
Stefan KristjanssonStefan Kristjansson

Andrew Lawrence

Richard Wood

Table of Contents
� Project update!
� New Schedule
� System inputs
� System outputs
� Internal system state � Internal system state
� System diagram of physical parameters
� Equations of system
� Model parameters and value estimations
� Plant simulation
� Accuracy of model
� Controllability of system
� Bibliography

System

Project Update – Initial Goal
� To design high level control system to:

� Build rectangle -> cube -> structure

� Manage resources for single tile construction

� Manage resources for multiple tile construction� Manage resources for multiple tile construction

� Detect errors, faults and make repair as necessary

Project Update – New Goal
� Characterize the system

� Derive dynamic and kinematic equations to define
joint/module forces and interaction

� Develop Path Planning based on Torque Minimization� Develop Path Planning based on Torque Minimization

� Once controller design developed, continue with
original project plan

New Schedule

High Level System Inputs/Outputs
� Inputs:

� Reference structure

� Send program

� Robot constructs nodes and trusses� Robot constructs nodes and trusses

� If fails to accurately place a node or truss, tries again

� Continues building until all feedback matches reference

� Outputs

� Contact Switches

� Compare to reference structure

High Level Block Diagram

|ref – actn+1| < |ref – actn|

High Level System State

Input N(1,1) N(1,2) N(1,3) N(1,4) Th(1,1) Th(1,2) Th(1,3) Th(1,4) Tv(1,1) Tv(1,2) Tv(1,3) Tv(1,4)

N(2,1) N(2,2) … … Th(2,4) … Tv(2,4)

… … …

N(n,1) … … Th(n,4) … Tv(n,4)

Output N(1,1) N(1,2) N(1,3) N(1,4) Th(1,1) Th(1,2) Th(1,3) Th(1,4) Tv(1,1) Tv(1,2) Tv(1,3) Tv(1,4)

N(2,1) N(2,2) … … Th(2,4) … Tv(2,4)

… … …

N(n,1) … … Th(n,4) … Tv(n,4)

Plant Simulation

High Level Characterization
� Node Placement

� Total: 10 Success: 6 Failure: 4

� Success Rate: 60%

� Truss Placement (Horizontal)

� Total: 10 Success: 8 Failure: 2

� Success Rate: 80%

� Truss Placement (Vertical)

� Total: 10 Success: 7 Failure: 3

� Success Rate: 70%

Low Level Block Diagram

������ + ���, �
��
 + ���, �
� = �

�
 = ����,� − ��� + ��

� = ��
� = �

�
 = −�� � + �� �

Low Level System Inputs/Outputs
� Inputs:

� θr – Desired motor position

� 5 modules -> 5 controllers -> 5 desired motor positions

� Outputs:� Outputs:

� θ – Actual motor position

� 5 modules -> 5 controllers -> 5 actual motor positions

Internal System State

• 1 Base
•Rotates arm 270˚

• 3 Ubar modules
•Rotates 180˚ in the xy plane

• 1 L7 module• 1 L7 module
•Rotates end effector 180˚

•1 End Effector
• Module and Truss manipulation

Model Parameters and Value

Estimations

Kinematics

Translation Rotation

Relation of system i to i-1

Planar Robotic Arm

Kinematic Link Parameters
i αi-1 ai-1 di Θi

1 α1 0 0 0

2 0 155 0 Θ2

3 0 60 0 Θ33 0 60 0 Θ3

4 0 60 0 Θ4

5 α5 60 0 0

6 0 100 0 0
‘a’ distances are measured in mm
α1 → Angle of Base Rotation
Θ2 → Angle of Bottom UBAR
Θ2 → Angle of Mid UBAR
Θ2 → Angle of Top UBAR
α1 → Angle of L-7

Reverse Kinematics
� Positions of frames related back to origin through

� Torques are calculated about each U-BAR joint.

� Reverse Kinematics will help plan arm paths by
minimizing torques.

� Each servo has 417 oz-inch of torque

Path Planning

- Torque Minimization

Path Planning
– Torque Minimization

0.2

0.3

0.4

0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2

0

0.1

0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.05

1 2 3
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

uBar Joint

T
or

qu
e

(N
)

Preliminary Torque Estimation

ANGLE (degrees) TORQUE (N)

Angle Ubar 1 Angle Ubar 2 Angle Ubar 3 Torque Ubar 1 Torque Ubar 2 Torque Ubar 3

-90 0 0 1.1183 0.5592 0.4709

-90 0 45 0.8425 0.4213 0.333

-90 0 90 0.5625 0.342 0

-90 45 0 0.9425 0.5518 0.3879

-90 45 45 0.6424 0.3984 0

-90 45 90 0.2014 0.083 -0.279

-90 90 0 0.326 0 0

-90 90 45 0.109 -0.083 -0.279

-90 90 90 0 0 0

Controllability of System
� In general:

� Moves where we want
� Moves when we want

� Known controllability problems include:
Inconsistent operation� Inconsistent operation

� Steady-state error
� Oscillation
� Velocity of movement

� Control issues can be addressed through application of:
� System calibration
� Integral controller
� Software function calls or algorithms

Bibliography
CCL: The Computation and Control Language. Retrieved April 05, 2010, from University of Washington, Self Organizing Systems Lab
website, http://soslab.ee.washington.edu/mw/index.php/Code
Primary reference for documentation and source code for CCL.

Phidgets. Retrieved April 13, 2010, from Phidgets website, http://www.phidgets.com/
Used as the source for phidget I/O documentation and source code.

Mason, Matthew. (2001). Mechanics of Robotic Manipulation. Massachusetts: The MIT Press.
Utilized as a supplemental reference for forward kinematic equations of the robotic arm.

Modlab CKBot Graphic User Interface Manual. Retrieved April 10, 2010, from UPenn, Modular Robotics Laboratory website,
http://modlabupenn.org/efri/
Used as the primary reference guide for interfacing with the CKBot modules in the Windows environment.

M. Yim, P. J. White, M. Park, & J. Sastra, "Modular Self-Reconfigurable Robots", 2009, pp. 5618-5631.
A pivotal paper on self-reconfigurable robots; one of the primary CKBot modular robotic design sources.

Nurrat, Richard, & Li, Zexiang, & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Florida: CRC Press.
Utilized for instruction on the derivation of torque equations for robotic arm systems.

Craig, John J. Introduction to Robotics: Mechanics and Control.(1989) Reading, Mass.: Addison-Wesley.
Used as the primary source for kinematic equation derivation and vector equation manipulation.

IPython Documentation. Retrieved April 12, 2010, from IPython website, http://ipython.scipy.org/moin/
Used for reference documentation on IPython documentation and for the source code for compilation. Ipython is used to interface with the
CKBots.

