Factory Floor Testbed MS2

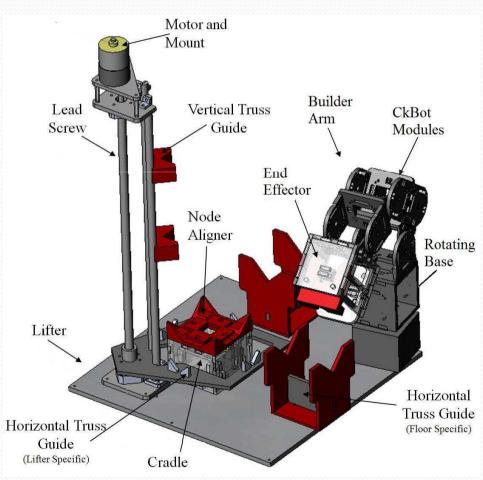

Stefan Kristjansson Andrew Lawrence Richard Wood

Table of Contents

- Project update!
- New Schedule
- System inputs
- System outputs
- Internal system state
- System diagram of physical parameters
- Equations of system
- Model parameters and value estimations
- Plant simulation
- Accuracy of model
- Controllability of system
- Bibliography

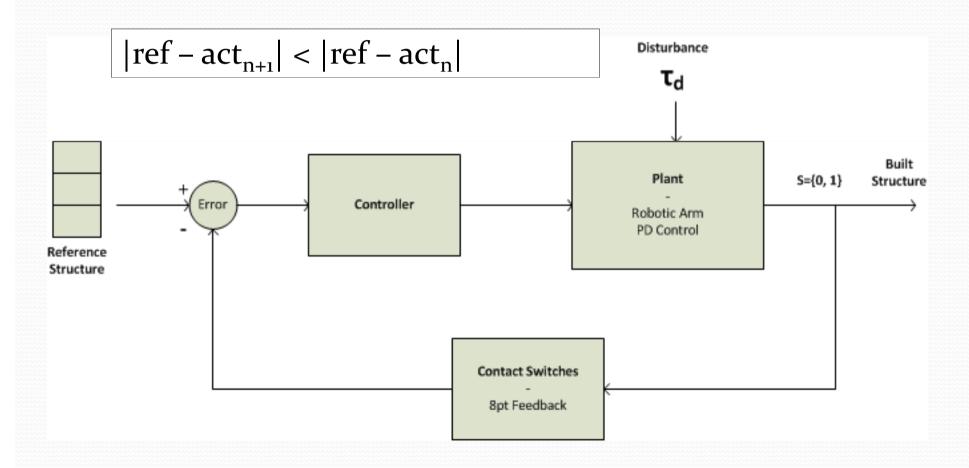
System

Project Update – Initial Goal

- To design high level control system to:
 - Build rectangle -> cube -> structure
 - Manage resources for single tile construction
 - Manage resources for multiple tile construction
 - Detect errors, faults and make repair as necessary

Project Update – New Goal

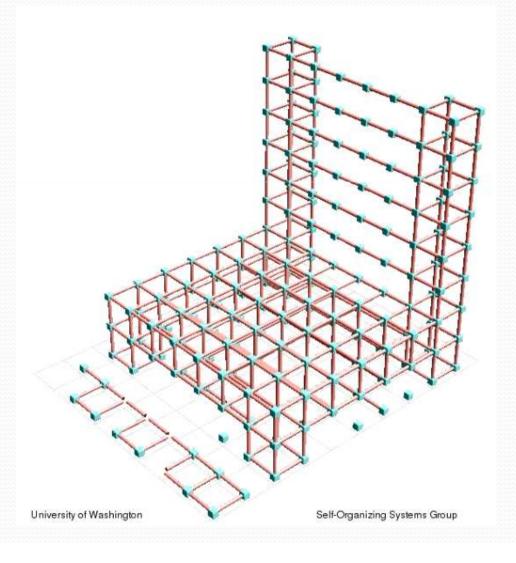
- Characterize the system
- Derive dynamic and kinematic equations to define joint/module forces and interaction
- Develop Path Planning based on Torque Minimization
- Once controller design developed, continue with original project plan


