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1 Problem 1

2X + Y −⇀−⇀ X + 2Y (1)

1.1 Part (a)

Let a be the stoichiometric matrix,

a =

(
−2
1

)
+

(
1
−1

)
(2)

=

(
−1
1

)
. (3)

1.2 Part (b)

Let K(v) be the kinetics vector (a scaler in this case),

K(v) = v2xvy. (4)

1.3 Part (c)

The ODE model is then,

v̇ = aK(v) (5)

=

(
−v2xvy
v2xvy

)
. (6)
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1.4 Part (d)
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1.5 Part (e)

Let m be the mass vector. Suppose the system is conservative,

0 = mT v̇ (7)

= mTaK(v) (8)

= ( mx my )

(
−1
1

)
K(v) (9)

mx = my (10)

The mass vector has a nontrivial solution, so the system is conservative.

1.6 Part (f)

To find the equilibria, solve for v̇ = 0.

v̇ =

(
−v2xvy
v2xvy

)
=

(
0
0

)
(11)

vx = 0 or vy = 0 (12)

The vector field associated with these ODEs is shown in Figure 1. Equilibrium
points are plotted in orage, the vector field v̇ is plotted in blue, and a few sample
trajectories are shown in black. You can see from this figure that equilibria along
vx = 0 are stable, and equilibria along vy = 0 are unstable.

3



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

vx

v y

Figure 1: Vector field associated with v̇ in problem 1. Equilibrium points are
show in orange, the vector field is shown in blue, and a few sample trajectories
are shown in black.
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1.7 Part (g)

Note that the systems is conservative, which reduces our system from two to
one dimension. Let C be some constant,

C = vx + vy (13)

v̇x = −v̇y (14)

v̇x = −v2xvy (15)

= −v2x(C − vx). (16)

Let f(vx, vy) = v̇x. Linearizing this equation, we get

S = ∂f/∂vx (17)

= vx(3vx − 2C). (18)

Evaluating the eigenvalue of S at the equilibrium,

λ = vx(3vx − 2C) (19)

λ|vx=0 = 0 (20)

λ|vy=0 = λ|vx=C (21)

= C2. (22)

Note that C2 = 0 iff vx = 0 and vy = 0. This means that at vx = 0 the system
is marginally stable, and at vy = 0 and vx > 0 the system is unstable.

2 Problem 2

The CRN from the lecture 4 is as follows:

∅
αR−−⇀αR−−⇀ R (23)

R
αP−−⇀αP−−⇀ R+ P (24)

R
βR−−⇀βR−−⇀ ∅ (25)

P
βP−−⇀βP−−⇀ ∅. (26)

2.1 Part (a)

The stoichiometric matrix is then,

A =

(
0 −1 −1 0
0 0 0 −1

)
+

(
1 1 0 0
0 1 0 0

)
(27)

=

(
1 0 −1 0
0 1 0 −1

)
. (28)
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2.2 Part (b)

The kinetics vector is as follows,

K(v) =


αR
vRαP
vRβR
vPβP

 . (29)

2.3 Part (c)

The ODEs are,

v̇ = Av (30)

=

(
αR − vRβR
vRαP − vPβP

)
(31)

2.4 Part (d)
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2.5 Part (e)

Let m be the mass vector. Suppose the system is conservative,

0 = mT v̇ (32)

= mTaK(v) (33)

The mass vector has only the trivial solution, so the system is not conservative.
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Figure 2: Vector field associated with v̇ in problem 2. The equilibrium point is
shown in orange, the vector field is shown in blue, and a few sample trajectories
are shown in black.

2.6 Part (f)

Solving for the equilibria,

0 = v̇ (34)

=

(
αR − βRvR
αP vR − βP vP

)
(35)

vR =
αR
βR

and vP =
αRαP
βRβP

. (36)

. The vector field along with some sample trajectories and the equilibrium
point are shown in Figure 2. From the vector field, this appears to be a stable
equilibrium point.
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2.7 Part (g)

Let f1(vr, vP ) = v̇r and f2(vR, vP ) = ˙vP . Linearizing the ODEs,

S =

(
∂f1
∂vR

∂f1
∂vP

∂f2
∂vR

∂f2
∂vP

)
(37)

=

(
−βR 0
αP −βP

)
. (38)

Solving for the eigenvalues of S,

λ1 = −βP (39)

λ2 = −βR. (40)

Clearly both eigenvalues are negative (rates can only be positive), so the system
is stable.

