AA 449 Final Milestone Report

Blimp Project

June 11, 2010

Beth Boardman
Linh Bui,
Kyle Odland
Matthew Walker

Maggie Wintermute

Project Summary

The fundamental goal of the blimp project was to develop a controlled vehicle for the
Distributed Space Systems Lab, which is attempting to assemble a test bed for assessing multi-
vehicle control algorithms. It was decided that a neutrally buoyant blimp vehicle would provide a
stable platform for testing control in three translational directions. The relatively slow reaction
times of the blimp vehicle make it ideal for testing in an indoor environment. A group of AA/EE
449 students in a previous year had designed and flown a blimp vehicle; in order to improve
upon the previous design, it was desired to lower the total weight of the vehicle (and thus
decrease its volume) and improve upon the controller design.

To facilitate customization of the vehicle, it was decided to develop a new system rather
than just modify the original. This included assembly of hardware, circuit board design, and
software system integration. The ambitious initial project plan also included the construction of a
second blimp vehicle and the development of algorithms to enable to two vehicles to fly in
various formations. The project goals were eventually revised once the challenges in
implementing a single vehicle became apparent.

The most basic goal for the vehicle was to achieve way point tracking, the ability to
respond accurately to position step commands. The project was The control system design
approach focused on accurate and thorough plant modeling with the goal of creating a
sophisticated and effective control system. The result of this was a set of linearized state space
models that characterized the motion of the system in 4 degrees of freedom using two separate
reference frames. The design approach for the hardware subsystem valued simplicity and low
weight.

Table of Contents

1.

Introduction and System Description.cocvuvuiiiininiiiiiinieeein.

1.1. Project Overview
1.1.1. Customer
1.1.2. Goals
1.1.3. Plan of Work

1.2. System Description

Related WOTK. ...
2.1. Summary of Related Projects and Review of Literature

Controls Subsystem.............

3.1. Plant Identification and System Modeling
3.1.1. Reference Frames and Transformations
3.1.2. Lineraized System Model and Operating Regimes

3.1.3. Controllability and Observability
3.2. Control System Design
3.2.1. Control System Architecture
3.2.2. State Estimation
3.2.3. Design Method
3.2.4. Discrete Time Model
3.3. Simulation
3.3.1. Simulation Design
3.3.2. Simulation Results
3.4. Control System Implementation

SOftWare SUDSYSIEM

4.1. System Architecture
4.2. Vicon Interface

4.2.1. Signal Flow

4.2.2. MATLAB Graphical User Interface
4.3. MATLAB Controller Implementation
4.4. Onboard Arduino Code

Hardware SUDSYSIEM.ot

5.1. Actuators

5.2. Structure

5.3. Blimp Envelope and Payload Attachment
5.4. Microcontroller Components

POWEE SUDSYSIEIM. ...\

6.1. Introduction
6.2. Design Procedure

Results and ConCIUSIONS.ooueii e
RO BIENCES. ..o

8.1. Bibliography
8.2. Use of References

APPENAICES . ..ottt

9.1. Arduino Code
9.2. GAL Code
9.3. MATLAB Code

1. Introduction and System Description

1.1 Project Overview
1.1.1 Customer

The Distributed Space Systems Laboratory researches self-organizing robotic distributed
systems with application to aerospace missions. Notable examples of aerospace networked
systems that are currently being studied in the Lab are formation flying space vehicles or self-
organizing satellite constellations. The scope of this technology is much wider than space
systems alone. One networked control system that is undergoing experimental verification is a
collision avoidance algorithm, with obvious applications to many ground based systems.

To further develop and optimize these control systems, the Distributed Space Systems Lab is
constructing a hardware testbed upon which these algorithms can be tested. This testbed will
ultimately consist of a suite of small, autonomous robotic vehicles working in a cohesive
network. At present, the Lab has two Lego Mindstorms Ground robots fully integrated with the
tracking system and central computer. The fundamental goal of this project was to create two
autonomously controlled, neutrally buoyant blimp vehicles to expand the capabilities of the
Distributed Space Systems Laboratory testbed. A blimp model was chosen as the
characteristically slower reaction time and inherent system stability make it an ideal vehicle for
testing experimental control systems in an indoor facility.

The principal investigator for the Distributed Space Systems Laboratory is Professor Mehran
Mesbahi of the Aeronautics and Astronautics Department. Professor Mesbahi and his graduate
students defined the project goals, contributed the DSSL as a workspace for component testing
and construction, and are supplying the funding for this project.

1.1.2 Goals
Specific project goals were outlined in order to fulfill the desires of the customer. These were

modified slightly over the course of the project to reflect the results of unforeseen delays. The

finalized goals established for the project are as follows:

1. Construct one working blimp vehicle that can complete simple waypoint tracking within
the confines of the Distributed Space System Laboratory testbed facility, robust enough
to be used for the future plans of the lab.

2. Incorporate the blimp vehicle into the existing lead-follow control algorithm employed

by ground vehicles in the Distributed Space Systems Laboratory.

3. Construct a second working blimp vehicle that can complete simple waypoint tracking
within the confines of the Distributed Space Systems Laboratory testbed facility, robust
enough to be used for the future plans of the lab.

4. Derive and implement the control algorithms for a series of coordinated tasks for both
operational blimp vehicles to conduct. This will start as a simple Lead/Follow scheme,

and evolve to steadily more difficult tasks should project time allow.

At present, the first two goals have been completely met. The third goal, constructing and
implementing the second blimp vehicle, can be completed in a relatively short time frame given
that the first two have been achieved. Completing this objective, and developing the coordinated
tasks, has been left to the future work of the DSSL.

1.1.3 Plan of Work

In order to ensure that all aspects of the project were completed on time, the team personnel were
organized such that each team member was the manager of a particular subsystem of the project.
Next, a plan of work outlining the tasks to be completed by each subsystem was detailed. The
finalized plan of work, reflecting changes due to delays, is shown below.

Project Leader: Matthew Walker

Hardware Subsystem Lead: Beth Boardman
Software Subsystem Lead: Kyle Odland
Control Subsystem Lead: Maggie Wintermute
Power Subsystem Lead: Linh Bui

Subsystem Task Members Deadline
Hardware
Identify and order necessary structural components,
1 All 4/9
motors and propellers
2 Finalize motor configuration Bo_ardman, Walker, 4/9
Wintermute
3 Thrust test motors for plant model Bo_ardman, Walker, 4/16
Wintermute
4 Develop blimp and gondola CAD model Boardman, Walker 5/7
. . . Boardman, Odland,
5 Final blimp and gondola design Wintermute 5/14
6 Construct blimps All 5/21

Software Task Members Deadline
1 Develop VICON camera system interface Bo_ardman, Odland, 4/16
Wintermute
Research and define software system architecture
5 betwe(_en VICON camera system, central computer Al 4123
and microcontroller
Establish WiFi communication between
3 Microcontroller and Central Computer, validate with Boardman, Odland, 4/30
. Walker
simple task test
Develop Microcontroller to circuit board Bui, Odland,
4 o . 5/7
communication Wintermute
Bui, Boardman,
5 Develop control law code Odland 5/19
6 Implement control law onto microcontroller Bui, Odland, Walker 5/21
Controls
Bui, Walker,
1 Develop Plant Model Wintermute 4/16
. . Bui, Walker,
2 Develop Waypoint Tracking Control Law Wintermute 4/30
. . Boardman, Odland,
3 Develop coordinated task and formation control law Walker, Wintermute 5/7
4 Develop Simulink Model for control law validation Odland, Walker, 5/14
Wintermute
Power
1 Identify and order necessary electrical components Bui. Walker 4/9
Research Microcontroller— actuator interface, battery .
.) Bui, Boardman,
2 configurations 4/30
Odland
Preliminary circuit board design, validate via
3 breadboard Bui, Walker 517
4 Final circuit board design, construct on prototyping Bui, Walker 5/14

board

1.1.4 Project Budget

As outlined in previous Milestone Reports, the exact components of the circuit board and system
hardware have altered slightly over the course of the project. The following table details the cost of the
components used for the finalized design and the dollar amount that the DSSL has been billed for.

