EE449 - MS3 - TEAM 4

Factory Floor Testbed

Controller Design

Stefan Kristjansson, Andrew Lawrence, Richard Wood
5/14/2010



Table of Contents

INEFOQUCTION........oiie et st e b et e et st s bt ae e e es et eseebese s ben et ene s s
ProjJECt UPAate...... ..ottt et s sttt e e e e e e e e e st bttt et e e e eneeneene
CONEIOIIEE DESIGN......c..o ettt et et e aeeae et sae st st st seesaene e e e sensensansensennn
L0 o1 L= 4 0T 1 = 1 4 o o RS
TeChNICAl ODBSTACIES.........c.ooeiieee bttt et et e e eaesae b st st see saeseenees
TeaM IMANABEIMENT ......... oot e e sbe e s e st e e s s beees st aeesesaeaeesesnteeesssaeesenssnaens

BIBHOBIAPRY.......ooeeci ettt et r et e b she e bbb s saesheereeb e b aesben e nne sa one



Introduction

In Milestone 2 (MS2) we looked to develop a solution for inconsistent operation of the robotic
arm. This problem was determined to be due to underpowered servos and the solution developed
for MS2 was torque minimization path planning based on forward kinematics and a simulation
was developed in Matlab. After competing in the ICRA 2010 Planetary Contingency
Competition, however, and getting a chance to work with much more powerful modules, we
have decided to shift our focus back to the original objective of the project, and move the new
path planning as a final task. Consequently, with Milestone 3 (MS3) we look to design a high
level control algorithm for structure assembly, resource management, inter-Testbed
communication and disturbance rejection.

For this update, we present the updates to our project, including our shift from low level robotic
arm control to high level distributed control algorithms. We present the reasons for this and
introduce the controller design, logic and implementation. In addition, we comment on the
benefits of this design and the current limitations and known problems that need to be addressed.
Next we discuss how control will actually be implemented in hardware and why and finally, we
comment on remaining technical obstacles and team management for this stage of the project.

Project Update

For Milsetone 2, our group focused on control of the robotic arm in an attempt to correct the
inconsistent operation of the robot due to underpowered servo motors. Although the limitations
of the servos and the inability to know their current actual location did not allow the application
of an integral controller, we did pursue using forward kinematics for use in torque minimization
path planning. While we still look to apply this technique, after competing in the ICRA 2010
Planetary Contingency Competition and getting a chance to work with new, more powerful
CKBot modules, we realize our time is best spent on another area of the project. The new
modules are powerful enough for our application and will be released shortly and thus at this
time our team is currently working on high level resource management algorithms in CCL
instead of trying to patch a problem that will be fixed with the new modules. Since the resource
management algorithms are the main goal for the Factory Floor Testbed (FFT), we look to fully
design and implement these algorithms as our high level control problem for this project. In
addition, we will work on implementing the new path planning technique as a possible solution
until we receive the new modules.

To complete the controller and test the simulation interface to the actual hardware, we must build
a C language interface library for CCL to communicate with the CKBots. As no member of our
group has direct experience in doing this, the task is a major hurdle and is being completed
concurrently with the development of the high level control algorithms.

We believe we are on track to complete the high level CCL implementation in the next two
weeks, leaving a final week to work on increasing the efficiency of the robotic arm placements
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through the torque minimization path planning. In addition, we look to build simulations to test
the system and look to characterize the system with many different reference structures and
disturbance rejection tests.

Controller Design

The objective of our controller is to implement a high level distributed assembly algorithm to
manage inter-testoed communication of multiple robotic tiles in the assembly of a larger
structure. Each individual tile, as well as the testbed as a whole, have control procedures for
resource management and structure assembly. This section describes the distributed assembly
algorithms designed for high level control and provides detailed explanations of their logic and
the specific tile tasks and roles utilized in the design.