New Schedule

	Task Name	Chart	Finish	Downting	Apr 2010				May 2010			Jun .	2010	
ID		Start		Duration	4/4	4/11	4/18	4/25	5/2	5/9	5/16	5/23	5/30	6/6
1	Assemble robot and modules; wire system	4/1/2010	4/2/2010	2d										
2	Compile existing CCL code	4/2/2010	4/4/2010	3d										
3	Establish Communication, PC > Hardware through Ipython in Linux	4/5/2010	4/9/2010	5d										
4	Develop initial path planning	4/9/2010	4/16/2010	8d										
5	Establish communication through windows and GUI	4/16/2010	4/18/2010	3d										
6	Calibrate and Characterize the System	4/18/2010	4/27/2010	10d										
7	Develop dynamic and kinematic equations	4/21/2010	4/29/2010	9d										
8	Design Integral controller from system equations	4/25/2010	5/2/2010	8d										
9	ICRA Competition	5/2/2010	5/7/2010	6d										
10	Develop final path planning	5/8/2010	5/15/2010	8d										
11	Develop high level module to build rectangles	5/14/2010	5/17/2010	4d										
12	Nominal demonstration: Build a cube	5/17/2010	5/20/2010	4d										
13	Get CCL to work	5/17/2010	5/26/2010	10d										
14	Large simulation execution	5/24/2010	6/3/2010	11d										
15	Disturbance detection and correction	5/25/2010	6/5/2010	12d										

High Level System Inputs/Outputs

- Inputs:
 - Reference structure
 - Send program
 - Robot constructs nodes and trusses
 - If fails to accurately place a node or truss, tries again
 - Continues building until all feedback matches reference
- Outputs
 - Contact Switches
 - Compare to reference structure


High Level Block Diagram

High Level System State

Input	N(1,1)	N(1,2)	N(1,3)	N(1,4)	Th(1,1)	Th(1,2)	Th(1,3)	Th(1,4)	Tv(1,1)	Tv(1,2)	Tv(1,3)	Tv(1,4)
	N(2,1)	N(2,2)			•••			Th(2,4)	•••			Tv(2,4)
	•••											
	N(n,1)				•••			Th(n,4)				Tv(n,4)
Output	N(1,1)	N(1,2)	N(1,3)	N(1,4)	Th(1,1)	Th(1,2)	Th(1,3)	Th(1,4)	Tv(1,1)	Tv(1,2)	Tv(1,3)	Tv(1,4)
	N(2,1)	N(2,2)			•••			Th(2,4)				Tv(2,4)
	•••											
	N(n,1)				•••			Th(n,4)				Tv(n,4)

Plant Simulation

High Level Characterization

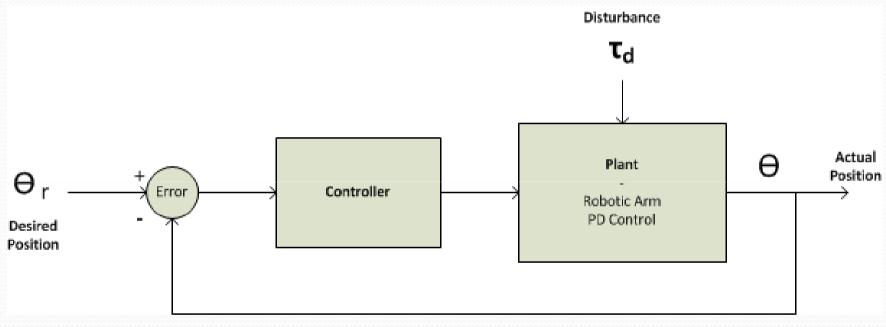
Node Placement

• Total: 10 Success: 6 Failure: 4

• Success Rate: 60%

Truss Placement (Horizontal)

• Total: 10 Success: 8 Failure: 2


• Success Rate: 80%

Truss Placement (Vertical)

• Total: 10 Success: 7 Failure: 3

• Success Rate: 70%

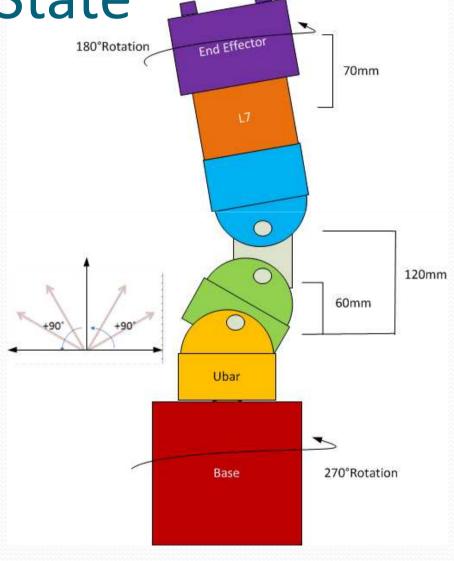
Low Level Block Diagram

$$M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + N(\theta, \dot{\theta}) = \tau$$

$$\dot{\theta} = k(\theta_{r,i} - \theta_i) + \tau_i$$

$$u = \theta_r$$

$$y = \theta$$


$$\dot{\theta} = -k_p\theta + k_pu$$

Low Level System Inputs/Outputs

- Inputs:
 - θ_r Desired motor position
 - 5 modules -> 5 controllers -> 5 desired motor positions
- Outputs:
 - θ Actual motor position
 - 5 modules -> 5 controllers -> 5 actual motor positions