Item Cost per Item Number Total
1350 mAh 11.1 3 Cell LiPo Battery 35.00 2 70.00
Arduino Duemilanove 29.95 2 59.90
Circuit Board Development - 50.00 50.00
Digi xBee Series 2 Pro Modules 42.00 2 84.40
L298n H-bridge 3 4.00 12.00
Misc. Structural - 50.00 50.00
xBee Explorer Serial 30.00 1 30.00
xBee Explorer USB 25.00 1 25.00

Total $381.30

1.2 System Description

The blimp system itself consists of two main sections; the lifting balloon and the gondola. The
gondola is the structure under the blimp which holds the electrical components in place. A
diagram of the balloon and gondola is shown in Figure 1, which also includes variables
representing the physical parameters of the system.

Z-axis

h FD = %pACsz

Translation only

Fs

5
{

Figure 1. Diagram of blimp system

As Figure 1 shows, there are many parameters which relate to the system, most notably mass,
moment of inertia, and the dimensions of the blimp. All of these parameters are tied together by
the most basic force acting on the system: gravity. The blimp is inflated with helium to provide
lift by displacing air. It is desired to keep the blimp system neutrally buoyant, therefore by
estimating the likely payload mass, an approximate volume of helium needed for buoyancy was
calculated.

Translational motion of the blimp will be provided by five DC motors. Four of the motors are
placed on arms extending out horizontally from the gondola; these motors will be responsible for
controlling the yaw of the blimp and translating it in the x and y directions. The fifth motor
extends down below the gondola and will be used to facilitate translation in the z direction.

2. Body of Related Work

2.1 Summary of Previous Work and Review of Literature

As mentioned, the initial concept for a blimp vehicle for the DSSL was developed as part of an
earlier AA/EE 449 Control System Design Course. The final Milestone report for this project,
[4], was used as a starting point for the current project. In the previous project, the VICON
camera system that currently makes up the sensor package of the DSSL testbed was not in place,

8

thus it was necessary for the older project to incorporate on-board sensors into the design. This
drove different weight and power system constraints for that vehicle. Furthermore, without the
external sensors, the earlier project was only able to control its orientation in yaw and was not
able to achieve waypoint tracking about the lab. The control law developed on the older project
for controlling orientation was a Ziegler-Nichols tuned PID design, which was determined to be
insufficient for the goals of the current system.

In addition to the difference in sensor requirements, the Gumstix/Robostix microcontroller that
was used for the earlier blimp vehicle was determined to not be the best option, per
recommendations from the customer. Instead, an Arduino Duemilanove 1/O board with an Atmel
ATMega328P microcontroller was chosen for the current design. While the same motor
configuration as the earlier project was used on this project, the sensor and controller changes
necessitated an entirely new circuit board design.

Many resources were considered during the system modeling phase of the design process. [1]
and [6] were particularly useful, given that the subjects of both papers were autonomous blimp
vehicle projects. Heemstra’s thesis, [3], was also reviewed given that the subject of that thesis
was the control of another flying vehicle in the DSSL environment.

3. Controls Subsystem
3.1 Plant Identification and System Modeling
3.1.1 Reference Frames and Transformations

Modeling of the blimp system began as a very simply analysis of the forces on the vehicle. Much
of the initial work on the plant model focused on the two distinct reference frames that may be
used when working with a moving system. The first reference frame which was considered is the
body centered frame, in which the axes of the frame are attached to the center of a moving body.
Body centered frames are not inertial; however the blimp-centered reference frame allowed easy
formulation of the forces on the vehicle by the motors. Since the body centered reference frame
moves with the vehicle, it is impossible to use this frame along and track the motion of the blimp
over time.

In order to facilitate tracking of the position of the blimp, it was necessary to work in an inertial
reference frame. Commands to the system will necessarily be given in an earth centered
reference frame, since positions commands are meaningless in a reference frame with a moving
origin. For the purposes of this project, the DSSL lab space is considered to be an inertial frame.

The two reference frames are related rotationally by 3 Euler angles (typically called roll, pitch,
and yaw). These angles represent the deviation of the body fixed axes from some fixed inertial

axes. Figure 1 shows the difference between the inertial reference frame and the blimp
reference. A diagram demonstrating the forces and moments acting in the x-y plane in the blimp
reference frame is shown in Figure 2.

Figure 2. Blimp system reference frames

10

TOP VIEW F, ﬁ

Y-axis

—]
N . fr

Figure 3. Top view of forces on blimp system, centered on body

As can be seen in Figure 2, the forces on the vehicle due to the firings of the motors are most
easily accounted for in the body centered reference frame. Using this frame, the following
equations of motion were developed for the blimp system. The subscript b indicates that the
equations are formulated in the body-fixed frame. Initially all six degrees of freedom (three
translational and three rotational) were considered.

Xp =%, (1)
Y=Y (2)
Zy =2 (3)

Fep = F, —Fy — Dtp® + 0,3, — 02, (4)
Fyp = Fy — F3 — Dy, — 0,%p + 6,2, (5)
Zy = Fs —Dz,” — 0,9, + 0y%, (6)
Oy = T, — T4 + Fprycos Oy sinb, (7)

Oyp = —Ty + 73 — Fgrsing, (8)

sz = —T5 + rf(Fl + FZ + F3 + F4_) (9)

11

The translational equations of motion that are formulated in the body frame include not only the
identifiable forces due to the motor thrusts and drag (which is proportional to the square of
velocity) but also a false force due to the Coriolis affect. This is a force which appears in rotating
frames, due to non-inertial affects. The expression for the body frame accelerations in given
below in equation 10. The cross product represents the Coriolis term, which crosses the
rotational rates of the body frame with the velocities in the body frame.

Or

4 Xp) Xp
T }:’b = ™ Fp — By X):Ib (10)
Zy éz Zp

The measurements which can be received from the VICON camera system are positions in the
inertial frame. This means that output y of the state space model will not include body frame
quantities. There are several ways to account for this in the system model. The first approach
which was considered was to write the state vector of the system so that it included both the
equations of motion in the body frame and the transforms to inertial frame in the A matrix of the
state space model. The transformations between body and inertial frames are shown below in
matrix form for both position and velocity. To transform velocities between the two frames, the
rotation matrix for rotation about three axes must be used. It is given below in equation 11 for
positions.

X cOycH, €O,504s0y — cOxsO, CO,CO,50y + sO4sH,
[yr] = |cBysb, cO4cH, + sO,s0ys6, —c6,50; + cOysOysO,
Zr —s0y cy sy OOy

Xb
}’b] (11)
Zp

Since the commanded quantities must match those in the y vector, it is also necessary to
transform the angles if control over the vehicle yaw is desired. The Euler angles which define the
rotation of the body frame with respect to the inertial frame also describe the rotation of the craft,
since the body axes are fixed to the blimp center. The transformation between rotational rates in
the two frames is shown in equation 12.

Or 1 tOys6, toyco, Oyp

by, | =" G SPxlle), | (12)
. 0 SOx COx .
Bz,r chy chy Hz,b

12

The initial formulations of the state space blimp system involved many diverse combinations of
the transformation equations shown above. In order to simplify the system, a system design was
considered in which the state vector contained only body frame quantities. The A matrix held the
dynamic equations of the system and the C matrix was used to transform to the inertial reference
frame. Later in the controller design process, however, this approach presented many problems
caused by issues of controllability. This is directly related to the form of B matrix, which is
dictated by the physical actuators (motors) of the system. The actuators have direct control over
translation in all three directions, but strong authority for rotation only about the z axis. Initially
the system was modeled to include torques on the system due to drag of the propeller blades;
however later testing concluded that these torques would be negligible. Since the system is
passively stable in both roll and pitch, it was decided to remove these degrees of freedom from
the state vector. This resulted in a reduced system which contained state variables in both
reference frames. The state vector is shown in equation 13.

