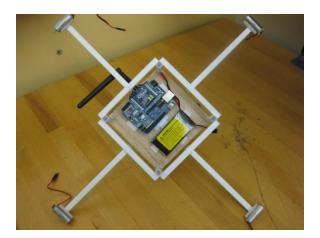
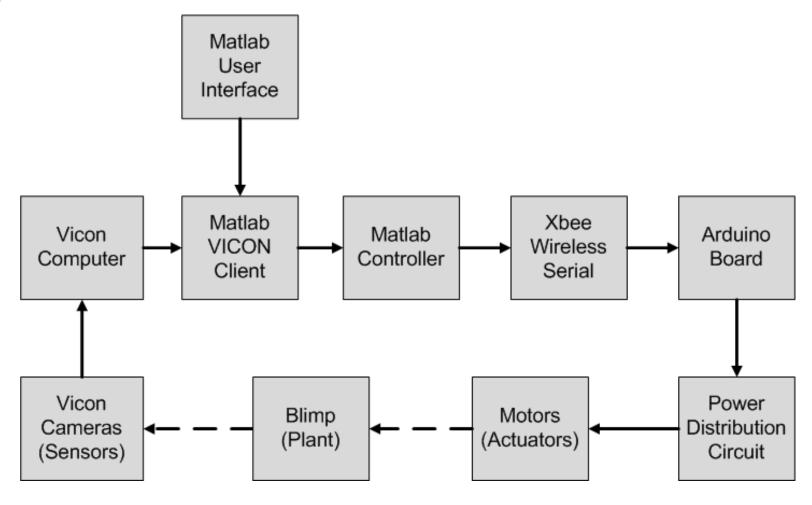
AA 449 Final Milestone Report Blimp Project

Beth Boardman, Linh Bui, Kyle Odland, Matt Walker, Maggie Wintermute


Project and Customer

- Distributed Space Systems Lab
 - Professor Mehran Mesbahi of AA
- Customer goals
 - Testbed for distributed control algorithms
 - Utilize DSSL camera sensor system
 - MATLAB implementation
 - Hardware available for future use by DSSL
- Blimp vehicle goals
 - Way point tracking
 - Coordinated tasks

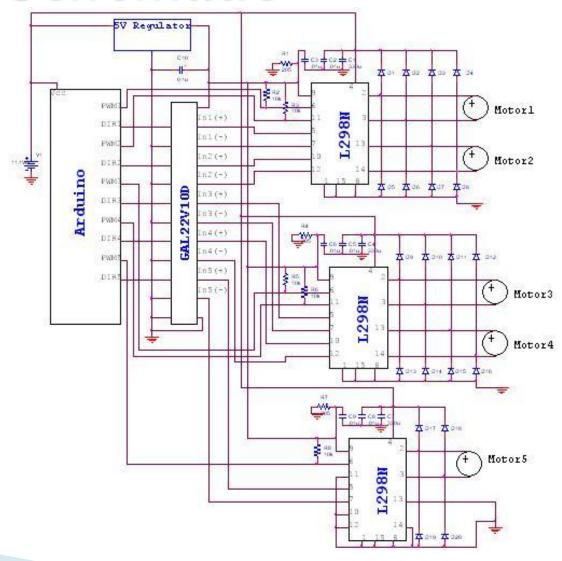


Blimp System and Performance Goals

- Helium balloon provides neutrally buoyant platform
- 5 DC motors placed to allow 3 DOF translation and yaw
- Performance goals
 - Negligible steady state error in position tracking
 - Cross camera space in 30 seconds
 - Rotate 180° in 30 seconds
 - Lead/Follow

System Architecture

Hardware



- DSSL Vicon camera system
 - Infrared cameras sense reflective marker positions
- DC Motors
- Xbee wireless communication modules
- Arduino
 - ATMega 328P
- Power distribution circuit board
 - GAL chip
 - L298N dual H-bridge motor drivers
 - Voltage regulator

Circuit Schematic

Reference Frames and Equations of Motion

- Body-fixed reference frame moves and rotates with vehicle
 - Easier to formulate vehicle dynamics
- Inertial reference frame fixed in lab
 - Necessary for tracking/commanding position

$$\frac{d}{dt} \begin{bmatrix} \dot{x}_b \\ \dot{y}_b \\ \dot{z}_b \end{bmatrix} = \frac{1}{m} \vec{F}_b - \begin{bmatrix} \dot{\theta}_x \\ \dot{\theta}_y \\ \dot{\theta}_z \end{bmatrix} \times \begin{bmatrix} \dot{x}_b \\ \dot{y}_b \\ \dot{z}_b \end{bmatrix} \qquad F_{x,b} = F_2 - F_4 - D\dot{x}_b^2$$

