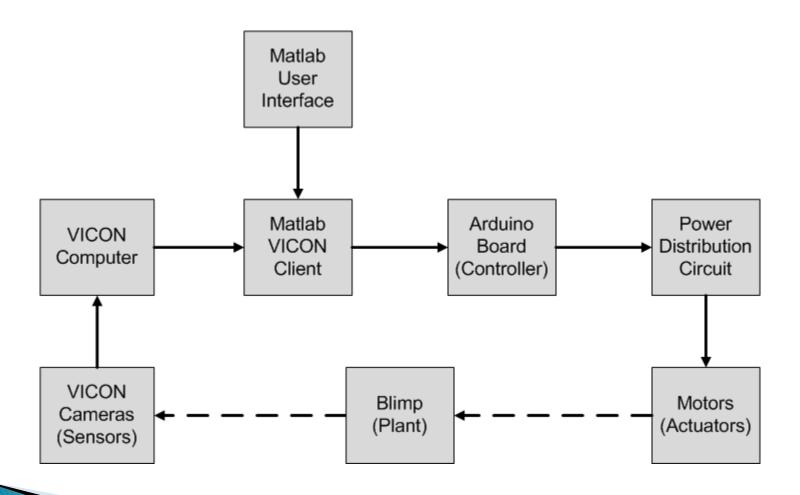
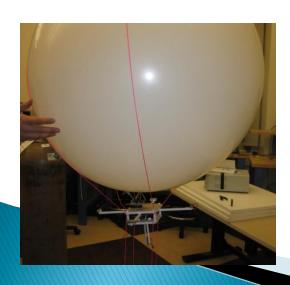
Formation Flying Blimp Project MS#4

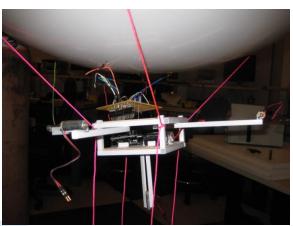
Beth Boardman, Linh Bui, Kyle Odland, Matt Walker, Maggie Wintermute

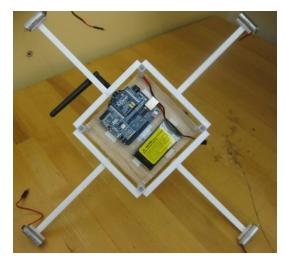

Presentation Outline

- Project recap
- System architecture
- Hardware
 - Motor/propeller selection
 - Blimp structure
- Electronic components
 - Power circuit
 - Wireless communication
 - Arduino board and shield
- Software
 - Vicon interface
 - Arduino onboard controller implementation

Project Recap and Update

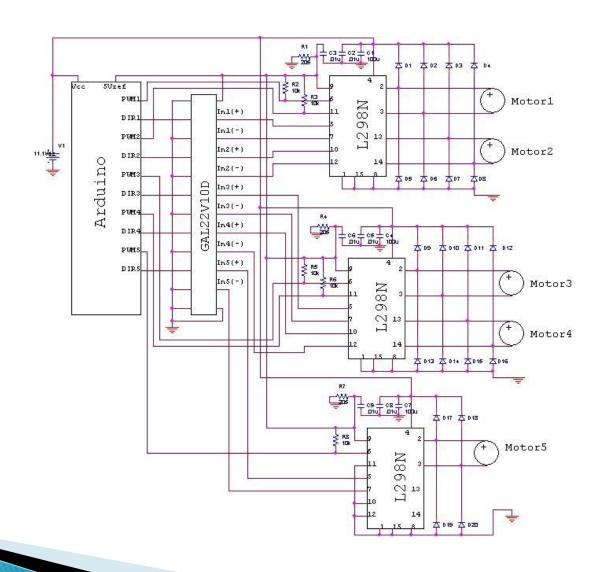

- Autonomous blimp project for testing of distributed system algorithms
- Blimp structure and hardware assembled
- Interface with VICON camera system
- Circuit board designed and tested
 - Currently in production
- Controllers for multiple operating points
- Onboard microcontroller programming


System Architecture



Blimp and Structure

- Weather balloon (diameter 1 meter)
- Blimp structure must be light weight
 - Styrene supports with 2 balsa decks
 - Motor arms supported to prevent deformation
 - Motors/propellers mounted away from structure to provide yaw authority



Electronics

- Arduino/ATMega328p
 - Serial communication
 - Onboard controller
 - Easily implement controller/circuit board configuration
- Xbee communication system
 - Wireless serial communication
 - Interfaces with Arduino using shield

Power Board Schematic

Power Circuit Implementation

- ▶ L298N H-Bridge Central Component
- Three signals required for bi-directional motor control

Duty	Direction 1	Direction 2	Motor Output:
P	5V	OV	CW (αP)
P	0V	5V	CCW (αP)

- Arduino only has 14 I/O pins
- GAL22V10 Programmable Logic Device switches between signal cases with one Arduino input

VICON Software Interface

- VICON data is gathered in MATLAB
- GUI allows user to define new reference position at any point during the trajectory
- Blimp position data is sent from the loop over serial connection to the Arduino (via Xbee)
- Position and commands separated into bytes prior to sending to allow easy serial read by Arduino

Onboard Controller Implementation

- Arduino board takes in serial data representing position and reference position
- Estimator and PI controller operate using matrices (linearized system model)
- Controller output voltages are adjusted to implement bidirectional motor control
- Arduino outputs PWM signals and outputs representing direction

Remaining Schedule:

- Finish Circuit Board: 5/23
- Create gondola attachment system: 5/28
- Create gondola ballast system (+mass): 5/28
- Implement Controller on to Arduino: 5/31
- Tinker until demonstration date

Questions, comments or concerns?

Resources:

- Bestaoui, Yasmina and Hamel, Tarek. Dynamic Modeling of Small Autonomous Blimps. Methods and Models in Automation and Robotics, Miedzyzdroje, Pl, Aug. 2000, vol. 2, pp 579 - 584.
- Dorf, Richard C. and Bishop, Robert H. Modern Control Systems. Pearson Prentice-Hall, Inc., Upper Saddle River, NJ, 2005.
- Heemstra, Brian. Linear Quadratic Methods Applied to Quadrotor Control.
 Department of Aeronautics & Antronautics, University of Washington, 2010.
- Hughes, Kyle, et al. *Distributed Space Systems Laboratory Blimp*. Department of Aeronautics & Antronautics, University of Washington, 2008.
- Lewis, Frank L., and Stevens, Brian L. *Aircraft Control and Simulation*. Wiley, Hoboken, NJ, 2003.
- Loo, van de Jasper. Formation Flight of Two Autonomous Blimps: The Atalanta Wingman Project. Master thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2007.
- Nise, Norman S. *Control Systems Engineering*. Wiley, New York, 2007.
- Ogata, Katsuhiko. State Space Analysis of Control Systems, Prentice-Hall, Inc.,
- Englewood Cliffs, NJ, 1967.
- Schutter B. De, *Minimal State-Space Realization in Linear System Theory. an Overview*, Control Laboratory, Faculty of Information Technology and Systems, Delft University of Technology, Netherlands 30 January 2000