Figure 1 below illustrates a block diagram of the controller design implemented for this project.
Each individual tile has its own Large Scale Reference (LSR) structure input and feedback
control, which in turn is broken down to a Small-Scale Reference (SSR) for each individual
floor. There are NxN tiles in a testbed and NxN feedback control systems within a larger outer
loop comprising the Global Reference Structure (GRS) as the input and the full testbed structure
as the output.
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All tiles within the testbed will have access to the overall GRS, which designates the placement
of nodes and trusses on each tile for each floor. This will be used to coordinate resource
management between each tile as well as provide a priority scheme in which tiles can be given
jobs to complete individual tasks. From the global reference of the overall structure, an
individual tile will extract relevant information for their structure as a LSR. This LSR is the node
and truss placement for each floor of a given tile. Defined from the LSR is a SSR which is the
node and truss information of the current floor being constructed by a tile.

Prior to construction of a structure a set of preconditions must be met. The first precondition is
that the testbed must be complete. There cannot be an empty tile vertically enclosed within the
testbed. This means that within a column there cannot be an empty tile between the first and last
tile of a column of tiles. It is important to note that although a rectangular testbed is not required,
for simplification the following discussion will assume such. The second precondition is that the
GRS must be checked for physical attainability. For example, all trusses placed within the
structure need to be terminated by a node at both ends. The final precondition is that resources
enter the testbed at a single face (through each tile of said face).

After the preconditions are met, tiles are assigned priority by rows. The back row of tiles
(opposite face to the entry of resources) is given the highest priority. Each following tile is given
one priority lower than the next where the front row of tiles (the entry point of resources) is
given lowest priority. An assignment system is then used to give individual tasks to each tile in
the testbed, and each tile maintains a level of completion indicator.

The jobs and levels of completion are as follows:

Table 1: Job Designation and Completion Status

Jobs Levd of Completion
Builder (B} Floor Complete (FC)
Passer (P} Complete (C*)
Repairer (R )
Emergency Passer (EP)

Priority
To begin, all tiles with priority 1 are given Builder rights and all
tiles of lower priority become Passers as shown in Figure 2. 1

The Passer job simply instructs an arm to pass resources across its

own respective tile. All passes are directly between arms between 5
adjacent tiles. This requirement is because trusses cannot be
placed into a cradle without an adjacent node. Passers pass
resources to tiles of higher priority. Further, direct passing
between arms eliminates the removal of a resource that would

have changed the state of the current tile as well as adjacent tiles. Entry Point for
Resources

5 Figure 2: Job Initialization



Priority Removing a resource from cradles as a form of passing leads to a

string of potential problems that direct passing easily resolves. The
FC | Builders receive resources from the Passers and place them into
their respective cradles based on the SSR. When a Builder has
completed the placement of all resources for the SSR, Builder
rights are passed to the next priority tile within its column. The tile
that passes its Builder rights becomes Floor Complete (FC) as
shown in Figure 3. A tile cannot reach FC unless all tiles of higher
priorities have reached FC to ensure that the necessary tiles remain
available to pass resources. This pattern continues until all tiles of
the testbed become FC. At this stage each tile confirms their status

N
00 - R -

Entry Point for
Resources
Figure 3: Floor Complete and Builder passing DY Verifying that the actual structure matches the SSR and then
communicates the confirmed floor completion. When all floors
are confirmed the elevators are used to simultaneously lift the floors of all tiles as one.

If upon confirmation a tile determines that a previously placed resource is not registered in its cradle that
tile goes into Repairer mode (R). In this mode all tiles of lower priority are changed to Emergency Passers
(EP) interrupting the previous job. Repairer mode requests the missing resource and the EPs retrieve the
resource from the entry point. The EPs operate the same way as a standard Passer the only difference is
that EPs have higher priority replacing any existing job with the EPs. Further, EPs have higher priority
than a Repairer. If a tile is switched to EP that means a tile of higher priority is a Repairer, and thus
requires resources to be passed. Also, a tile can become Repairer at anytime when in FC status. A FC
simply checks its cradles for resources and verifies them to the SSR. See Figure 4 for an example of
Repairer mode.

The Complete (C*) status for a given tile indicates that the tile has completed the placement of all
resources in its LSR. Similar to FC, the C* status can only be achieved if all tiles of higher priority have
reached C* to ensure that they remain active to pass resources.