(13)

=4
Il
<.
[yl

3.1.2 Linearized System Model and Operating Regimes

The state space representation using the above state vector contains both system dynamics and
transformation equations in the A matrix, while the C matrix is composed entirely of ones and
zeros. Since the transformation equations and the equations of motion are non-linear, it is
necessary to linearize the system before a state space representation can be formulated. This is
accomplished by selecting a single operating point, differentiating the nonlinear equations and
holding all quantities constant at the operating point. In order to maintain proper operation of the
vehicle for all yaw angles, multiple linearized system models are needed. Below is an example of
one possible operation point, in which the system has been linearized about zero for all quantities
except body frame velocities and yaw angle.

13

0 0 0 1 0 0 0 0
000 0 1 0 0 0
000 0 0 1 00
1o 0o 0 -2pU, O 0 0 0
4=loo oo o -2ou, o o ol
000 0 0 —2DU, 0 O
000 0 0 0 0 1
0 0 0 0 0 0 0 o
‘0 0 0 0 O
0 0 0 0 0
0 0 0 0 0
~|la 0 —=a 0 O
B_O—a0a0(15)
0 0 0 0 a
0 0 0 0 0
al al al al O
10 0 00 000
o010 0 00 00
C‘oo100000(16)
000 0 O0O0T1O0
00 0 0 O
o 0o 0o 0 o
D‘ooooo(m
00 0 0 O

3.1.3 Controllability and Observability

The state space representation detailed in equations 14-17 models the blimp as a linear, time-
invariant system about a single operating point. In the process of designing a control system,
once a linear model has been achieved, classical linear control design techniques become
applicable in this regime. However, additional verifications to the state space representation are
necessary before control design can commence.

In general, a given state space representation of a linear, time-invariant system is not unique. In
theory, any combination of states, inputs and outputs that characterizes the behavior of the
system can modeled in the traditional state space form. Before control can be implemented on a
system that is represented by a given state space model, this representation of the system must be
completely state controllable and completely observable. [7]

14

A system is defined as completely state controllable if the unconstrained control inputs can
transfer the system between any initial and final state. [8] Essentially, if a state variable exists in
a system that cannot be affected by the inputs, the system is not controllable. The controllability
of a system can be rapidly determined from the A and B matrices of a state space model by
comparing the rank of the controllability matrix, which is shown in equation 18, to the number of
state variables.[7] Rank is defined as the number of linear independent equations represented by
a certain matrix. The system is controllable if the rank of the control matrix is equal to n, the
order of the system, or the number of state variables. [8]

Cw=I[B AB A?B - A" 1B](18)

A system is defined as completely observable if every state can be found from the system output.
Fundamentally, a system is completely observable if all relations on the system state affect the
system output. As with controllability, the observability matrix of a state space representation
can be rapidly determined using the A and C matrices, as shown in equation 17. A system is
observable if the rank of the observability matrix is equal to n, the order of the system.[8]

Ou=I[c cA ca? .. ca™1]" (19)

Initial iterations of the system model were not fully controllable, and as a result investigation was
conducted into performing a minimum realization on the system. The final system model,
however, is both fully controllable and observable.

3.2 Control System Design
3.2.1 Control System Architecture

The basic purpose of the control system is to guide the blimp to its desired reference position
with minimal steady state error. The performance goals for this project included crossing the
VICON camera space in under 30 seconds and arriving at the commanded reference position
with negligible error. In order to fulfill the latter goal, it was determined that some sort of
integral control would be needed. The basic control scheme which was selected for the blimp
system combines full state feedback with integral control on the error. A block diagram of the
controller architecture is shown in Figure 4.

15

o~ dzidt 1
r + —_

reference command ermorintegrator

&
&
I_L
-
. A
(o]
¥

Integral Control state integrator w= Cx v

™

Froportional Contral

Figure 4. Blimp system architecture

Introducing an integral control component to the system essentially creates new states within the
system; in order to determine the proper gain values for the controller matrices, it was necessary
to formulate a new state space representation of the system. Using the diagram shown in Figure
3, the following augmented equations were formulated.

dx _

dz _
= =7 Cy (21)

dx
dt

all= 112 T B -5l e

Ax + B(—Kpx — K;z) (23)

3.2.2 State Estimation

In order to use the controller design discussed above, the system must have access to all eight
state variables. In the physical system the only states that can be physically observed are the x, y
and z positions of the blimp, along with the yaw angle. One way of determining the state vector
is to use an estimator, which the modeled dynamics of the system to calculate estimated states
from the system output, y. One simple estimator design is the Luenberger observer, the dynamics
of which are given in equation 25.

£ =A%+ Bu+L(y —CR) (25)

Figure 5 shows a diagram of the Luenberger observer.

16

4

:rr <

BEEE Y
S b
Integrator

C
Figure 5. Luenberger observer

This observer uses a state space representation that is similar to the actual system, but includes a
term that compares the actual output (y) to the output that is estimated by the observer (CX). The
observer gain matrix L is found by considering a new state, the error between the actual and
estimated states. The

e=x—Xx (26)
é=%—%=Ax+Bu— (A% +Bu+L(y —C®)) (27)
e =Ax —AX+L(Cx —CX) =A(x —X)+ LC(x —X) (28)
é=(A—LC0)e (29)

By placing the poles of the A-LC matrix to be in the left half plane, the error between the
estimated states and the actual states will be driven to zero. The gain matrix L can thus be found
by placing the poles of A-LC. The poles of the observer were chosen to be 10 times farther to
the left of the imaginary axis than the system poles, so that the estimator error would go to zero
much faster than the system response. Figure 6 shows the estimated position states (dotted line)
of the blimp compared to the actual positions (solid line).

17

Position (m)

05 r r r r r
0 5 10 15 20 25 30

Time (s)

Figure 6: Comparison between estimated and actual states in simulation

The estimated position states are plotted as a function of time, and closely follow the actual
states. This is expected, due to the fact that the position states are observed and can be directly
compared to the estimates. VVelocity estimates were less precise than position estimates due to the
presence of finite noise due to drag which was included in the Simulink model.

Though the initial design for the control system used an observer to achieve full state feedback, it
was eventually determined that the observer was not necessary, and that the non-observed states
could be more accurately calculated by directly differentiating the position measurements and
then transforming the velocities from reference to body centered frame. This was implemented
using a second order accurate backwards differentiation scheme that makes use of multiple past
measurements to avoid unwanted noise in the derivative. Once the reference frame velocities are
known, body frame velocities are calculated using Coriolis equation, shown in equation 11.

3.2.3 Design Method

In order to place the pole of the system described in the system architecture system, the
augmented A matrix was broken into a form that allowed the use of the MATLAB command
“place.” The breakdown of the augmented A matrix is shown below.
Mg = [% ol =[o] 1K i

The poles used in the place command were determined with the intention of creating stability in
the system; thus they were chosen to all have negative real components. The poles were also
chosen to be fairly close to the imaginary axis, since the open loop poles of the system are all
quite close to 0. The gain matrices K; and Kp are shown in Appendix A. These matrices were
generated for a linearization point of non-zero x and y velocities (this will be the nominal
operating condition of the blimp when it is not rotating) with all other variables set to zero. The

18

code that was used to generate the controller matrices allows the linearization points for velocity
and yaw angle to be changed. In order to allow the blimp to operate in all possible yaw angles,
multiple controllers have been developed, each with a pre-determined range of valid operation.

3.2.4 Discrete Time Controller Model

In addition to the continuous time model described in the previous sections, a discrete time
model was also created. This model used the same system dynamics as the continuous time
model, transformed into a model with a discrete time step using the MATLAB command “c2d.”
Controller design for discrete systems requires that all system poles be within the unit circle; this
causes the system error to eventually converge to zero. Though a discrete model was developed,
it was determined that the continuous controller was sufficient to operate the blimp system.