3 Problem 3

Let A be the stoichimetric matrix,

A =

(
1 −1 0
0 1 −1

)
. (41)

Let K(v) be the kinetics vector,

K(v) =

 vX
vXvY
2vY

 . (42)

The the ODE model is,

v̇ = AK(v) (43)

=

(
vx − vxvy
vxvy − 2vy

)
. (44)

Some sample trajectories are show below.
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Note that Ker(AT ) = ∅. This system does not admit a nontrivial mass
vector, so the system is not conservative.

Solving for the equilibria,

0 = vx − vxvy (45)

0 = vxvy − 2vy (46)

vx = vy = 0 or vx = 2, vy = 1. (47)
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Linearizing the ODEs,

S =

(
1− vy −vx
vy vx − 2

)
(48)

{λ1, λ2}|vx=vy=0 = {−2, 1} (49)

{λ1, λ2}|vx=vy=1 = {−ı
√

2, ı
√

2} (50)

Since there is a positive eigenvalue at vx = vy = 0, and the eigenvalues at
{vx, vy} = {2, 1} have zero real part, we can tell that the system is unstable at
vx = vy = 0 and marginally stable at {vx, vy} = {2, 1}.

4 Problem 4

For this problem I used the following gro code:

include gro

set("dt",0.01);

alphaR := 2.0;
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alphaP := 3.0;

betaR := 0.1;

outfile := fopen("a2.csv","w");

program p() := {

gfp := 0;

RNA := 0;

r := [t := 0, s := 0];

rate (alphaR * volume) : { RNA := RNA + 1 }

rate (alphaP * RNA) : { gfp := gfp + 1 }

rate (betaR * RNA) : { RNA := RNA-1 }

id = 0 & r.s >= 1.0 : {

fprint(outfile, r.t,",",gfp,",",RNA,",",volume,"\n"),

r.s := 0;

}

true : {

r.t := r.t + dt,

r.s := r.s + dt

}

};

ecoli ([], program p());

5 Problem 5

Let r be RNA concentration and p be GFP concentration. I used the following
ODEs to simulate the concentration dynamics in a cell where δ is the dilution
rate:

ṙ = αr − (βr + δ)r (51)

ṗ = αpr − δp. (52)

A reasonably good fit was acheived with the following parameters,

αr = 2 (53)

αp = 3 (54)

βr = 0.1 (55)

δ = 0.0346574. (56)

The trajectories found using these ODEs are overlayed on data obtained from
gro simulation in Figure 3.
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Figure 3: gro simulation data overlayed with ODEs simulated in Mathemat-
ica. gro data for RNA and GFP concentration are shown as dashed lines, the
simulated ODEs are shown as solid lines.
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6 Problem 6

The following gro code prints the RNA and GFP count, and volume for each
cell every second of simulation time:

program main() := {

t := 0;

s := 0;

L := {};

s >= 1 : {

L := maptocells {id,gfp,RNA,volume} end;

foreach q in L do

fprint(outfile,q[0],",",t,",",q[1],",",q[2],",",q[3],"\n")

end;

s := 0;

}

true : {s := s + dt, t := t + dt}

};

The following Mathematica code imports and plots the collected data:

data = Import [ ”a2−2. csv ” , ”CSV” ] ;
{ id , time , gfp , rna , volume} = Transpose [ data ] ;
data = Transpose [{ id , time , gfp /volume , rna/volume } ] ;
i d S p l i t = Spl i tBy [ SortBy [ data , First ] , First ] ;
i d S p l i t = Function [{ x} , SortBy [ x , # [ [ 2 ] ] &] ] /@ i d S p l i t ;

GFPplots =
Table [ L i s tL ineP lo t [ # [ [{2 , 3 } ] ] & /@ i d S p l i t [ [ i ] ] ,

PlotStyle −> Hue [ i / Length@idSpl i t ] ] , { i , Length@idSpl i t } ] ;
RNAplots =

Table [ L i s tL ineP lo t [ # [ [{2 , 4 } ] ] & /@ i d S p l i t [ [ i ] ] ,
PlotStyle −> Hue [ i / Length@idSpl i t ] ] , { i , Length@idSpl i t } ] ;

p1 = Show [ RNAplots , PlotRange −> All ,
AxesLabel −> {” time ” , ”RNA concent ra t i on ” } ]

p2 = Show [ GFPplots , PlotRange −> All ,
AxesLabel −> {” time ” , ”GFP concent ra t i on ” } ]
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