Lo L3)T, we
1.93 + 81y want to solve
A plot of the sensitivity fory € (0, 1] is shown in Figure 12.
As shown there, the sensitivity of the systemntads fairly (s +6)3 =|sI — (A— LO)|

low when+y > 0.2. for the gains. Once again the equations are linear, and the

VI. FULL-STAT;F?DA(TMS should have )n is readily found:L = (29.1 85.6 17.3)7. This
y

The controllability matrix give been written out for atrix is incorporated into awbserver(see Figure 15)
onnected to the system in the manner illustrated in

, this system and the 16
M= (B AB A*B) analysis of the ire 17 shows the responses of the linear and nonlinear
has rank 3, so the system is controllajmatrix explained. s with observer-based feedback control to an impulse
can use full-state feedback to control the system. The two systems respond similarly, though their trajeeori
Our performance specification from Section Il aims talo not match so well as with ideal full-state feedback.
place the chemostat system’s dominant second-order poles aTo test how well our observer can track the nonlinear sys-
p+ = —441.82j. The system is third-order, so we place thdem far away from equilibrium, we also wanted to simulate
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Fig. 17. Responses of the linear and nonlinear system witlergbr-based full-state feedback to an impulse; the twaesystrespond similarly to the
impulse.

optimal in some sense. With LQR, we minimize a cost
(input) (plant functional of the form
output)
J:/ z(t)TQx(t) + u(t)” Ru(t) dt, (16)
0

Fig. 15. Block diagram illustrating the construction of thleserver used

In Section VIl. whereQ is an(n xn) (constant) matrix and is a (constant)
scalar. Intuitively, a more heavily-weighted translates to
System a decreased settling time for the system, while a laRye
(input) (output) corresponds to a smaller control input.
(‘Z”l;fs’iv;; Since we are interested in controlling the rotifer concen-

tration and minimizing the control input, we weight these
guantities more heavily i)y and Ry, our initial choice for

Fig. 16.  Block diagram illustrating how an observer is cated to a  the cost parameters:
system using full-state feedback.

(full state)

1 0 O
= 0 1 0 Ry =5. 17
the system starting wit(0) = 0 and all other variables @ 0 0 5 P (17)

at their equilibrium values. Figure 18 shows the nonlinear

system’s response in all three state variables along wih th With the base values fo) and R chosen, we find
observer’s prediction from this initial condition. The alpger  (roughtly) the smallest value &f for which the choicel) =
manages to track each state variable almost exactly over Q0. R = (1 — &) Ry yields acceptable system performance.

whole simulation. Figure 19 shows the linear system’s impulse response for a
range of¢.
VIll. OPTIMAL CONTROL Based on the responses shown in the figure, we sg¢lect

The nutrients we use to fuel the chemostat system afe8, which yields the gain matri¥’ = (1.28 0.285 —1.10);
expensive, so we also wanted to design a controller that usiés matrix is connected to the system in the manner shown in
the least amount of nutrients possible while still achigvin Figure 13. This choice gives us 30% overshoot and a settling
our performance requirements. To achieve this optimaliy, time of roughly 5 hours, which matches the performance
first relax our performance requirementsitg ~ 30%,Ts; < bounds we gave above. Since we ultimately wish to minimize
5 hours. Then we uséinear-Quadratic Regulatioror LQR, the amount of nutrients we use, it makes sense to meet the
to choose gains for a full-state feedback controller that aupper bound of our performance specification.
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tion and nutrient addition rat@ulse response for the LQR-controlled linear system ovange ofg; Q = £Qo, R = (1—&) Ro.

Figure 20 shows the impulse responses of the linear and7) We cannot actively remove nutrients from the system,
nonlinear systems, as well as the cumulative nutrient iaidit and we cannot add them faster tha(0.0 < u < 4.0).

beyond the contribution from the equilibrium rat€. The Since it provided the best performance without having
linear and nonlinear systems respond quite similarly to thgirect access to the system’s full state, we test the observe
impulse, which is in agreement with the result we Obtainegased controller’'s robustness by app|y|ng it to the nonlin-
with our original ideal full-state feedback controller tése ear model of our system obtained by imp]ementing these
Figure 14). That the optimal control scheme stabilizes thgqditional assumptions. Using precisely the same cogtroll
system using less nutrients than would have been used by {fe presented in Section VII, we were unable to imple-
system at equilibrium suggests that we made a good choiggent the additional assumptions listed above. Instead, we
for our cost function. designed a full-state feedback controller to meet relaxed

Our full-state feedback controller uses 400 units of performance specificationsP{ < 1%, T, < 5 hours)
nutrients to stabilize the System; thOUgh it meets much MOKAHd slowed the response of the observer to make it less
stringent performance requirements, the amount of nutriegensitive to unexpected behavior from the nonlinear model.
saved with the optimized controller is startling. Our rootrhe resulting gain matrices ate = (12.9 6.03 — 14.6),
locus compensator, which has far worse performance than— (—0.23 26.9 11.3)7.
our optimized controller, usess —4 units of nutrients to  \ve first consider qualitatively the effect of each of the
stabilize the system, which is comparable to the optimizegssumptions separately, then present the result of tmeir-si
system. taneous application. Parameter uncertainty has a smadteff
on percent overshoot and settling time, but increases the
steady-state error considerably. Limiting the rate of ieatr

The model given in (1) is, at best, a rough approximatioaddition primarily increases settling time. Adding observ
to the actual system’s behavior. To be more thorough in otion delay increases the settling time, percent overshoot,
evaluation of a given controller, therefore, we ought toathe and steady-state error. Figure 21 illustrates the effeallof
its performance when applied to a more realistic modethree model enhancements applied simultaneousky, 10
Specifically, we add the following assumptions to the lisminutes.
in Section I:

5) The uncertainty in the measurement of the parameters

k1, o, and g is 10%. In this project_we designed a variety of controllers for

stem, applied them to both a linear and a
odel of the system, and evaluated their perfor-

IX. AMOREREALISTIC MODEL

ISCUSSION

(y(t) =b(t—7),0< 7 < ).

A discussion is crucial! What worked? What
didn't? What would you do next?
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mance. We were able to design controllers which utilize thp)] T. Yoshida, L.E. Jones, S.P. Ellner, G.F. Fussmann, ai@l Nairston.
system’s full state, either directly or through an observer Rapid evolution drives ecological dynamics in a predateypsystem.
to meet a fairly rigorous performance specification for the, Naturg 424:303-305, 2003.
] M. Chalfie, Y. Yu, G. Euskirchen, W.W. Ward, and D.C. PrashGreen

system’s impulse response near equilibrium. We were also fluorescent protein as a marker for gene expressimience 263:802—
able to optimize the rate of nutrient addition subject teegiv. =~ 805, 1994.
performance constraints.

However, the controller we designed without access to
the system’s full state (the root locus-based controlleh) f
short of the desired performance. But, we showed that if
we redesigned the chemostat so that we could measure the
concentration of algae instead of the concentration offenct;
we could meet the performance specification using a root
locus-based compensator.

We also showed that by relaxing the performance speci-
fications, we were able to stabilize a more realistic model
of the chemostat system using an observer-based full-state
feedback controller, though we weren't quite able to meet ou
desired performance specifications in the case that thexe is
ten-minute observation delay and large {0%) parameter
uncertainty.

Further refinements on the work presented here ought to
include more rigorous disturbance and sensitivity ana)yasi
investigation into the range of validity for the linear mde
and application of our controllers to an even more realistic
model of the system which models algae evolution and
devolution in response to changes in the rotifer conceatrat
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