3.3 Simulation
3.3.1 Simulation Design

In order to model the open loop behavior of the system and test the effectiveness of various
controller designs, a Simulink model of the system was developed. The closed loop system
model is shown in Figure 7.

Out 1

¥

Input Scope

A 1 [
j_ s
h Integrator

Integral error control

controller output Qutput Scope

Cut2

¥

Cut3

¥

Integratort

Cutd

¥

"

AT o

Commands

wontroller autputz A

<P uve cleg

Full state feedback P contral

Figure 7. Simulink model of continuous blimp system

One of the most important aspects of the Simulink model is the block which saturates the output
of the actuators. This block adds a needed degree of realism to the system; since the motors
themselves cannot tolerate above 6 volts, it is unfeasible to design a controller which requires
incredibly high control effort which can never be delivered in the real system. Though it cannot
be seen directly in the model, there is also a saturation limit in place on the integration block
which acts on the error. This prevents the system from winding up and overcompensating for
remembered error.

19

3.3.2 Simulation Results

The model shown in Figure 7 was used to test many controller iterations until a continuous time
controller was found that satisfied all of the performance requirements for the system. The step
responses of the system using one such controller are shown below in Figure 8.

Simulated Blimp Step Response
3 T T T T

25 y

e

s

Fosition (meters, radians for yaw)

o

| | |
] 10 15 20 25 30

Time (seconds)

o
in

Figure 8. Step response of compensated blimp system

Though the compensator effort shown that produces the results in Figure 8 does allow the system
to meet the desired performance goals, it does not act with reasonable use of control effort. The
motor voltages which correspond to the step response in Figure 8 are shown in Figure 9.

20

Motor Output Forces
06 T T

Motor 1
Matar 2
hotor 3
Matar 4
hotor &
03 —

05+

0.4

nz2 B

01§ =

MWotor Voltage (W)

01 =

02 -

03 1 1
0

Time {seconds)
Figure 9. Motor output voltages in response to step commands

This problem of non-zero steady state control voltages was a direct result of the addition of drag
into the Simulink model, and the chosen operating point of the linearized system. When the
operating point velocities of the system were set to zero (meaning that no affects of drag were
considered) the control voltages all converged to zero. This indicates that the problem of the
control voltages is solvable in two ways; firstly, establishing a set of controllers for different
operating points would allow the system to operate with zero set velocities when it approaches
the commanded reference position, otherwise, it would be possible to introduce a number of
logical statements into the controller code that command the motor voltages to zero once the
steady state position has been achieved.

3.4 Control System Implementation

Implementation of the control system was handled in both software and hardware. The position
of the blimp is sensed by the Vicon camera system, the data from which is read by a computer in
the DSSL lab. Data from the Vicon computer is accessed through a client code which both
interprets the position data and calculates the controller outputs. This information is
communicated wirelessly to the blimp. The microcontroller and circuit on the blimp gondola
interpret the control inputs and send duty cycle and direction commands to the actuators. The
details of both the hardware and software aspects of controller implementation will be presented
in subsequent sections of this report.

4. Software Subsystem

4.1 System Architecture

21

The current system architecture for the blimp project is shown in Figure 10. The initial plan for
the software implementation was to run the collection of sensor data and the control loop in
Simulink, and then send the output data to the blimp via serial connection. Data is gathered from
the Vicon using a client programmed in MATLAB; the client is capable of polling data and
storing it, or sending it via serial, but it was not able to interface in real time with Simulink. For
this reason, we next attempted to utilize the C# Vicon interface which was created by the DSSL.
Though the C# interface is fully functional, our team members are more comfortable working
with MATLAB. The customer also stated that a working system using MATLAB would be
desirable for future use by the lab. For these reasons, it was decided that the final system
architecture would implement the MATLAB Vicon client to poll the marker data. The controller
is also implemented in the MATLAB code. The position and angle data from the Vicon cameras
is differentiated numerically to determine the full state of the system. Once this is known, the
desired control is applied and the output voltage to each motor can be determined. This
information will then be sent to the Arduino board, where the motors will be controlled.

Matlab
User
Interface
L
Vicon SENE Matlab Xbee Arduino
» VICON > » Wireless
Computer . Controller , Board
Client Serial
F 3
v
Vicon . Power
Cameras [4— — — (El:g:-,?) — — — (Ar(:ﬂtaiicl::asrs) < Distribution
(Sensors) Circuit

Figure 10. High Level Blimp System Architecture

4.2 Vicon Interface

4.2.1 Signal Flow

22

The interface with the Vicon camera system is provided through an existing Matlab client. The
client runs though a file which continuously loops, polling data from the Vicon computer as it
iterates. Figure 11 shows a flow chart detailing how the control software works.

Read data from
Wicon

¥

Change reference

position,
linearization paint

Estimate States

L 4

¥

Get the ermor
between reference
and actual

Apply proportional

Integrate the emro
B rror control

Get contral output

F

¥

Convert to
directicn and
voltage for each
miotor

Figure 11: Schematic showing the flow of data in the Vicon interface code

23

The marker data received from the Vicon is then used to calculate the position of the blimp’s
center of gravity, as well as the heading angle. This is done with simple geometric relations
between any two of the reflective markers. In order to be sensed by the Vicon, each marker must
be in view of at least two of the six cameras. Since the larger envelope of the blimp is above the
marker positions, markers are periodically lost from sight. In this case the Vicon system returns
values of zero for all three positions. In order to protect against bad data from calculating
position from lost markers, six separate cases were written so that the final position is always
calculated from markers that are directly observed.

4.2.2 MATLAB Graphical User Interface

The reference position can be changed as the MATLAB code is running using a MATLAB user
interface. The GUI allows the user to input a desired position in X, y, z, and yaw, which changes
the variables in the looping file. A picture of the interface is shown in Figure 12.

J blimp_gui2

— Pozition Command

x Pasition 0 | stt | | stop |

y Position 0 | Update Command Postion |
 potion . [End Sessian |
Ve 0

Figure 12. Graphical user interface for blimp reference position updates during flight

As seen in the figure, the GUI can also be used to start and stop the blimp control code.

4.3 MATLAB Controller Implementation

With the reference position and the position of the blimp established, the designed controller can
be implemented in the code. The position and angle data is differentiated numerically, so that the
full state of the system can be determined. The state vector used in the control system design
includes inertial frame positions but body frame velocities. In order to provide the correct full
state feedback data to the controller, the inertial frame velocities are transformed into the body
frame using a vector rotation about the three Euler angles. Proportional gain Kp is applied to the
full state of the system using a gain matrix established in the controller design.

24

The reference error of the system is found by subtracting the observed position of the blimp from
the commanded position. This error is integrated using a simple trapezoid rule, and integral gain
matrix K, is applied. The proportional control voltages are then subtracted from the integral
control voltages to get the command voltage to each motor. Due to the constraints of the selected
motors, a saturation limit of 6 V is applied to the commanded voltages.

The command voltages must be converted into a direction command and a pulse width for each
motor. The direction commands are determined by checking if the desired command voltage is
positive or negative, and are set to bytes of 0 or 1.The pulse width is determined by comparing
the command voltage to the nominal 12 V supplied by the battery. The max command PWM
byte that can be sent to any motor is 255, so the actual PWM command for each motor is a single
byte from 0-127 (half of the max). If the motor is firing in the positive direction, a factor is
applied to the PWM command to account for the lower thrust generated when the motors are
running backward. This will allow outputs from the controller in either direction to create the
same net force with no dependence on directionality.

A 10 byte array is formed, consisting of 5 pulse width commands and 5 direction commands, and
sent to the Arduino via serial communication over the Xbee modules.

