Factory Floor Testbed
MS4

Stefan Kristjansson

Andrew Lawrence
Richard Wood

Project Update

 Currently working on:

= High level resource management algorithms in
CCL

= C interface from CCL to CKBots

= Torque minimized path
planning using forward
kinematics and Matlab simulation

developed for MS2.

Achieving Our Goals

- Main objective for the quarter is to complete
CCL implementation with high level resource
control.

- We are on track to finish this within the next two
weeks.

 Concurrently with CCL implementation, we look
to finish the torque minimized path planning to
increase success rates.

« This will allow for the hardware tile to properly
construct its section of the simulation.

Project Demo

« CCL simulation will construct a multi-tile
structure

- Single physical tile will work with simulated tiles
= Will pass resources to simulated tiles
= Will properly construct its structure section

- Assembly algorithm will be robust
» Handle disturbances in resource input
= Repair breaks/failures in structure

Hardware Details

» Design developed by MODLAB at the University
of Pennsylvania

- Slight modifications are necessary to allow the
robotic arm to place a truss without a node
present

= This is required to allow a more robust assembly
algorithm to be implemented

= This release can be accomplished through the
addition of magnets to the truss cradle

Plant

Lead ° -

- Factory Floor Testbed* .

= 1 Platform Square Unit
* 1 Arm

4 Node Cradles

4 Truss Cradles

4 Elevator Posts wiir

Motor and

Mount

Builder
Asin CkBot

\ Modules

Vertical Truss
Guide

P PN
NuUuo

Aligner ’
= Rotating

Base

Horizontal Truss
Guide

(Lifter Specific)

Horizontal

Truss Guide
(Floor Specific)

Cradle

Software - What is CCL

» The Computation and Control Language
- Developed by Professor Klavins

» Usetul in distributed algorithms
= Multiple programs can run in parallel

= Avoids Critical Sections

» Larger Expressions are built from shorter
expressions

- Allows multiple robots to operate and interact
simultaneously from a single program (vs. C)

CCL Basic Structure

- Main program

program main() := tileXY (0,0)+tileX¥Y(0,1)+tileX¥Y(0,2)...

- Main is composed of multiple smaller programs

» The smaller programs are composed of either a
set of guarded commands, function calls, or lists
of additional programs

CCL Composition

- Composed of Guards and Commands

« Guard:

= A boolean expression statement, provides a check
on necessary conditions to execute a command

« Command:

» The desired operation to execute after passing a
guard

Functions

« Functions do well defined tasks or

manipulations.

- Replace loops with

recursion.

» Return values that
can be useful for
simplifying guarded
commands.

 Builds lists

fun findEmpty tile i .
if 1 < 3 then

if tile[i] = 1 then
findEmpty tile (i+1)
else
i
end
else
-1
end;

fun function parameter .
if condition then result A

else result B
end
end;

program PROGI (parameter) := {
GUARDL : {
CMD A

CMD B

L]

= function (parameter)

i
GUARD 2A & GUARD 2B : ({
CMD C
}i
b7

program PROGZ () := {
GUARD 3 : {
CMD D
T
i

program PROG3 (parameterX, parameterY) := PROGL (parameterX)+PROGL (parameterY)

program main() := PROGI (parameterZ)+PROGZ () +PROG3 (parameterX, parameterY):;

Global Variables

/N Smaller
\—/

Program

Local Variables
—= Guarded Commands
= Guarded Commands
——= Guarded Commands
“‘_““'-..-"'?

Smaller
Main Program

Program iE

Local Functions

Smaller Smaller

Program | ® ® ®| Program

Global
Functions

b

DD T

program assigndobs (x,y) := {
startup := TotCols;
// On initialize, make top row builders
(startup > 0) & (x = 0) S
JOBS [x*TotCols+y] := 1:

startup := startup -1:
i
// Current Tile is Builder, and 1s Complete, and a next tile in
// column exists —--> pass Builder rights and Floor Complete
((JOBS [2x*TotCols+y] = 1) & (GAS[x*TotCols+y] [FLOOR][2][0] = 1)&
((x*TotCols+y+TotCols) < (TotCols* (TotRows-1)+x))) : {
JOBS [x*TotCols+y+TotCols] := 1;
JOBS [x*TotCols+y] := 2;
i
// Current Tile is Builder, and 1s Complete, and a next tile in the
// column does not exist --> pass Builder rights
(GAS [2*TotCols+y] [FLOOR] [2][0] = 1)) : {

((JOBS [x*TotCols+y] = 1) &
JOBS [x*TotCols+y] := 2;

} 7

} 7

program tileXY (x,vy) := assigndobs(x,vy)+checkCompletion (x,vy)toperate (x,v)

Benefits

- Simple set of guards and commands that can be
expanded to distributed systems of arbitrarily
large size.

- Programs execute in parallel

- Expressions cannot be interrupted during
execution, guards against critical regions.

Drawbacks

- Initially difficult to program in — much different
structure than C or Java

- All larger expressions must be composed of
smaller expressions

- Cannot use loops for data iteration - recursion

Factory Floor Testbed Simulation in CCL

Talking to the Hardware

- Computer connects to CKBots through CAN Bus

« Robotics Bus Interface is used to communicate
over CAN Bus.

CAN Bus

- 888

CKBots

Talking to the Hardware

- High Level Algorithms Implemented with CCL
s CCL can call C-functions
s PCAN driver built in C
- UPenn has a software library in Python
s Implements Robotics Bus
= Has pre-built commands for CKBots
 Options to connect CCL to CKBot:
= Re-write Robotics Bus interface in C
= Write C ‘wrapper’ functions for Python

Full Software Implementation

CCL :>@ ' Python :@ Y CKBots

*Keep High-Level algorithms in CCL

*Keep Low-Level communication in Python

*Couple CCL and Python together with a C-interface
*Build wrapper functions

Bibliography

« (1) CCL: The Computation and Control Language. Retrieved April 05, 2010, from
University 01{ Washington, Self Organizing Systems Lab website,
http://soslab.ee.washington.edu/mw/index.php/Code

« (2) Phidgets. Retrieved April 13, 2010, from Phidgets website, http://www.phidgets.com/

* (3) Mason, Matthew. (2001). Mechanics of Robotic Manipulation. Massachusetts: The
MIT Press.

* (4) Modlab CKBot Graphic User Interface Manual. Retrieved April 10, 2010, from UPenn,
Modular Robotics Laboratory website, http://modlabupenn.org/efri/

« (5)M.Yim, P.J. White, M. Park, & J. Sastra, "Modular Self-Reconfigurable Robots",
2009, pp. 5618-5631.

« (6) Nurrat, Richard, & Li, Zexiang, & Sastry, S. (1994). A mathematical introduction to
robotic manipulation. Florida: CRC Press.

« (7) Craig, John J. Introduction to Robotics: Mechanics and Control.(1989) Reading,
Mass.: Addison-Wesley.

« (8) IPython Documentation. Retrieved April 12, 2010, from IPython website,
http://ipython.scipy.org/moin/

* (9) D. Gomez-Ibanez, E. Stump, B. Grocholsky, Vijay Kumar, & C. Taylor. The Robotics
Bus: a Local Communications Bus for Robots. In Proceedings of SPIE, Volume 5690.
2005.

