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Abstract— For this project, we designed several control sys-
tems for a predator-prey chemostat: one obtained using root
locus methods and three which rely on full-state feedback,
including one that utilizes the LQR optimal control technique.
We also quantified the desired performance of the system and
its robustness to disturbances and sensor noise. We applied
all three controllers as well as the performance and robustness
analysis to both a linear and a nonlinear model of the chemostat,
and applied the observer-based controller to a nonlinear model
which incorporates inaccuracies in measured parameters, ob-
servation delay, and limits on the rate of nutrient addition.

I. PREDATOR-PREY SYSTEM

We designed and analyzed a variety of control systems for
a predator-prey system in which thechemical environment
is static, a chemostat(see Figure 1). Nutrients flow into
the chemostat and mix with a soup of organisms; waste
is removed to keep the level of fluid inside the container
constant.

Our system contains both rotifers (thepredator) and algae
(theprey) with concentrationsb(t) anda(t), respectively [1].
We distinguish the concentration of nutrientsn(t) and we
control the rate at which nutrients are added to the system,
u(t).

To model the system, we assume the following:

1) Nutrients are digested at a rate proportional to the
product of the concentrations of nutrients and algae.

2) Algae reproduce at a rate proportional to the rate of
nutrient consumption, and they are eaten by rotifers at a
rate proportional to the product of their concentrations.

3) Rotifers reproduce at a rate proportional to the rate at
which they eat algae, and die when genetic mutations
make the nutrients poisonous to them.

4) We can measure the concentration of rotifers in the
system using a spectrofluorimeter [2].

This leads us to a set of governing differential equations of
the form ẋ = f(x, u):

ẋ =





ṅ
ȧ

ḃ



 =





u − k1na
k1αna − k2ab − k3a

k2βab − k4nb



 . (1)

and the output equationy = b(t). The (assumed constant)
physical parameters are measured ask1 ≈ 0.5, k2 ≈ 0.7,
k3 ≈ 0.5, k4 ≈ 0.9, α ≈ 1.1, β ≈ 2.0.

We simulated this system using a constant nutrient ad-
dition rate u(t) ≡ 1. Figure 2 shows the concentration of
nutrients, algae, and rotifer as a function of time.

Nutrient Flow, u(t)

Rotifer

Concentration, b(t)

Spectrofluorimeter

input

Fig. 1. System in which thechemical environment isstatic, a chemostat.
Nutrients flow in at a rateu(t), algae consume the nutrients and reproduce,
rotifers consume the algae and die from consuming the nutrients. The rotifer
concentration,b(t), is measured with aspectrofluorimeter.

The underlying system dynamics become clear when we
note that the concentration of algae,a(t), is roughly 180o

out of phase with the concentration of rotifer, as Figure 3
illustrates. This means that the maximum algae population
approximately coincides with the minimum rotifer popula-
tion, and the maximum rotifer with the minimum algae, one
of the defining characteristics of a predator-prey system.

We would like to be able to control the concentrations of
nutrients, algae, and rotifers to conduct various experiments,
in particular experiments with constant concentrations and
with b ≡ 1. Accordingly, we wish to design compensators to
hold the system at a natural equilibrium point in the face of
possible external “impulses”, including environmental effects
like temperature variation and internal effects like evolution
and deterioration of nutrients.

We begin by defining a set of desired performance spec-
ifications, then identify a system equilibrium point and
linearize the system about that point. Then we create a
battery of compensators for the system using root locus, full-
state, and optimal control methods and apply them to both a
linear and nonlinear model of the system using MATLAB’s
Simulinktoolbox. We analyze the effect of nutrient contam-
ination and fluorescent deterioration on the performance of
the root locus-based controller, and apply an observer-based
controller to a more realistic model of the system which
incorporates parameter uncertainty, observation delay, and
limits on the rate of nutrient addition.

II. PERFORMANCESPECIFICATION

As the rotifer population grows and threatens that of the
algae, the algae respond by evolving to make themselves
distasteful to their predators [3]. Accordingly, we wish to
stabilize the concentration of rotifers at 1.0 to prevent the
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Fig. 2. Concentration of nutrients, algae, and rotifers versus time for the nonlinear system given by the equations in (1)with the initial conditionn0 =
2, a0 = 1, b0 = 0.01.
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Fig. 3. Concentration of rotifer vs. concentration of algaeover 30 hours.
The two populations fluctuate out of phase, exhibiting one ofthe defining
characteristics of a predator-prey system.

algae from evolving too swiftly. It takes, on average,≈ 5
hours for a significant fraction of the algae to evolve. To
keep evolution from invalidating our model of the system,
we wish to stabilize the rotifer population in under 5 hours
with the smallest overshoot possible overshoot. At the bare
minimum, then,

PO < 50%, Ts < 5 hours. (2)

If possible, however, we’d like to attain more stringent
requirements, namely

PO <
1

10
%, Ts < 1 hour. (3)

If we approximate the system as second-order, then we wish
to place the dominant second-order poles atp± = −4 ±
1.82j.