$$F_{y,b} = F_1 - F_3 - D\dot{y}_b^2$$

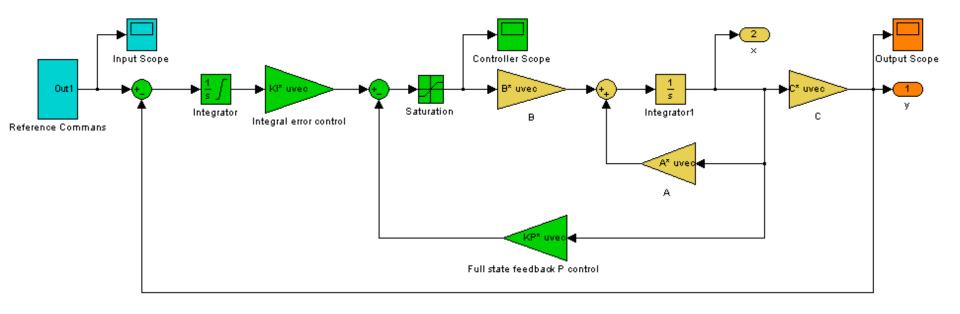
$$F_{z,b} = F_5 - D\dot{z}_b^2$$

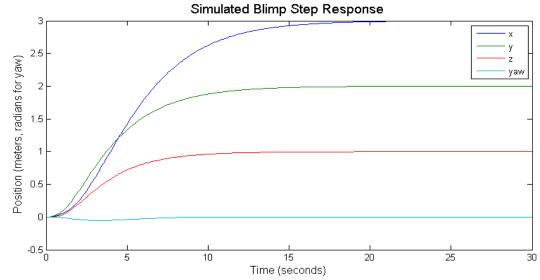
$$\ddot{\theta}_{zb} = r_f (F_1 + F_2 + F_3 + F_4)$$

Linearized State Space Model

- Passively stable in pitch and roll
 - Control in 4 degrees of freedom
 - Controllable and observable
- Linearize about multiple operating points
 - Body frame velocities
 - Heading angle
- A matrix contains reference frame transformations and system dynamics
- B matrix contains actuator dynamics
- C matrix outputs position states

 $\begin{bmatrix} y_r \\ z_r \\ \dot{x_b} \\ \dot{y_b} \\ \dot{z_b} \\ \theta_z \\ \dot{\theta_{z,r}} \end{bmatrix}$


Control System Design


- Proportional control using full state feedback
 - Satisfy transient performance requirements
- Integral control of error between reference and output
 - Drive steady state error to zero
- Create augmented state equations using integral of error
- Pole placement using Matlab

$$\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} A - BK_p & -BK_I \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} - \begin{bmatrix} 0 \\ B \end{bmatrix} r$$

$$A_{aug} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} - \begin{bmatrix} B \\ 0 \end{bmatrix} [K_p \quad K_I]$$

Simulation

Software Implementation

- Matlab client interfaces with Vicon
 - Parse marker position into C_q and heading
- Control law executed in Matlab
 - Full state feedback: Luenberger observer vs. differentiate inertial positions and transform
 - Bi-directional control implemented with logic
- GUI controls command position
- Arduino code interprets serial data and outputs to power distribution circuit

Flight Test!

Lessons Learned

- Transforming between reference frames can be complicated
- Balloons are fragile
- Neutral buoyancy is tricky
 - Air conditioning units are the enemy

Resources

- Bestaoui, Yasmina and Hamel, Tarek. Dynamic Modeling of Small Autonomous Blimps. Methods and Models in Automation and Robotics, Miedzyzdroje, Pl, Aug. 2000, vol. 2, pp 579 - 584.
- Dorf, Richard C. and Bishop, Robert H. Modern Control Systems. Pearson Prentice-Hall, Inc., Upper Saddle River, NJ, 2005.
- Heemstra, Brian. Linear Quadratic Methods Applied to Quadrotor Control. Department of Aeronautics & Antronautics, University of Washington, 2010.
- Hughes, Kyle, et al. Distributed Space Systems Laboratory Blimp. Department of Aeronautics & Antronautics, University of Washington, 2008.
- Lewis, Frank L., and Stevens, Brian L. *Aircraft Control and Simulation*. Wiley, Hoboken, NJ, 2003.
- Loo, van de Jasper. Formation Flight of Two Autonomous Blimps: The Atalanta Wingman Project. Master thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2007.
- Nise, Norman S. *Control Systems Engineering*. Wiley, New York, 2007.
- Ogata, Katsuhiko. State Space Analysis of Control Systems, Prentice-Hall, Inc.,
- Englewood Cliffs, NJ, 1967.
- Schutter B. De, *Minimal State-Space Realization in Linear System Theory: an Overview*, Control Laboratory, Faculty of Information Technology and Systems, Delft University of Technology, Netherlands 30 January 2000