In order to simplify the further explanation of how this algorithm

works, consider a testbed composed of nine tiles in a 3x3 square FC FC R <« —Break!
configuration. On start-up the testbed checks preconditions. It then A A

assigns priority and initial jobs for each tile. The Builder tiles v v

within a row determine how many resources are required to FC FC EP <—Break!
complete their floor. The Builders then request the resources A A

required as one large package. The Passers then begin retrieving ' '

resources. To explain how the Builders place their resources see FC FC EP

the iterations depicted in Table 2 in reference to Figures 5.

Entry Point for
Resources

Figure 4: Disturbance Rejection - Repair Mode



Table 2: Interative Steps for Node and Truss
Placement

5 | 4 | 3 | 2 | 1| First iteration:

Arm Cplaces Node into 1.
Arm B placesNodeinto 3.

7
Arm A ArmB Arm C Arm A places Node into 5.
Second iteration:
Bl 2 Jul 10 || Arm Cplaces Truss into 6.

Arm B places Truss into 2.
Arm A places Truss into 4.

Figure 5: Organizational of Node and Truss Placement
Third iteration:

Arm Cplaces Node into 9.

Arm B places Truss into 7.

2 3 1 Arm A places Truss into 8.

Fourth iteration:

Arm Cdoes nothing.
4 N/ A Arm B placesNode into 11.
Arm A places Node into 13.

Fifth iteration:

5 5 | N/A Arm Cdoes nothing.
Arm B places Truss into 10.

Arm A places Truss into 12.

Figure 6: Order of Chronological Placement for Individual Tile

Following this iterative pattern, tiles that are not along the far right face will have an order of placement
as shown in Figure6. This procedure has been chosen to reduce the effect of race conditions and to
simplify the node sharing conflict between adjacent tiles. If the tiles did not coordinate within a given
row, this could give rise to potential errors in the number of resources requested.

Implementation

The control algorithm will be implemented using the Computational and Control language
(CCL). Each individual tile of the Factory Floor Testbed involved in the building of a structure
will be provided with a copy of the CCL program, which will issue actions (such as ‘Pass’ or
‘Place’). These actions are communicated by the program to each individual robotic tile over a
Controller Area Network (CAN) Bus using Robotics Bus, a local communication bus protocol
for robots. The CCL program is able to estimate the state of the testbed surrounding each tile
through the use of a Phidget I/0 Board. Logical inputs for the Phidget Board determine the
presence of nodes and trusses on the floor level currently being built through the activation of
contact switches after resource placement. Since there is currently only one tile available for
testing, the project will be implemented as a Hardware-in-the-loop (HIL) simulation. This



implies that the single physical tile may represent any of the tiles within a program and all other
tiles will be handled by the simulation.

Technical Obstacles

All of the technical obstacles encountered in the previous weeks still exist at this time. As they have been
well documented in the previous report, they are simply listed here. The previous problems still
unresolved include:

Inconsistent operation — Same command, same resource, different path trajectory

Oscillation — The robot reaches a position and will oscillate indefinitely

Communication Failures — Communication freezes and requires software and hardware reboot
C Driver for CCL/CKBot Comm. — Need C library for CCL to communicate with CKBots

While inconsistent operation and oscillation still exist, we have determined this is a limitation of
the servo motors, and as more powerful modules are being distributed soon, we are only
addressing this issue with the new path planning after completion of the resource management
algorithms. Communication failures still occur in both Windows and Linux environments, but
communication with the MODLAB has shown that the repository of files we are using is out of
date and we are currently working with the MODLAB to receive the newest code. Ultimately,
our major technical obstacle with no current solution is the necessary C driver library files for
CCL to communicate with the CKBots. Developing a driver is new territory for the members of
our team, but we have been researching the problem. We believe we are close to completed code,
and if further problems occur we will contact Albert Chiu, our CSE contact who may have
experience in coding drivers and can point us in the right direction.

Team Management

Overall, communication between the team members has been effective and project work has
been smoothly distributed and well regulated between the three man team. Each member has
always had a side project to work on individually or discuss as a group and each member has
contributed in the project advancement since MS2. In general, Stefan Kristjansson and Richard
Wood have been heavily involved in the design of the high level resource management and
disturbance rejection algorithms. Andrew Lawrence has also contributed to the design as well as
worked on the development of a C interface library for the CCL to CKBot communication.
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