4.4 Onboard Arduino Code

The code on the onboard microcontroller is responsible for reading in the direction and pulse
width commands and for writing these commands to the desired motors. The 10 byte array is
read in from the Xbee module using serial. The direction commands write a High or Low
command to each of the 5 direction output pins, and the pulse width commands write a duty
cycle to each of the 5 pulse width output pins.

The MATLAB code and the code on the Arduino are included in the Appendix.

5. Hardware Subsystem
5.1 Actuators

The actuators for the blimp system are the five motors. Before selecting the final motors for the
blimp, a few experiments were run to determine the thrust, voltage and amperage of the motors.
A ducted propeller and bi-directional propeller were both tested. After evaluating the motors it
was determined that the ducted propellers would not be ideal for the blimp. Bi-directional
propellers are the best for our situation. This would allow the blimp to rotate clockwise and
counter-clockwise, hence rotating to the desired heading quickly. The ducted propellers were

25

removed from the motor and replaced by a bi-directional propeller. Upon doing a thrust test, the
motor became over heated and was drawing too much current, consequently this burned out the
motor. For this reason, it was decided to go with a motor that are better equipped to run the bi-
directional propellers. The selected motor-propeller system chosen is the GWS EDP-50XC
electric motor which runs at 6V drawing 1.35A and produces 0.5N of thrust.

In order to adequately control the system, it was necessary to determine the relationship between
input voltage and the resulting thrusts and torques generated. As anticipated, the motors were
found to be more efficient in one direction than in the other. Therefore, to achieve the equal
thrust in both directions the voltage will need to be capped differently in each direction, and the
duty cycle commands from the controller scaled accordingly. In the inefficient direction the cap
will be 6V, the maximum the motor is rated for, this will produce a thrust of 0.25N. To achieve
this same thrust in the efficient direction, the voltage must be capped at 4V. From these thrust
voltage pairings, the coefficients used in the system model can be determined. Figure 13 shows
the results of the thrust test. A motor torque test was also conducted. The toques were found to
be sufficiently small enough to be negligible in the pitch and roll directions.

Force Transducer Voltage vs. Force (Motor 1)
05 T T T

04 G E= .

03 5 =
X 4058
Y. 02533

Force (N)
o
T
Y
A
|
|

01+ .|

03 \ | | ! \
0 3
Motor Voltage (V)

Figure 13. Results of motor thrust testing in two directions

5.2 Structure

26

The main function of the gondola is to house the onboard components. The primary design
requirement was to have enough surface area for mounting all the components. The secondary
design requirement is mass limitation. It has been estimated that the structure mass should be
about 50 grams for a neutrally buoyant blimp. The next design requirement is to comply with the
performance requirement of being able to rotate 360 degrees in 30 seconds. Also for
performance, the motors must be far enough away from the main structure to avoid air inference.
The final design requirement is to keep the manufacturing processing simple.

Keeping these design requirements in mind, a preliminary design was formed and built. To keep
the gondola compact, a double deck configuration was chosen. For simplicity, the main structure
was designed as a cube. Versionl of the gondola is in Figure 14, and has a mass of 92 grams. 92
grams is nearly twice that of the estimated mass, which could be too heavy for the blimp
envelope to lift. The motor arm length of 20 cm allows the blimp to rotate 360 degrees in 30
seconds which meets the design requirements. However, the motor arms are attached poorly as
when the motor is fired the arm swings back about half a centimeter.

Figure 14. First version of blimp gondola

27

Figure 15. Final gondola design

A version2 was built to fix versionl’s problems. Version2, in Figure 15, is a squat double deck
cube. The deck spacing is just enough that the Arduino and xBee hardware will fit comfortably.
The mass of the version2 gondola is 49 grams, extremely close to what was estimated. The motor
arm length was kept at 20 cm, to meet the design requirement. But their attachment was redone.
By attaching the arms to a horizontal strut rather than a vertical one the arms are much more
stable. The motor to move the blimp in the z-direction is 10 cm from the bottom of the blimp.
This is enough space to mitigate any unwanted disturbances caused by air flow against the
gondola. The main structure is composed of 7.9 mm square styrene tubing. Plastruct Bondene is
used to attach the styrene tubing together. An epoxy will be used to attach the motor to the motor
arms. Each motor is attached to the gondola at the end of the motor arm by sitting in a type of
two sided cradle.

5.3 Blimp Envelope and Payload Attachment

Several envelopes were looked into before settling on the 4 foot diameter envelope purchased
from Mobile Airships. This envelope is much larger than was initially desired. One of the earliest
project goals was to reduce the payload weight of the blimp in order to reduce the overall
envelope volume that would be needed. The initial calculations using the estimated weight of the
gondola and power board indicated that an envelope with diameter just over 3 feet would be
sufficient. In practice, however, finding durable and reusable envelopes of the correct diameter
proved more difficult than was anticipated. The weather balloons that were tested proved to be
either too small or too fragile. It was finally decided to use the larger envelope from Mobile

28

Airships due to its ease of use (helium can be added to the blimp through a plastic valve) and
relative robustness.

The requirements for the attachment device are that it needs to be lightweight, rigid enough to
turn the envelope and gondola together and it must not slip off the envelope. A wire frame was
tested but was determined to be too heavy for the blimp to lift and slipped off the balloon. A net
system which was fitted over the top of the blimp was also tested, but was determined to also be
too heavy. The final configuration uses a Velcro attachment in which straps from the gondola are
attached directly to strips fixed to the sides of the envelope. This configuration is both relatively
lightweight and sturdy.

The blimp model used for the controls requires the blimp be neutrally buoyant and the center of
mass be known. To meet these requirements variable weights are added. The weight system used
is four screws glued to the corners of the gondola with washers added to vary the weight.

5.4 Microcontroller Components

The electronic hardware which is used on the blimp consists of three main components: the
Arduino Duemilanove 1/0O board, the Xbee wireless communication module, and the Xbee
shield. These three components work in tandem to receive serial data from the controller and
distribute the appropriate pulse width and direction signals to the circuit board.

The Xbee module on the gondola is configured to receive data transmitted by an Xbee which is
connected to the computer on which the control code is run. The Xbees have been configured to
operate at a high baud rate of 115200 bits/second, which allows the onboard system to receive all
the data transmitted from the Vicon with minimal delays. Data received by the Xbee module is
passes to the 1/0 board through the shield, which facilitates the necessary electrical connections
between the two smart components. Once the controller output data is passed to the Arduino, the
onboard code interprets the input vector and passes duty cycles and directions to the appropriate
output pins.

The main design criteria when selecting these components was ease of use. The Arduino board
itself was selected for the relative simplicity involved in coding and forming electrical
connections.

6. Power Subsystem
6.1 Introduction
A five bidirectional motor circuit design was constructed to meet these requirements:

e Operate from supply voltage of 11.1V
e Motor can turn in both directions with various speeds as commanded

29

e Minimal overall weight

e Minimal overall power consumption
e Minimal total part count

e Minimal total price

6.2 Design Procedure:
List of initial components:

e One 20C 3 cell 1350 mAh 11.1 V Lithium Polymer battery
e Fivesingle 5 A H-Bridges

e One generic array logic GAL22V10D

e Two quad optocouplers

e One dual optocouplers

e Supporting diodes, resistors and capacitors

Battery: The whole circuit is powered by one 20C 1350mAh 11.1V 3 cell Lithium Polymer
(LiPo) battery that is charged by a TP-610C charger. According to the datasheet of the Arduino,
it has the normal operating voltage between 7V and 12V. Even though the absolute minimum
operating voltage is 6V, there are no clear information on how Arduino is supposed to behave at
this low range of 6V and 7V. The battery is very light-weight (94g), can last up to 30 minutes
during normal .

Charger: The TP-610C charger can charge, discharge and balance any kind of 1 to 6 cell Lipo,
A123 cells, and 14 NiCd/MH cells and 6 — 12V Pb batteries. It can check to see if the voltage of
each cell is above the cutoff voltage and detect when the battery is fully charge to prevent
damages to the battery.

