1. Introduction

The critical role of stochasticity in biology has been studied
in many contexts - such as creating variations required to survive
in hostile environments [1], regulating circadian clocks [2], and
probabilistic differentiation in developing cells [3]. If we system-
atically characterize the stochasticity in each context, we gain the
ability to control these biological functions. The ability to control
the development of multicellular systems, for one, holds fantastic
futures like replacement organs grown in vitro or smarter drugs
that only target tumors. With such potentials, then, which feature
of stochasticity in development should we focus on?

In the development phase of multicellular organisms, an iso-
genic group of cells differentiates into multiple groups of het-
erogeneous cells with different epigenetics. This behavior can
be likened to a group of people performing a leader election.
To fairly elect a leader, the group can repeatedly and separately
perform a task that has probabilistic outcomes, where one of the
outcomes is the victory outcome. For example, a coin-toss with a
head. After some number of tries, if an individual is the first one
who ends up with a head among the group, he or she becomes a
leader - effectively differentiating him or her from the group. The
leader can then send signals to the rest of the group, telling them
to stop flipping coins and become followers - again differentiating
them from their undecided state, as well as from the new leader.
Thus, it is not farfetched to imagine that a similar mechanism
takes place inside a developing organism.

Let us assume that an individual ends up with a head for the
first time after h tries. Because coin-tosses have probabilistic
outcomes, 4 is also a random variable. And as such, & is char-
acterized by its probability distribution. Let us assume that this
probability distribution can be manipulated somehow - by biasing
the coin, for example - then, the variance of / has an interesting
interpretation in the leader election example. If the variance of &
was set small, the probability of multiple undecided individuals
each ending up with the victory outcome in a short amount of
time is large - in other words, the victory outcomes are closely
synchronized, and the group may end up with multiple leaders.
However, if the variance is set large, the victory outcomes are
asynchronous and the group is less likely to have multiple leaders.
Therefore, the probability distribution of 4 affects the population
distribution of differentiated states of leaders and followers.

In the following sections, we discuss the translation of the
leader election example into a cellular context, specifically in the
development phase, and propose a possible biological equivalent
to the biased coin. Then we discuss the ways to characterize the
probability distribution of % (or some equivalent random variable
in the proper context), both with theoretical analysis by posing the
scenario in mathematical language, and with experiments by syn-
thesizing the biological biased-coin equivalent. This discussion of
characterization methods is followed by required backgrounds in
both theory and experiments, as well as related works in the field
that serves as helpful starting points for the proposed research.
Some preliminary results are discussed in the last section, along
with recommendations and proposed future works.
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2. Approach and Objectives

As long as the proposed mechanism is probabilistic, one can
suggest several intracellular environment analogs to the coin-flip
example, such as protein dimerization, folding, or saturation. Let
us consider the protein saturation example, where at ¢ = 0, the
gene coding for the protein of interest, X, gets activated and there
is no X present. The gene begins to express X and the count
number of X (Ny) increases as long as the gene remains activated
and the rate of X degradation is less than the rate of X synthe-
sis. If the gene is deactivated before Nx reaches the saturation
value, then Ny begins to decrease until the gene is activated again.
This process of gene activation and deactivation occurs repeatedly
until at some time ¢t = T, the count number of X reaches the
saturation value. This time 7; is analogous to & in the coin-
flip example, and we call T, the completion time of the protein
synthesis process. And as mentioned earlier, the distribution of
the differentiated states of the cell population with the gene X is
affected by the probability distribution of 7.

There can be a number of ways to manipulate the proba-
bility distribution of the completion time in this example. One
way is varying the frequencies of gene activation and deactiva-
tion. Another way is varying the mechanism that activates the
gene - an open-loop activation from external inputs or a feed-
back activation/deactivation by X. Frequency variations change
the quantitative features of the gene regulation, and feedback or
open-loop variations change the qualitative features of the gene
regulation. The relationship between the quantitative and quali-
tative features of gene regulation and the probability distribution
of the completion time will help us understand the fundamental
design principles employed by nature to perform development
and differentiation in multicellular organisms. Therefore, we pro-
pose the following objectives to guide the investigation of such
relationship.

— Synthesize single-gene networks in E. coli. Three different
mechanisms of gene regulation will be studied in this research
- open-loop, positive feedback and negative feedback. The syn-
thetic gene network corresponding to an open-loop mechanism
will have a single gene that is activated by some external inputs.
For the two feedback mechanisms, a single gene network that
expresses either its own repressor or activator will be synthe-
sized, to correspond to a negative or positive feedback mecha-
nism, respectively. All of the gene networks will be synthesized
with inducible promoters and fluorescence protein gene. The
inducible promoters allow us to measure the completion time by
setting the initial time to when the promoter is induced, and the
level of fluorescence emitted by the fluorescence protein is used
to monitor the gene activity.