III. E RRORCOORDINATES AND L INEARIZATION

A. Equilibrium Point

We wish to control the behavior of this system near an
equilibrium point which setsb ≡ 1. Solving the equations in
(1) with ṅ ≡ 0, ȧ ≡ 0, and ḃ ≡ 0 nearb ≡ 1 yields (besides
the trivial solution at the origin) the desired equilibrium
point,

x∗ =









n∗

a∗

b∗

u∗









=











k2+k3

αk1

(k2+k3)k4

αβk1k2

1
(k2+k3)

2k4

α2βk2k2











. (4)

B. Linearization

If we think of (1) as having the forṁx = f(x, u), we can
linearize the system around its equilibrium point by defining
A, B, andC matrices

A =
∂f

∂x

∣

∣

∣

∣

u=u∗

x=x∗

, B =
∂f

∂u

∣

∣

∣

∣

u=u∗

x=x∗

, C =
∂y

∂x

∣

∣

∣

∣

u=u∗

x=x∗

(5)

and writing

ẋe = Axe + Bue, ye = Cxe, (6)

wherexe = x − x∗. In particular,

A =







− (k2+k3)k4

αβk2

−k2+k3

α
0

(k2+k3)k4

βk2

0 − (k2+k3)k4

αβk1

−k4 βk2 0







B =





1
0
0



 , C =
(

0 0 1
)

.

C. Natural Response

If we substitute the measured system parameters for the
variables inA, its eigenvalues are

λ = −0.830, 0.0643 ± 1.52j. (7)

Since two of the poles lie in the right half-plane, our
desired equilibrium point isunstable, meaning that unless
we manage to set the system’s state precisely at that point,
it will not remain near there. Therefore, we must control the
system to keep it near the desired state.
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Fig. 4. Root locus of the chemostat plant given in (8).
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Fig. 5. Root locus of the compensated chemostat system.

D. Transfer Function

We can obtain a transfer function for the plant system from
the matrices in (5) using the equationG(s) = C(sI−A)−1B
and the measured system parameters:

G(s) =
−0.9s + 1.08

s3 + 0.701s2 + 2.22s + 1.93
. (8)

IV. ROOT LOCUSDESIGN

We’ll create our first controller for the chemostat system
using root locus design. The open-loop root locus of the
system is shown in Figure 4.

Unfortunately, root locus methods turn out to be par-
ticularly unsuitable for this particular system. Most of the
usual tricks—most notably PID control—don’t even make
the system stable, let alone yield the desired performance.
We found that the configuration shown in Figure 5 was one
of the simplest that seemed to reliably stabilize the system.
The compensator has transfer function

Gc(s) =
−0.5s + 1

100s + 1
(9)

with a gain of75. However, this configuration does not even
remotely achieve our desired performance specification: the
impulse response over 50 hours is shown in Figure 6. The
linear and nonlinear systems perform qualitatively similar,
having roughly the same percent overshoot and settling time.

The problem with applying standard root locus techniques
to this system is that the system has a zero in the right half-
plane; this means the plant’s complex-conjugate poles are
typically drawn into the right-half plane as the closed-loop
gain is increased. If one adds enough zeros in the left-half
plane to counteract this effect, the system order is implicitly
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Fig. 6. Impulse response of the linear and nonlinear models with the root
locus-based compensator given in (9).

increased (you create ‘poles at infinity’) and the system is
still unstable.

One possible solution to this problem would be to change
the chemostat system itself. Since the zeros of the plant are
determined solely by the system’s input-output relationship,
we experimented with the transfer function obtained by alter-
ing the B and C matrices. The easiest modification to realize
physically would be to add more sensors, so we focused
on theC matrix. The simplest resulting transfer function is
obtained when we measure the algae concentration instead
of the rotifer concentration. One can imagine achieving this
in the physical system by genetically altering the algae to
produce GFP instead of the rotifers, then using the same
measurement technique as before.