H-Bridges: To accommodate the initial motors’ drawing current (3.2A) and voltage (7V) at full
thrust, five 5A single H-Bridge chips TLE52052 were chosen. These chips require two inputs
and two outputs. Its different combinations of inputs would produce different combinations of
outputs to make the motor turn clockwise, counter clockwise or stop as shown below in Error!
Reference source not found.. They also get logic supply from the output pin 5V of the Arduino.

Table 1: 5A H- Bridge TLE52052’s Original Truth Table

Input 1 Input 2 Output1l | Output 2 Action
(PWM (Direction)
signal)
L L H L Motor turns clockwise
L H L H Motor turns counter clockwise
H L L L Brake
H H Z Z Open Circuit

30

Generic array logic chip: The above H-Bridges only accept CMOS/TTL compatible inputs and
have an unusual truth table combination for the inputs as seen above in Table 1, so 1 chip
GAL22V10D was used to give the TLE52052 chips their required inputs with the desired
combinations as seen in Table 3. This chip has fourteen possible inputs with one input being a
clock if needed and ten possible outputs. The truth table inside the GAL chip to change the input
combinations is shown below in Table 2. Its voltage supply also comes from the 5V output pin of
the Arduino since this is the typical logic supply for this chip to be able to operate normally.

Table 2: GAL22V10D's Truth Table for TLE52052

Input 1 Input 2 Output 1 Output 2 Supposed Action
(Old PWM (Old (New PWM (New
signal) Direction) signal) Direction)
L L H H Open Circuit
L H H H Open Circuit
H L L L Motor turns clockwise
H H L H Motor turns counter
clockwise
Table 3: Circuit's Truth Table after Inserting GAL22V10D
Input 1 Input 2 Output1l | Output?2 Action
(PWM (Direction)
signal)
L L Z Z Open Circuit
L H Z Z Open Circuit
H L H L Motor turns clockwise
H H L H Motor turns counter clockwise

Optocouplers: 2 PS2501-4 and 1 PS2501-2 were initially used to provide electrical isolations
between the Arduino board with the GAL chip and the five H-Bridges with the motors, and thus
protect both sides from getting affected just in case something goes wrong on one of these two
sides.

Due to time constraints and several changes to the circuit design, the circuit was soldered on a
prototyping board rather than on a printed PCB. Due to the difficulty in placing all components
into the confined space of the prototyping board, the optocouplers were ultimately removed from
the circuit.

H-Bridges TLE52052: Despite the fact that TLE52052 H-Bridges are made to deliver up to 5 A,
they had a tendency to overheat. Their over temperature protection would have shut them down
after 5 — 10 minutes of running the motors continuously at average to maximum voltages.

31

Therefore, they were replaced by 4A dual H-Bridges L298N below that still get high temperature
after the motors continuously ran for a while, but they do not get as hot as TLE52052.

L298N H-Bridges: These chips can stand up to 4A current going through them, require in total 6
inputs and produce 4 outputs for 2 motors. They can receive signals straight from the Arduino
board and, with the right input combination according to their provided truth table as shown
below in Error! Reference source not found., turn directions consequently to given commands.
There are 3 of them in the final design.

Table 4: 4 A Dual H-Bridge L298N's Original Truth Table

Enable Input 1 Input 2 Action
(PWM) (Positive (Negative
Input) Input)

L Z Z Power Off
H L L Brake
H H L Turns clockwise fast
H L H Turns counter clockwise fast
H H H Brake

P (Pulse) H L Turns clockwise slow

P (Pulse) L H Turns counter clockwise slow

GAL22V10D chip: As stated above, the new L298N can receive signals straight from the
Arduino board; however, they require 3 inputs for each motor (instead of 2 like other H-Bridges
that were considered), two of which determine the directions of the motors. However, the
Arduino board does not have enough input pins for all 5 motors. So, the GAL22V10D was used
to form a new truth table as shown below in Table 5. The new logic requires only 2 required
inputs for each motor: 1 PWM input and 1 direction input. The truth table for the combined
system is shown in Table 6.

Table 5: GAL22Vv10D's Truth Table for L298N

Input 1 Output 1 Output 2 Action
(Direction) | (Positive Input) (Negative
Input)
L H L Turns clockwise
H L H Turns counter clockwise
Table 6: Circuit's Truth Table after Putting New Code in GAL22V10D
Inputl | Input?2 First Output Second Output Action
(PWM) | (Direction from 2 from 2
) (Positive Input) (Negative Input)
L Z Z Z Power Off

32

H L H L Turns clockwise fast

H H L H Turns counter clockwise fast

P H L H Turns counter clockwise
(Pulse) slow

P L H L Turns clockwise slow
(Pulse)

Arduino board start-up: Each time the battery connected to the board is turned on, the Arduino
board supplies the highest possible voltage to all motors for a brief period of time while the code
initializes. Although, the period is approximately one second, this caused a current surge which
presented a risk to the circuit and ultimately damaged the Arduino board. This problem was
rectified by connecting the Arduino in parallel with the circuit board, and by implementing a 5V
1A regulator to protect the logic chip.

5V 1A voltage regulator: This regulator can stand up to a current of 1A and it converts the
voltage of 11.1V coming from the battery to 5V and supplies the logic chip and the logic voltage
required on the 3 L298N H-Bridges.

The final circuit board design only contains four main components along with some supporting
resistors, capacitors and diodes:

e One 20C 3 cell 1350 mAh 11.1 V Lithium Polymer battery
e One 5V 1A voltage regulator

e One generic array logic GAL22V10D

e Three 4 A dual H-Bridges

Figure 16 depicts a schematic of the implemented circuit board.

33

EV Regulatod—
1 eefetg) LL LI
- # T 3
|»1J - [- = t Motoxl
I : g
[0 o I O I " N
':“_.—"E & . —° = 5 Motorx2
= Fael L] : ‘ y 26
g | g B s e .
EE il 1
A REE “RER LT
I 2= | LE)
= ins (- i %,—’ = @l{otorS
—_h &
L S : ®Motor4
s

@ Motox$§

==t ih-l‘-'- ¢ sao FL

Figure 16: Final circuit board schematic

7. Results and Conclusions

Test flights of the blimp were incredibly useful in determining both the strengths and flaws of the
overall project design. The results of one test of the position tracking control system are shown
below. Figure 17 shows the coordinates of the blimp over time as it attempts to reach a
commanded position of (1,1,1). As the figure shows, the blimp does not reach the final position
with no steady state error, however the x and y positions do come quite close. Due to the
buoyancy of the balloon, and the relatively limited authority of the z control motor, fine control
of the vertical positions was difficult to achieve. The blimp was also highly responsive to
disturbances in the air currents in the room; even though the air vents in the Vicon space were
closed, drafts in the room had significant affect on the motion of the blimp.

34

Blimp Response to Position Step Commands
2 T T T

% position

— ¥ position
z position

Fasition {m)

05 | | | | |
1} a 10 18 20 25

Time (s)

Figure 17. Position tracking of blimp system

As can be seen in the figure, the blimp experiences significant overshoot, which was not
indicated in simulation. This is due to the fact that the simulated and carefully design control
system was modified to achieve results in the laboratory setting. The motor actuators that are
used to translate the blimp have a hard lower limit at which they may operate; below an input
voltage of about 1 V they do not fire due to stiction. In order to guard against instability in the
system, it was initially desired to design a controller with low control effort, which would also be
useful in avoiding overshoot. When this controller design was implemented using the physical
system, however, the control outputs to the blimp were all below the threshold created by
friction; essentially, the selected actuators were not able to provide the fine control required by
the system design. To compensate for this problem, the MATLAB controller was manually
turned to output higher voltages, which significantly increased overshoot in the system, but did
results in effective firings of the motors. The output control voltages for the above step command
test are shown in Figure 18.