— Mathematically model the three gene networks. Using the
Chemical Reaction Network theory, we will model the interac-
tions among the gene network species. We apply a variety of
stochastic analysis tools to the models in order to characterize
the completion time, its probability distribution, and sensitivity
to parameter variations and structural variations. Such analysis
tools include the Chemical Master Equation (CME), the Sto-
chastic Simulation Algorithm (SSA), and cumulant and moment
dynamics. We will identify the qualitative differences of the
gene networks arising from the difference in structure, and dis-
cuss how they can make each structure a better or worse suited
mechanism used in development processes. In addition to the



qualitative features, quantitative features regarding the change in
parameters will be investigated. The limitations on the probabil-
ity distribution of completion time placed by physically feasible
parameter values may also explain why a certain structure is
more frequently observed in development than others.
Iteratively verify predictions made in the models with ex-
periments and modify the models based on the experimen-
tal results. The gene activity is monitored by measuring the
level of fluorescence emitted by the synthesized fluorescence
protein. The probability distributions of the completion time
in these synthetic gene networks will be approximated using
cellular assays, such as time-lapse microscopy or flow cytom-
etry. Time-lapse microscopy allows us to monitor the individual
trajectory of fluorescence level in a single cell and the time at
which the fluorescence level reaches some saturation value. On
the other hand, flow cytometry reveals the distribution of flu-
orescence level at each measurement. Therefore, by measuring
the fluorescence distributions at multiple times, we can study the
distribution dynamics of the fluorescence level. And from the
dynamics, we will approximate the fraction of the population
that has reached the saturation value at each measurement time.
The experimental results will be used to invalidate some of the
candidate models and point out the features that require modifi-
cation to attain better fidelity to the actual systems The modified
models, in turn, are used to design experiments that will better
highlight the key features of the systems. The mathematical
model predictions obtained from this iterative process will iden-
tify the salient features of development process and allow us to
synthesize gene networks with the complexity comparable to the
naturally occurring examples.

The following section will provide a broad overview of the
fundamentals in both theory and experiments to accomplish our
objectives. Two specific related works are discussed afterwards,
each with a focus on theory and experiments respectively. These
works were chosen based on their close proximity to the objec-
tives of the proposed research, and served as a foundation for ob-
taining the preliminary results that are discussed in a later section.

3. Background and literature review

As the biotechnology steadily advances, researchers are able
to synthesize gene regulatory networks with increasing precision
and success. These synthetic gene networks are built from bor-
rowed biological components of natural genetic regulatory parts,
such as promoters and transcription factors. Though manipulating
genetic materials is not a new technology, synthetic biology is
different from traditional genetic engineering in its intention to
engineer novel behaviors, such as oscillation or bistability [4,
5]. The underlying objectives of these synthesis-based approach
to biology is to identify and isolate the salient features of com-
plex gene networks and discover the nature’s design principles.
And synthetic biology is strenghthened by two complementary
approaches of mathematical theory and biological experiments. A
well-established study of differential equations is used to analyze
the dynamics of the systems [6], linear systems theory the stabil-
ity and controllability [7], and probability theory the stochastic
behaviors in the mesoscopic level of biological molecules [8], to
name a few. At the same time, increasing efficiency of cloning
techniques [9], decreasing cost of DNA synthesis and sequencing
[10], and the advance of experimental equipments all contribute

to engineering biological test beds for verifying hypotheses ob-
tained from mathematical theories. As the objectives of the pro-
posed research spans both theory and experiments, the rest of the
background section is divided into two sections to address the
fundamentals of each aspect separately.

3.1. Theory. The theory of Chemical Reaction Network was
originally developed to provide a standardized foundation from
which a mathematical description of chemically interacting species
inside a fixed volume can be derived [11]. The CRN of a given
system contains chemical species (X;) that interact with respect
to some reaction (R;), the stoichiometric coefficients of reactants
(u;j) and products (v;;) of the chemical reactions, and the rates
of these interactions (A;). From this description, using the Law
of Mass Action, the dynamically changing concentrations of the
chemical species are modeled by a set of ordinary differential
equations. This method translates smoothly into the context of
biological interactions inside a cell. Cellular environments are
no different from the environments inside a chemical processing
plant, such that they have biochemically interactions, reactant and
product species of these interactions, and numerical values that
describe the rates of the interactions. However, the key difference
is that whereas chemical systems tend to have a large quantity
of each species, the quantity of biological molecules tend to be
present in much smaller quantities. Thus, chemical species can be
expressed as continuous variables, whereas biological molecules
must be expressed as discrete variables. Additionally, the stochas-
ticity of the biochemical interactions become more pronounced in
a system with species in small quantities. Therefore, biochemical
systems, such as gene regulatory networks require mathematical
description that properly addresses the discrete copy number of
species and the stochasticity of interactions.