Internal System State

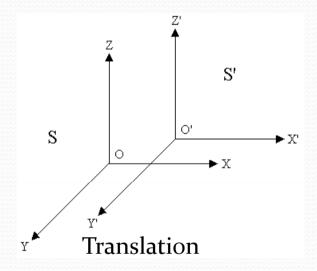
- 1 Base
 - •Rotates arm 270°
- 3 Ubar modules
 - •Rotates 180° in the xy plane
- 1 L7 module
 - •Rotates end effector 180°
- •1 End Effector
 - Module and Truss manipulation

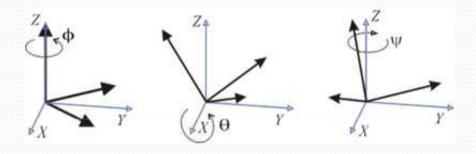
Model Parameters and Value

Estimations

Module	Mass (g)	Dimensions (mm)
Ubar	138	W60xL60xH60
L7	138	W60xL60xH60
Base	200	W60xL60xH85
End-Effector	130	W60xL67xH80
Node	129	W58xL58xH58
Truss	137	W35xL235xH35

Distance between ubar pivot points (mm)

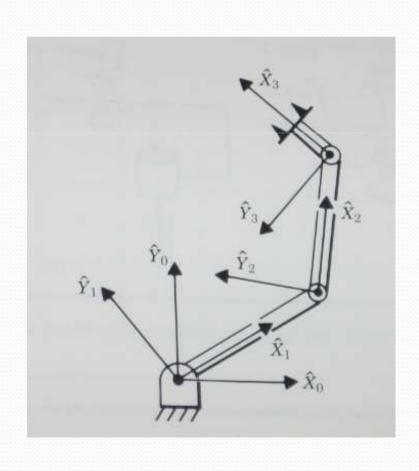

Vertical Distance from EEf to Node (mm)

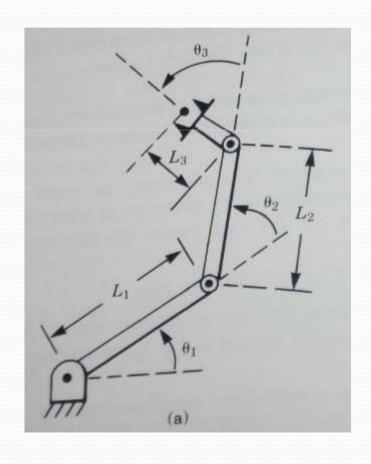

Lateral Distance from Eef to Truss (mm)

Distance between C7 and EEf (mm)

180°	Rotation	End Effector	70mm	
490'	+90	Ubar	60mm	120mm
60			•	
70		Base	270°Rotatio	in
75				
55				

Kinematics





Rotation

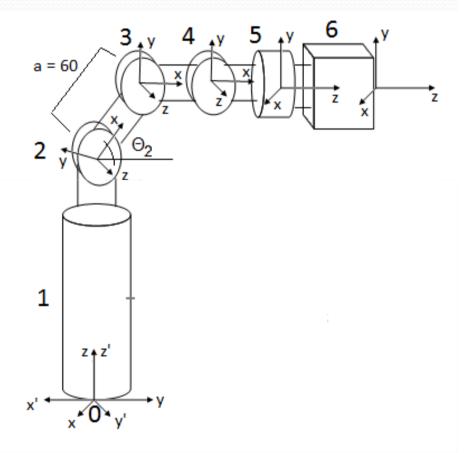
Relation of system i to i-1

Planar Robotic Arm

Kinematic Link Parameters

i	α_{i-1}	a _{i-1}	$\mathbf{d_i}$	Θ_{i}
1	$\alpha_{_{1}}$	O	O	O
2	O	155	O	$\Theta_{_2}$
3	O	60	O	Θ_3
4	O	60	O	Θ_4
5	α_{5}	60	O	O
6	0	100	O	O