35

Further testing of the system produced similar results. Figure 19 shows the response of the blimp

Controller Guput Woltages (V)
[mm]

Controller Output Voltages During Step Command With Overshoot

T T T T I

flotor 1 Waltage
Motor 2 Woltage |
Maotor 3 Waltage
Motor 4 Woltage
hlotor 5 Waltage

, " Wil

Figure 18. Controller output voltages for position step commands in three directions.

to a step position command of (1,-1,1).

Position {m)

Blimp Position Tracking with Step Input

0.5
]
0.5
¥ position
1 —y position
) z position
a5 I I I I I I I
0 1 2 3 4 5 g 7 g

Time (s)

Figure 19. Blimp Step Test Results

The blimp controller also includes provisions for control of the heading angle, though this

proved to be somewhat more problematic than even position control. The response of the system

to a step command of pi radians is shown below. In order to produce the results below, the
motors fired strongly for a short period of time, producing overshoot that was difficult for the

36

system to recover from. In order to remedy this problem, future commands will be implemented
in smaller increments (way point tracking).

Blimp Response to Yaw Step Command
12 T T

o o o
N m s}

Heading Angle (radians)

o
ra

0.2 L 1
]

Time (s)

Figure 20. Response of Blimp to Yaw Step Command of Pi Radians

It is clear from testing of the system that many improvements could be made to the blimp. The
most critical changes should be made to the actuator/controller system. As the above tests
indicated, merely saturating the outputs of the motors in simulation did not accurately model
what the true behavior of the motors would be. If fine control of the system is desired, the
actuators must be able to supply lower thrust levels; improvements to the system could be made
by physically changing the motors used on the blimp. It would also be possible to use patches in
the controller code to solve the stiction issue; two proposed approaches are to pulse the motors
above their stiction level (effectively introducing a second level of pulse width control) or to add
a small sinusoidal signal on top of the pulse width output so at to continually create motion in the
actuators and avoid static effects.

It is also clear from the noise in the control outputs that the control system itself requires
refinement. Though the derivatives of position (used to calculate the proportional full state
feedback) were filtered using a second order Butterworth filter, significant noise to the system is
fed into the controller, which results in choppy outputs from the actuators.

Another refinement that will be made to the system involves finalizing and improving the blimp
envelope. The final envelope which was used for testing is the balloon used by the previous 449
blimp team. This envelope was much larger than initially desired, but allowed easy attachment of
the gondola. Reducing the size of the blimp while maintaining a sturdy design will be another
area of future work. Finally, in order to continue reducing the weight of the system (and thus the
volume) it is desired to order a printed circuit board.

37

8. References
8.1 Bibliography

1. Bestaoui, Yasmina and Hamel, Tarek. Dynamic Modeling of Small Autonomous Blimps.
Methods and Models in Automation and Robotics, Miedzyzdroje, PI, Aug. 2000, vol. 2, pp 579 —
584.

2. Dorf, Richard C. and Bishop, Robert H. Modern Control Systems. Pearson Prentice-Hall, Inc.,
Upper Saddle River, NJ, 2005.

3. Heemstra, Brian. Linear Quadratic Methods Applied to Quadrotor Control. Department of
Aeronautics & Astronautics, University of Washington, 2010.

4. Hughes, Kyle, et al. Distributed Space Systems Laboratory Blimp. Department of Aeronautics
& Astronautics, University of Washington, 2008.

5. Lewis, Frank L., and Stevens, Brian L. Aircraft Control and Simulation. Wiley, Hoboken, NJ,
2003.

6. Loo, van de Jasper. Formation Flight of Two Autonomous Blimps: The Atalanta Wingman
Project. Master thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2007.
7. Nise, Norman S. Control Systems Engineering. Wiley, New York, 2007.

8. Ogata, Katsuhiko. State Space Analysis of Control Systems, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1967.

9. Schutter B. De, Minimal State-Space Realization in Linear System Theory: an Overview,
Control Laboratory, Faculty of Information Technology and Systems, Delft University of
Technology, Netherlands 30 January 2000

8.2 Use of References

1. Paper detailing the model determination portion of a project attempting a similar objective:
autonomous waypoint tracking of a blimp vehicle. This was also used to validate our plant model
with other research projects.

2. This textbook provided a comprehensive discussion for designing the state estimator.

3. Mr. Heemstra, a former Masters student in the Department of Aeronautics and Astronautics
wrote his thesis on controlling a quadrotor vehicle for the DSSL. As the sensors for that project
are identical to those used in for the blimp system, his thesis has been referenced over the course
of the control design.

38

4. Mr. Hughes, a current Masters student in the Department of Aeronautics and Astronautics
developed a similar blimp vehicle for this course in 2008. The final milestone report for that
project has been a referenced over the course of the project.

5. This text book derived the transform matrices between body and inertial reference frames for
vehicles in flight.

6. Thesis paper on similar project for formation flying blimp vehicles. This was used in validate
our plant model with other research projects.

7. This was the textbook for our Introduction to Control Systems course, and provided the
linearization procedure for state space representations, and the explicit equations for the
controllability and observability matrices.

8. Used this reference to better understand the formal definitions of observability and
controllability and the derivations behind the corresponding matrices. This source has been used
throughout the course due the depth in its discussion of state space control methods.

9. This paper provided an overall discussion of the methods behind minimal realization of linear

systems, and will be used when analyzing other operating points.

9. Appendix

9.1 Arduino Code

#define MOTORL1 10
#define DMOTORL1 12
#define MOTOR2 5
#define DMOTOR?2 4
#define MOTOR3 3
#define DMOTOR3 2
#define MOTOR4 6
#define DMOTOR4 7
#define MOTORS5 9
#define DMOTORS5 8
#define LED 13

byte b[10];

byte key=255;

void setup()

{

pinMode(MOTOR1,0UTPUT);
pinMode(DMOTOR1,0UTPUT);
pinMode(MOTOR2,0UTPUT);
pinMode(DMOTOR2,0UTPUT);
pinMode(MOTOR3,0UTPUT);
pinMode(DMOTOR3,0UTPUT);
pinMode(MOTOR4,0UTPUT);
pinMode(DMOTOR4,0UTPUT);

39

pinMode(MOTOR5,0UTPUT);
pinMode(DMOTOR5,0UTPUT);

pinMode(LED,OUTPUT);
Serial.begin(115200);

}
void loop()

{
digitalWrite(LED,HIGH);
if(Serial.available()) {

if(Serial.read() == key) {
delay(5);
for(inti=0;i<10;i++) {
b[i] = Serial.read();

}
Serial.flush();

}
}
[Iset the directions
if (b[5]==1) {

digitalWrite(DMOTORL, HIGH);
digitalWrite(LED, LOW);

}

else {
digitalWrite(DMOTORL, LOW);

¥

if (b[6]==1) {
digitalWrite(DMOTOR2, HIGH);
}
else {
digitalWrite(DMOTOR2, LOW);

if (b[7]==0) { //motors 3 and 4 have directions reversed?
digitalWrite(DMOTORS, HIGH);

}

else {

digitalWrite(DMOTORS3, LOW);

¥
if (b[8]==0) {
digitalWrite(DMOTOR4, HIGH);
}
else {
digitalWrite(DMOTORA4, LOW);

ks
if (b[9]==1) {
digitalWrite(DMOTORS, HIGH);

}
else {
digitalWrite(DMOTOR5, LOW);

}

40

[Iwrite the pwm commands

analogWrite(MOTOR1,b[0]);
analogWrite(MOTOR2,b[1]);
analogWrite(MOTOR3,b[2]);
analogWrite(MOTOR4,b[3]);
analogWrite(MOTORS5,b[4]);