The discrete values of biochemical molecules inside gene
regulatory networks allow us to model the systems as discrete-
state continuous-time Markov processes [12]. Let the species
of an arbitrary gene regulatory networks be denoted by a vector
S =[Sy, ,Sn], and the number of each species are denoted by
X;. Each discrete state of the system is then denoted by the vector
X = [Xi, -, Xu]. And because the stochasticity of gene networks
forces the description of the system from a deterministic value to
a probability distribution over the states, we define the probability
of the system in state X at time ¢ to be p(X,#). The vector of the
probabilities of all the states is p(¢) and the probability vector,
given some initial distribution pg, evolves according to the fol-
lowing master equation.

ey p() = Qp().
The above equation is the Chemical Master Equation, and the

matrix Q = [g;;] contains the rates of system transitions from state
Jj to state i [13]. The analytical solution of (1) is

2 p(1) =
Do not be mislead by the elegantly simple form of the solution, as
the matrix exponential, e?, requires an infinite sum of high com-
putational cost. Instead of solving for the probability distribution
dynamics analytically, a numerical alternative exists, where the
exact realizations of the corresponding CRN can be obtained.
The Stochastic Simulation Algorithm (SSA) was developed
to numerically simulate individual trajectories of the species of an
arbitrary stochastic chemical reaction network [14]. The method
employs the fact that 1) each rate of a chemical reaction is the

th Po-
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inverse of the mean waiting time for the reaction, and 2) the prob-
ability of a reaction is equal to the ratio of the reaction propensity
to the sum of all reaction propensities. Then, the time evolution
of a stochastic system can be approximated by generating a large
number of simulations of the system and studying the dynamics of
each species. It should be clarified that the probability distribution
dealt with in the CME corresponds to the joint probability distri-
bution of each specific state, P([X; = x1,- -+, X, = x,] 1), whereas
the approximated probability distributions obtained via SSA are
the marginal probability distributions of all species, P(Xj,t). Thus,
it is more straightforward with the SSA to portray the time-evolution
of each species probability distribution. However, this numerical
algorithm requires that the initial condition and the rate constants
be specified a priori, which means that if an analysis requires a
different set of rates or initial conditions, a whole new set of large
number of simulations is required to study the specific condition.

An alternative approach of characterizing the evolution of
the probability distribution for stochastic biochemical systems is
to compute the cumulant dynamic of each species of the system
[15]. The cumulants of a random variable are set of values that
characterizes the shape of the corresponding probability distri-
bution. For example, the second order cumulant of a random
variable is its variance and is representative of the width of the
probability distribution. The cumulants are computed using the
cumulant generator function,

(3) Gx(s) = log(e™),

where X is the random variable and {-) denotes the expected value.
The nth order cumulant of X is computed by taking the nth deriv-
ative of (3) with respect to s and setting s = 0. Usually, no more
than the first four cumulants are computed for a given species,
because cumulants of order five or higher have no straightforward
interpretation related to the probability distribution characteris-
tics. The time evolution of these cumulants requires an additional
function called the extended generator. Let w(X (¢)) be some test
function of state X (¢), then the expected value of this test function
evolves according to the following equation.

dy(X@®)) _ (Ly(X(1)))

dt

/1 .
@ = LA (v @) - vx ),

j=

where the X/(¢) is the state after the reaction R; : X (r) — X/(r)
has occurred, A ; is the reaction rate constant, and L is the ex-
tended generator. The cumulant dynamics is then obtained by
letting w(X (¢)) = Gx(s), and solving the resulting set of ordinary
differential equations. An interesting connection exists between
the cumulant dynamics and the differential equation obtained by
using the Law of Mass Action, such that the first order cumu-
lant dynamics is equal to the deterministic dynamics predicted by
Mass Action kinetics. In fact, this is not surprising because the
first order cumulant its the mean of the population and Law of
Mass Action predicts the average behavior of the population.