This modification yields the transfer function

Ga(s) =
0.771s + 0.884

s3 + 0.701s2 + 2.22s + 1.93
. (10)

In particular, the zero has now been moved to the left half-
plane, where our usual root locus techniques apply quite
well. We designed a physically-realizable lead compensator
to control this system,

Ga,c(s) =
1.3s + 1
1
10s + 1

(11)

with a gain of 3.3. The linear and nonlinear system’s im-
pulse responses are given in Figure 8. Our hastily-designed
controller yields the desired settling time, though the percent
overshoot still needs some work.

V. D ISTURBANCES ANDSENSORPROBLEMS

A. Disturbances

The chemostat system is largely safe from outside distur-
bances. However, the nutrient batch is susceptible to conta-
mination. As a consequence, we wish to analyze the effect a
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Fig. 7. Root locus of the compensated modified chemostat system (outputs
algae concentration instead of rotifer concentration).
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Fig. 8. Impulse response of the modified linear and nonlinear models with
the root locus-based compensator given in (11).

bad batch of nutrients would have on our controlled system,
to know whether we will have to interrupt an experiment if
contamination occurs.

When the nutrients become contaminated, the effective
addition to nutrient concentration from added nutrients de-
creases, algae which consume them reproduce more slowly,
and rotifers which consume them are less likely to be
poisoned. Then if we assume that the algae will consume
contaminated nutrients at the same rate as they would for
uncontaminated, nutrient contamination can be modeled as
a proportional decrease in the rate of nutrient addition:

u(t) 7→ δu(t), 0 < δ ≤ 1.

This modification affects our controlled system in two ways:
first, it scales down the equilibrium rate of nutrient addition,
u∗ 7→ δu∗; second, it scales down our error-coordinate
control signal,ue(t) 7→ δue(t) (see Figure 9). A typical
response for the linear and nonlinear systems withue(t) ≡ 0
andδ = 0.5 is shown in Figure 10.
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Fig. 9. Block diagram of compensated system with disturbance.
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Fig. 10. Disturbance response of the linear and nonlinear models (root
locus-based compensator).

Since our root locus-based controller has such poor perfor-
mance, the effect of the disturbance takes a long time (more
than 50 hours!) to damp out.

If we assume thatue(t) is small compared tou∗, then
we can approximate this disturbance as a step input added
between our compensator and the system model (see Fig-
ure 11). The advantage to this method is that the closed-
loop transfer function is easily found by settingU(s) ≡ 0
and noting that

Y (s) = G(s)(D(s) − Gc(s)Y (s)),

so

T (s) =
Y (s)

D(s)
=

G(s)

1 + Gc(s)G(s)
.

UsingG(s) from (8) andGc(s) from (9) and our correspond-
ing choice for the gain we find (numerically) thatT (s) is
stable. Now using the disturbanceD(s) = δ/s, the final-
value theorem yieldsy(∞) = 0.0130δ, so the disturbance
induces a (relatively small) steady-state error.

B. Sensor Problems

We measure the concentration of rotifers using a spec-
trofluorometer. This device excites agreen fluorescence
protein (GFP) fluorophor [4] we’ve engineered the rotifers
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Fig. 11. Block diagram of compensated system with step disturbance, an
approximation to the disturbance model in Figure 9.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Compensated System Sensitivity to Bleaching

Bleaching Factor γ

S
en

si
tiv

ity
  S

γT

Fig. 12. Sensitivity of root locus-controlled system with respect to
fluorophor bleaching (s = σ + jω = 0).

to produce. Over time, the continual activitybleachesthe
GFP, resulting in a smaller output than we would expect for
a given concentration,(y = b) 7→ (y = γb), 0 < γ ≤ 1.

We can determine thesensitivity of the compensated
system toγ by defining the sensitivity of our systemST

γ

as

ST
γ =

∂T

∂γ

γ

T
. (12)

Now, sinceT (s) = (Gc(s)G(s))/(1 + Gc(s)G(s)), we
can compute this sensitivity quite easily with the aid of a
computer. Using software that works with symbolic expres-
sions, we found the exact relationship between the sensitivity
of the system andγ. With s = σ + jω = 0 (the sensitivity
is always nearly 1 at moderate-to-high frequencies),

ST
γ (γ) =

1.93

1.93 + 81γ
. (13)

A plot of the sensitivity forγ ∈ (0, 1] is shown in Figure 12.
As shown there, the sensitivity of the system toγ is fairly
low whenγ > 0.2.

VI. FULL -STATE FEEDBACK

The controllability matrix given by

M =
(

B AB A2B
)

(14)

has rank 3, so the system is controllable, which means we
can use full-state feedback to control the system.