'a' distances are measured in mm


 $\alpha_1 \rightarrow$ Angle of Base Rotation

 $\Theta_2 \rightarrow$ Angle of Bottom UBAR

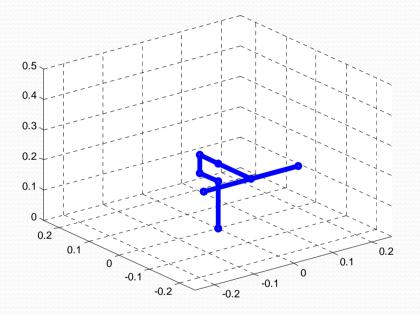
 $\Theta_2 \rightarrow$ Angle of Mid UBAR

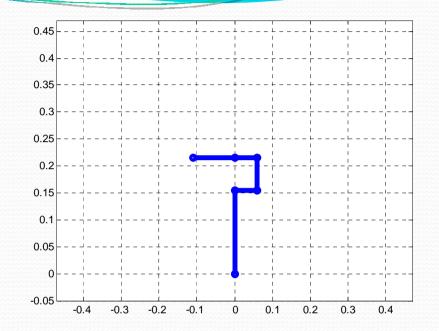
 Θ_2 \rightarrow Angle of Top UBAR

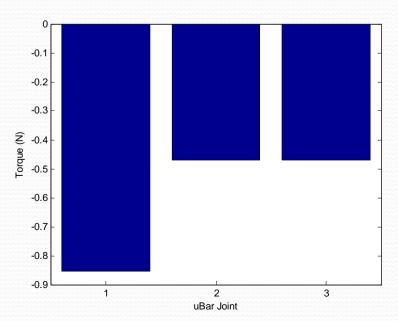
 $\alpha_1 \rightarrow \text{Angle of L-7}$

Reverse Kinematics

Positions of frames related back to origin through


- Torques are calculated about each U-BAR joint.
 - Reverse Kinematics will help plan arm paths by minimizing torques.
 - Each servo has 417 oz-inch of torque


Path Planning


- Torque Minimization

Path Planning – Torque Minimization

Preliminary Torque Estimation

	ANGLE (degrees)			TORQUE (N)	
Angle Ubar 1	Angle Ubar 2	Angle Ubar 3	Torque Ubar 1	Torque Ubar 2	Torque Ubar 3
-90	0	0	1.1183	0.5592	0.4709
-90	О	45	0.8425	0.4213	0.333
-90	О	90	0.5625	0.342	O
-90	45	o	0.9425	0.5518	0.3879
-90	45	45	0.6424	0.3984	О
-90	45	90	0.2014	0.083	-0.279
-90	90	О	0.326	O	О
-90	90	45	0.109	-0.083	-0.279
-90	90	90	o	O	O

Controllability of System

- In general:
 - Moves where we want
 - Moves when we want
- Known controllability problems include:
 - Inconsistent operation
 - Steady-state error
 - Oscillation
 - Velocity of movement
- Control issues can be addressed through application of:
 - System calibration
 - Integral controller
 - Software function calls or algorithms

Bibliography

CCL: *The Computation and Control Language*. Retrieved April o5, 2010, from University of Washington, Self Organizing Systems Lab website, http://soslab.ee.washington.edu/mw/index.php/Code *Primary reference for documentation and source code for CCL*.

Phidgets. Retrieved April 13, 2010, from Phidgets website, http://www.phidgets.com/ *Used as the source for phidget I/O documentation and source code.*

Mason, Matthew. (2001). *Mechanics of Robotic Manipulation*. Massachusetts: The MIT Press. *Utilized as a supplemental reference for forward kinematic equations of the robotic arm.*

Modlab CKBot Graphic User Interface Manual. Retrieved April 10, 2010, from UPenn, Modular Robotics Laboratory website, http://modlabupenn.org/efri/
Used as the primary reference guide for interfacing with the CKBot modules in the Windows environment.

M. Yim, P. J. White, M. Park, & J. Sastra, "Modular Self-Reconfigurable Robots", 2009, pp. 5618-5631. *A pivotal paper on self-reconfigurable robots; one of the primary CKBot modular robotic design sources.*

Nurrat, Richard, & Li, Zexiang, & Sastry, S. (1994). *A mathematical introduction to robotic manipulation*. Florida: CRC Press. *Utilized for instruction on the derivation of torque equations for robotic arm systems*.

Craig, John J. Introduction to Robotics: Mechanics and Control.(1989) Reading, Mass.: Addison-Wesley. Used as the primary source for kinematic equation derivation and vector equation manipulation.

IPython Documentation. Retrieved April 12, 2010, from IPython website, http://ipython.scipy.org/moin/
Used for reference documentation on IPython documentation and for the source code for compilation. Ipython is used to interface with the CKBots.