3.2. Experiments. Within a single cell resides a genome, a
chain of DNA molecules, that contains all the genetic information
the cell needs to harvest energy, reproduce and survive. The
genome alone, though mighty in its information content, cannot
make a living organism. It requires molecular machinery that
actualizes this information in useful form, thus is the function of
RNA and protein. DNA is transcribed into RNA, and in turn the

RNA is translated into protein, and proteins are the true workers
of biological functions [16]. The role of protein molecules as
the regulators of genomic information transfer is the most critical
with regards to the viability of an organism. If the processes of
transcription and translation were not properly regulated, in other
words if the entire genome was uniformly transcribed and trans-
lated, it would mean a disaster for the cell. Therefore, there exists
intricately connected networks of gene regulation that allows cells
to allocate energy, respond to its environment and procreate.

The two major components of gene regulatory mechanisms
are promoters and transcription factors (TF). TFs are protein com-
plexes that act either as a repressor or an activator by binding to
the promoter of a gene. Promoters are short sequence of DNA that
are located at the 5’-end of a gene and are recognized by RNA
polymerase to initiate an RNA synthesis. A bacterial promoter
has two short 6 basepair long sequences that are conserved in
most promoters, called the consensus sequences. The rest of
the promoter sequences are composed of operators that serve as
binding sites for specific TFs. A large number of TF and pro-
moter pairs have been identified in metabolic pathways, signal
transduction pathways, and developmental regulatory pathways.
The known pairs of TF and promoter are used to design and build
synthetic gene regulatory networks by arranging them in spe-
cific configurations [17, 18]. For example, the critical structure
of stress response in B. subtilis were identified by synthesizing
the same gene network, but with one of the two feedback loops
(coupled positive and negative feedbacks) removed [19]. The syn-
thetic network, when transformed inside cells, prohibited the cells
from leaving their competence state, showing that the removed
feedback is critical to the overall mechanism of B. subtilis stress
response.

Feedbacks are not observed just in this specific example of
transient differentiation. In fact, feedback mechanisms are fre-
quently observed in a number of gene regulatory network classes.
A class of gene networks that give rise to stochastic state switch-
ing, such as cancer and developmental differentiation, has been
consistently shown to contain positive feedback loops [20, 21,
22, 23]. Another class of behavior that arises from containing
positive feedback loops in the gene regulatory networks is pro-
crastinating differentiation [24]. Procrastination refers to the phe-
nomenon observed in isognenic cells, that when triggered for spe-
cific response (e.g. sporulation, apoptosis), the response time of
each cell widely vary within the microcolony and results in varied
states of the population. This phenomenon is an example of the
relationship between the probability distribution of completion
time and the distribution of differentiated state mentioned in the
previous section.

3.3. Related Works. One way of deriving the analytical ex-
pression of completion time probability distribution is to solve the
CME of the system in Laplace domain [25]. In this work, a kinetic
proofreading (KPR) process was modeled by a Markov chain
with an absorbing state, where the absorbing state corresponded
to the completion of the proofreading process that required se-
quential intermediate steps. In recognition that the completion
time is essentially the first-passage time of Markov chain, they
performed Laplace transform to the solution of the CME shown in
(2) to obtain the analytical expression [26]. The solution showed
that the distribution of first-passage time approaches a limiting
behavior, depending on the direction of the bias imposed by the



transition rates - forward to the sink state, or backward to the
initial state. However, the solution and the conclusion is limited
to an open-loop system where the transition rates are indepen-
dent of the states. Though the authors analyze simulated sys-
tems with varying transition rates by using randomly generated
values and expand their conclusion, this is quite different from
state-dependent transition rates of feedback mechanisms. It will
be interesting to investigate whether a similar conclusion can be
drawn from biochemical processes with feedback.

A feedback loop in a gene regulatory network consists of
a promoter that are regulated by some TF, which in turn, is ex-
pressed by the gene controlled by the promoter. Naturally occur-
ring feedback loops are interesting in themselves, but a synthetic
class of hybrid promoters developed to exhibit the programma-
bility of promoters expand the number of possible feedback loops
[27]. Hybrid promoters are synthesized by combining multiple
operator sites corresponding to different TFs, so that the resulting
promoters are regulated by more than one type of TF. Addition-
ally, the order in which these operator sites are arranged was
shown to affect the expression level of the downstream gene. All
the hybrid promoters studied in the 2007 work are inducible by
specific inducer chemicals and the concentrations of these induc-
ers are shown to be correlated with the downstream gene expres-
sion as well. By employing these hybrid promoters and varying
the inducer concentrations and the copy number of genes, many
variations of feedback loops can be engineered.

4. Preliminary Results
4.1. Synthetic positive feedback gene network in E. coli.
4.2. Approximation of completion time distribution.
5. Plan of Work

6. Schedule and Required Resources
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