Our performance specification from Section II aims to
place the chemostat system’s dominant second-order poles at
p± = −4±1.82j. The system is third-order, so we place the

+ YU System

-K (full state)

(output)(input)

Fig. 13. Block diagram illustrating how a gain matrix is connected to a
system when using full-state feedback.

third pole at−20. This is more than five times as negative as
the dominant poles, so a second-order approximation should
be valid. Using the gain matrixK = (K1 K2 K3), we want
to solve

(s + 20)(s + 4 + 1.86j)(s + 4− 1.86j) = |sI − (A−BK)|

for the three gains. Since the equation is linear in the gains,
the (unique) solution is readily found:K = (27.3 309 68.1).
This gain matrix is connected to the system in the manner
illustrated in Figure 13.

Figure 14 shows the responses of the linear and nonlinear
systems with feedback control to an impulse; the two systems
respond nearly identically.

VII. O BSERVERDESIGN

The observability matrixdefined by

O =





C
CA
CA2



 (15)

has rank 3, so the system is observable, which means we can
design an observer and use full-state feedback to control the
system.

We want the observer’s settling time to be much less than
the chemostat’s, so we need to place the observer’s poles
far to the left of the plant’s dominant poles. We found that
if the observer poles are too negative, the observer actually
approximates the nonlinear system quite poorly, because its
dynamics are too fast; instead, we choose the place the poles
at −6 on the real axis. Though this is less than ten times
as negative as the plant’s dominant poles, it yields good
performance. Using the gain matrixL = (L1 L2 L3)

T , we
want to solve

(s + 6)3 = |sI − (A − LC)|

for the gains. Once again the equations are linear, and the
solution is readily found:L = (29.1 85.6 17.3)T . This
gain matrix is incorporated into anobserver(see Figure 15)
and connected to the system in the manner illustrated in
Figure 16.

Figure 17 shows the responses of the linear and nonlinear
systems with observer-based feedback control to an impulse.
The two systems respond similarly, though their trajectories
do not match so well as with ideal full-state feedback.

To test how well our observer can track the nonlinear sys-
tem far away from equilibrium, we also wanted to simulate
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Fig. 14. Responses of the linear and nonlinear system with full-state feedback to an impulse; the systems respond nearly identically to the impulse.
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Fig. 17. Responses of the linear and nonlinear system with observer-based full-state feedback to an impulse; the two systems respond similarly to the
impulse.

+B s -1

L

(plant 

output)

(input)

U

A

(full state)

-1 + Y

Fig. 15. Block diagram illustrating the construction of theobserver used
in Section VII.
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(L inside)

Fig. 16. Block diagram illustrating how an observer is connected to a
system using full-state feedback.

the system starting withn(0) = 0 and all other variables
at their equilibrium values. Figure 18 shows the nonlinear
system’s response in all three state variables along with the
observer’s prediction from this initial condition. The observer
manages to track each state variable almost exactly over the
whole simulation.

VIII. O PTIMAL CONTROL

The nutrients we use to fuel the chemostat system are
expensive, so we also wanted to design a controller that uses
the least amount of nutrients possible while still achieving
our performance requirements. To achieve this optimality,we
first relax our performance requirements toPO ≈ 30%, Ts <
5 hours. Then we useLinear-Quadratic Regulation, or LQR,
to choose gains for a full-state feedback controller that are

optimal in some sense. With LQR, we minimize a cost
functional of the form

J =

∫ ∞

0

x(t)T Qx(t) + u(t)T Ru(t) dt, (16)

whereQ is an(n×n) (constant) matrix andR is a (constant)
scalar. Intuitively, a more heavily-weightedQ translates to
a decreased settling time for the system, while a largeR
corresponds to a smaller control input.

Since we are interested in controlling the rotifer concen-
tration and minimizing the control input, we weight these
quantities more heavily inQ0 andR0, our initial choice for
the cost parameters:

Q0 =





1 0 0
0 1 0
0 0 5



 , R0 = 5. (17)

With the base values forQ and R chosen, we find
(roughtly) the smallest value ofξ for which the choiceQ =
ξQ0, R = (1− ξ)R0 yields acceptable system performance.
Figure 19 shows the linear system’s impulse response for a
range ofξ.

