SBf12, Assignment 2 Solutions

Kevin Oishi
October 25, 2012

1 Problem 1

2X+Y — X+42Y

1.1 Part (a)

Let a be the stoichiometric matrix,

1.2 Part (b)
Let K(v) be the kinetics vector (a scaler in this case),
K(v) = v,
1.3 Part (c)
The ODE model is then,
v = aK(v)
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1.4 Part (d)

Vx(0) = w(0) = 0.5
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1.5 Part (e)

Let m be the mass vector. Suppose the system is conservative,

0 = m'v
= mTaK(v)
= (w3 )R

The mass vector has a nontrivial solution, so the system is conservative.

1.6 Part (f)

To find the equilibria, solve for v = 0.
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vy =0 or wv,=0
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The vector field associated with these ODEs is shown in Figure 1. Equilibrium
points are plotted in orage, the vector field v is plotted in blue, and a few sample
trajectories are shown in black. You can see from this figure that equilibria along

vy = 0 are stable, and equilibria along v, = 0 are unstable.
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Figure 1: Vector field associated with v in problem 1. Equilibrium points are
show in orange, the vector field is shown in blue, and a few sample trajectories
are shown in black.



1.7 Part (g)

Note that the systems is conservative, which reduces our system from two to
one dimension. Let C be some constant,

C = v+ (13)
by = —b, (14)
by = —viv, (15)
—02(C — wy). (16)

Let f(vg,vy) = Up. Linearizing this equation, we get
= v,(3v, — 20). (18)

Evaluating the eigenvalue of S at the equilibrium,

A = v;(3v, —20) (19)
My,=0 = 0 (20)
)\|vy:O = )\|vz:C (21)
= C2% (22)

Note that C? = 0 iff v, = 0 and v, = 0. This means that at v, = 0 the system
is marginally stable, and at v, = 0 and v, > 0 the system is unstable.

2 Problem 2
The CRN from the lecture 4 is as follows:
» = R (23)
R =™ R+P (24)
R g (25)
p 2y (26)
2.1 Part (a)
The stoichiometric matrix is then,
0 -1 -1 0 1100
A(o 0 0 —1>+<0100> 27)
10 -1 O
_(01 0 —1)' (28)



2.2 Part (b)

The kinetics vector is as follows,

QR

VRO
K(v) = viﬁg

vpfBp

2.3 Part (c)
The ODEs are,
v = Av
_ ( ar — VrPR >
vrap — vpfp
2.4 Part (d)
VR(0) =vp(0) =0
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2.5 Part (e)
Let m be the mass vector. Suppose the system is conservative,
0 = m'v (32)
= mTaK(v) (33)

The mass vector has only the trivial solution, so the system is not conservative.
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Figure 2: Vector field associated with ¥ in problem 2. The equilibrium point is
shown in orange, the vector field is shown in blue, and a few sample trajectories

are shown in black.

2.6 Part (f)

Solving for the equilibria,

UR

_9r
Br

0 - % (34)
_ ar — BrUR
N ( apvr — Bpup > (35)
and  wp = Zigi (36)

The vector field along with some sample trajectories and the equilibrium
point are shown in Figure 2. From the vector field, this appears to be a stable

equilibrium point.



2.7 Part (g)

Let f1(v.,vp) =, and fo(vgr,vp) = vp. Linearizing the ODEs,

ofr  Ofr

Ovgr ovp

—Br 0
= ) 38
( ap —fp (38)

Solving for the eigenvalues of S,

A= —Pp (39)
Ao = —Pg. (40)

Clearly both eigenvalues are negative (rates can only be positive), so the system
is stable.

3 Problem 3

Let A be the stoichimetric matrix,

A = (éll 01). (41)

Let K(v) be the kinetics vector,

vx
K(v) = vxvy | . (42)
QUY
The the ODE model is,
v = AK(v) (43)
B Uy — VUgly
o < VpUy — 20y ) ’ (44)

Some sample trajectories are show below.



Vx(0) = w(0) = 0.1
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Vx(0) = w(0) = 2

concentration

: - time
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Note that Ker(AT) = (). This system does not admit a nontrivial mass

vector, so the system is not conservative.
Solving for the equilibria,

0 Vg — UgUy (45)
0 = wvpuy — 2y (46)
Vpg=vy, =0 or wv;=2, v,=1. (47)
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Linearizing the ODEs,

_ 1-v, —w
> ( Uy Vg — 2 )
{>\15A2}|vz:vy:0 = {—2, 1}
{Ala)‘Q}l’uz:vy:I = {—’L 2,1\/5}

Since there is a positive eigenvalue at v, = v, = 0, and the eigenvalues at
{vg, vy} = {2,1} have zero real part, we can tell that the system is unstable at

vy = vy = 0 and marginally stable at {v,,v,} = {2,1}.

4 Problem 4
For this problem I used the following gro code:

include gro
set("dt",0.01);

alphaR := 2.0;
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alphaP := 3.0;
betaR := 0.1;

outfile := fopen("a2.csv","w");

program p() := {
gfp := 0;
RNA := O;
r := [t :=0, s :=0];

rate (alphaR * volume) : { RNA := RNA + 1 }
rate (alphaP * RNA) : { gfp :=gfp + 1 }
rate (betaR * RNA) : { RNA := RNA-1 }

id=0&r.s > 1.0 : {
fprint(outfile, r.t,",",gfp,"," ,RNA,",",volume,"\n"),

r.s := 0;
}
true : {
r.t :=r.t + dt,
r.s :=r.s + dt
¥

};

ecoli ([], program p());

5 Problem 5

Let » be RNA concentration and p be GFP concentration. I used the following
ODEs to simulate the concentration dynamics in a cell where ¢ is the dilution

rate:

o= a— (B +I)r
D = opr—4p.

A reasonably good fit was acheived with the following parameters,

o = 2
a, = 3
Gr = 0.1
0 = 0.0346574.
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The trajectories found using these ODEs are overlayed on data obtained from

gro simulation in Figure 3.
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Figure 3: gro simulation data overlayed with ODEs simulated in Mathemat-
ica. gro data for RNA and GFP concentration are shown as dashed lines, the
simulated ODEs are shown as solid lines.
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6 Problem 6

The following gro code prints the RNA and GFP count, and volume for each
cell every second of simulation time:

program main() := {
t = 0;
s := 0;
L :={};
s> 1: A
L := maptocells {id,gfp,RNA,volume} end;
foreach q in L do
fprint(outfile,qfO],",",t,",",q[1],",",q[2],",",q[3],"\n")
end;
s := 0;
}
true : {s :=s +dt, t :=t + dt}
};

The following Mathematica code imports and plots the collected data:

data = Import[”a2—2.csv”, "CSV” |;

{id, time, gfp, rna, volume} = Transpose[data|;

data = Transpose[{id, time, gfp/volume, rna/volume }];
idSplit = SplitBy [SortBy[data, First], First];

idSplit = Function[{x}, SortBy[x, #][[2]] &]] /@ idSplit;

GFPplots =
Table|[ListLinePlot [#[[{2, 3}]] & /@ idSplit[[i]],
PlotStyle —> Hue[i/Length@idSplit]], {i, Length@idSplit }];
RNAplots =
Table [ ListLinePlot [#][[{2, 4}]] & /@ idSplit[[i]],
PlotStyle —> Hue[i/Length@idSplit]], {i, Length@idSplit }];

pl = Show|[RNAplots, PlotRange —> All,
AxesLabel —> {”time”, "RNA_concentration” }]

p2 = Show | GFPplots, PlotRange —> All,
AxesLabel — {”time”, "GFP_concentration” }]
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