Based on the responses shown in the figure, we selectξ =
0.8, which yields the gain matrixK = (1.28 0.285 −1.10);
this matrix is connected to the system in the manner shown in
Figure 13. This choice gives us 30% overshoot and a settling
time of roughly 5 hours, which matches the performance
bounds we gave above. Since we ultimately wish to minimize
the amount of nutrients we use, it makes sense to meet the
upper bound of our performance specification.
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Fig. 18. Nonlinear system response starting fromn(0) = 0, other state variables at their equilibrium values, with estimated state from the (linear
system-based) observer.
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Fig. 19. Rotifer concentration and nutrient addition rate impulse response for the LQR-controlled linear system over a range ofξ; Q = ξQ0, R = (1−ξ)R0.

Figure 20 shows the impulse responses of the linear and
nonlinear systems, as well as the cumulative nutrient addition
beyond the contribution from the equilibrium rateu∗. The
linear and nonlinear systems respond quite similarly to the
impulse, which is in agreement with the result we obtained
with our original ideal full-state feedback controller (see
Figure 14). That the optimal control scheme stabilizes the
system using less nutrients than would have been used by the
system at equilibrium suggests that we made a good choice
for our cost function.

Our full-state feedback controller uses≈ 400 units of
nutrients to stabilize the system; though it meets much more
stringent performance requirements, the amount of nutrient
saved with the optimized controller is startling. Our root
locus compensator, which has far worse performance than
our optimized controller, uses≈ −4 units of nutrients to
stabilize the system, which is comparable to the optimized
system.

IX. A M ORE REALISTIC MODEL

The model given in (1) is, at best, a rough approximation
to the actual system’s behavior. To be more thorough in our
evaluation of a given controller, therefore, we ought to check
its performance when applied to a more realistic model.
Specifically, we add the following assumptions to the list
in Section I:

5) The uncertainty in the measurement of the parameters
k1, α, andβ is 10%.

6) There could be up to 10 minutes of observation delay
(y(t) = b(t − τ), 0 ≤ τ ≤ 1

6 ).

7) We cannot actively remove nutrients from the system,
and we cannot add them faster than4 (0.0 ≤ u ≤ 4.0).

Since it provided the best performance without having
direct access to the system’s full state, we test the observer-
based controller’s robustness by applying it to the nonlin-
ear model of our system obtained by implementing these
additional assumptions. Using precisely the same controller
we presented in Section VII, we were unable to imple-
ment the additional assumptions listed above. Instead, we
designed a full-state feedback controller to meet relaxed
performance specifications (P0 < 1%, Ts < 5 hours)
and slowed the response of the observer to make it less
sensitive to unexpected behavior from the nonlinear model.
The resulting gain matrices areK = (12.9 6.03 − 14.6),
L = (−0.23 26.9 11.3)T .

We first consider qualitatively the effect of each of the
assumptions separately, then present the result of their simul-
taneous application. Parameter uncertainty has a small effect
on percent overshoot and settling time, but increases the
steady-state error considerably. Limiting the rate of nutrient
addition primarily increases settling time. Adding observa-
tion delay increases the settling time, percent overshoot,
and steady-state error. Figure 21 illustrates the effect ofall
three model enhancements applied simultaneously,τ = 10
minutes.

X. D ISCUSSION

In this project, we designed a variety of controllers for
a chemostat system, applied them to both a linear and a
nonlinear model of the system, and evaluated their perfor-
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Fig. 20. Rotifer concentration and cumulative control input(nutrient addition beyond the anticipated equilibrium rate u∗) for the linear and nonlinear
systems.
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Fig. 21. Impulse response of the more realistic nonlinear modelwith observer-based full-state feedback control. Parameter uncertainty is10%, observation
delay is 10 minutes.

mance. We were able to design controllers which utilize the
system’s full state, either directly or through an observer,
to meet a fairly rigorous performance specification for the
system’s impulse response near equilibrium. We were also
able to optimize the rate of nutrient addition subject to given
performance constraints.

However, the controller we designed without access to
the system’s full state (the root locus-based controller) fell
short of the desired performance. But, we showed that if
we redesigned the chemostat so that we could measure the
concentration of algae instead of the concentration of rotifers,
we could meet the performance specification using a root
locus-based compensator.

We also showed that by relaxing the performance speci-
fications, we were able to stabilize a more realistic model
of the chemostat system using an observer-based full-state
feedback controller, though we weren’t quite able to meet our
desired performance specifications in the case that there isa
ten-minute observation delay and large (≈ 10%) parameter
uncertainty.

Further refinements on the work presented here ought to
include more rigorous disturbance and sensitivity analysis, an
investigation into the range of validity for the linear model,
and application of our controllers to an even more realistic
model of the system which models algae evolution and
devolution in response to changes in the rotifer concentration.
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