}

9.2 GAL Code

/[Title: Convert for H-Bridges
module logicGate(B502,B501,B402,B401,B302,B301,
B202,8201,B102,B101,B5,B4,B3,B2,B1);
input B1/*synthesis LOC="2"*/,
B2/*synthesis LOC="4"%*/,
B3/*synthesis LOC="6"*/,
B4/*synthesis LOC="8"*/,
B5/*synthesis LOC="10"*/;
output B1O1/*synthesis LOC="23"*/,
B102/*synthesis LOC="22"*/,
B201/*synthesis LOC="21"*/,
B202/*synthesis LOC="20"*/,
B301/*synthesis LOC="19"*/,
B302/*synthesis LOC="18"*/,
B401/*synthesis LOC="17"*/,
B402/*synthesis LOC="16"*/,
B501/*synthesis LOC="15"*/,
B502/*synthesis LOC="14"*/;
not not1(B101,B1);
buf buf1(B102,B1);

not not2(B201,B2);
buf buf2(B202,B2);

not not3(B301,B3);
buf buf3(B302,B3);

not not4(B401,B4);
buf buf4(B402,B4);

not not5(B501,B5);
buf buf5(B502,B5);

endmodule

9.3 MATLAB Code

41

9.3.1 Blimp Control GUI

function varargout = blimpGUI(varargin)

%BLIMPGUI M-file for blimpGUI.fig

% BLIMPGUI, by itself, creates a new BLIMPGUI or raises the existing

% singleton*.

%

% H=BLIMPGUI returns the handle to a new BLIMPGUI or the handle to
% the existing singleton™.

%

% BLIMPGUI('Property','Value',...) creates a new BLIMPGUI using the

% given property value pairs. Unrecognized properties are passed via

% varargin to blimpGUI_OpeningFcn. This calling syntax produces a

% warning when there is an existing singleton*.

%

% BLIMPGUI('CALLBACK") and BLIMPGUI('CALLBACK'hObiject,...) call the
% local function named CALLBACK in BLIMPGUI.M with the given input
% arguments.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)”.

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help blimpGUI
% Last Modified by GUIDE v2.5 26-May-2010 20:29:18

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton’, gui_Singleton, ...
'gui_OpeningFcn', @blimpGUI_OpeningFcn, ...
'gui_OutputFcn’, @blimpGUI_OutputFcn, ...
'gui_LayoutFcn',], ...
‘gui_Callback', [1);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before blimpGUI is made visible.

function blimpGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin unrecognized PropertyName/PropertyValue pairs from the
% command line (see VARARGIN)

42

% Choose default command line output for blimpGUI
handles.output = hObject;

% Update handles structure
guidata(hObiject, handles);

% UIWAIT makes blimpGUI wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = blimpGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in start.

function start_Callback(hObiject, eventdata, handles)

% hObject handle to start (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
start = 1; %if the start button is pressed, change value of 'start' and
assignin(‘base’,'start',start); %begin vicon data gathering while loop

% --- Executes on button press in update.

function update_Callback(hObject, eventdata, handles)

% hObject handle to update (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
xpos = str2double(get(handles.xpos,'String')); %get value of xpos and make
assignin('base’,'’xpos',Xpos) %it readable from workspace
ypos = str2double(get(handles.ypos,'String"));
assignin('base’,'ypos',ypos)

zpos = str2double(get(handles.zpos,'String"));
assignin(‘base','zpos',zpos)

yaw = str2double(get(handles.yaw,'String'));
assignin('base’,'yaw',yaw)

% --- Executes on button press in stop.

function stop_Callback(hObject, eventdata, handles)

% hObject handle to stop (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
stop = 1;

assignin(‘base’,'stop',stop);

43

function xpos_Callback(hObject, eventdata, handles)

% hObject handle to xpos (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of xpos as text
% str2double(get(hObject,'String")) returns contents of xpos as a double

% --- Executes during object creation, after setting all properties.
function xpos_CreateFcn(hObject, eventdata, handles)

% hObject handle to xpos (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor"), get(0,'defaultUicontrolBackgroundColor))
set(hObject,'BackgroundColor','white');

end

function ypos_Callback(hObject, eventdata, handles)

% hObject handle to ypos (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of ypos as text
% str2double(get(hObject,'String")) returns contents of ypos as a double

% --- Executes during object creation, after setting all properties.
function ypos_CreateFcn(hObject, eventdata, handles)

% hObject handle to ypos (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white");

end

function zpos_Callback(hObject, eventdata, handles)

% hObject handle to zpos (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of zpos as text
% str2double(get(hObject,'String")) returns contents of zpos as a double

% --- Executes during object creation, after setting all properties.

44

function zpos_CreateFcn(hObject, eventdata, handles)

% hObject handle to zpos (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function yaw_Callback(hObject, eventdata, handles)

% hObject handle to yaw (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of yaw as text
% str2double(get(hObject,'String")) returns contents of yaw as a double

% --- Executes during object creation, after setting all properties.
function yaw_CreateFcn(hObject, eventdata, handles)

% hObject handle to yaw (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in session.

function session_Callback(hObiject, eventdata, handles)

% hObject handle to session (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
session = 1;

assignin(‘base’,'session’,session);

9.3.2 Controller Code

%At some point we could have it call the controllers from the workspace,
%but | think it might be easier just to have them all in this file

% %Assume that Vicon data can be parsed into Cg position and heading angle
%Vector y is gotten from client for loop

blimpGUI;

int_saturation=3;

45

max_n=255;

% s=serial('COM8);

% fopen(s);

y=zeros(1,4);

y2=zeros(1,4);

y3=zeros(1,4);

dt=.01; %set some sort of pause here
forward_coefficient=.546;
xhat=zeros(1,8);

afilt=[1 -1.433 .5615];
bfilt=[.0321 .0642 .0321];
r=zeros(1,4);

Y%reference from GUI
new_ref_error=zeros(1,4);
ref_error=zeros(1,4);
integralState=zeros(1,4);
traprulel=zeros(1,8);
traprule2=zeros(1,4);
n=zeros(5,1);

dir=n;

xf4=0;
xf3=0;
xf2=0;
zf4=0;
zf3=0;
zf2=0;
yf4=0;
yf3=0;
yf2=0;
yawf4=0;
yawf3=0;
yawf2=0;

v_4=zeros(1,4);
v_3=v_4;
v_2=v_4,
V_inertial=v_2;

u=zeros(1,5);

loadlibrary('CG.dllI', 'CG.h");
calllib (CG', 'Connect’, 'localhost’)
calllib('CG', 'EnableMarkerData’);
calllib('CG', 'EnableSegmentData’);

SubName='Blimp’;

IVal=[0.0,0.0,0.0];

posx=(0);

posxyz = libpointer(‘doublePtrPtr',IVal);

IValOc=0;

Obpoint = libpointer(‘uint32Ptr',IValOc);
count=0;

start = 0;

46

stop =0;
session = 0;
xpos = 0;
ypos = 0;
zpos = 0;
yaw = 0;

for number=1:15
if(session==1)
fwrite(s,uint8([255 0000000 0 0 0)));
break
end

while(start==0)
pause(.1)
if(session==1)
break
elseif (start ==1)
stop=0;
break
end
end

for count=1:500000 %since it doesn't like while loops

t(count)=count;

if(stop==1)
start=0;
fwrite(s,uint8([255000000 0 0 0 0]));
break

end

for i=1:5
mkrname = calllib('CG', 'GetMarkerName', SubName, i);
calllib('CG', 'GetFrame");
calllib('CG','GetGlobalMarkerTranslation',SubName,mkrname,posxyz,Obpoint);
column=i*3;
Markers(count,column-2:column)=posxyz.value;

end

Y%parse Marker data into Cg and heading angle

%first get yaw

if(Markers(count,1)~=0&&Markers(count,13)~=0)
y(4)=atan2((Markers(count,2)-Markers(count,14)),(Markers(count,1)-Markers(count,13)));

elseif(Markers(count,1)~=0&&Markers(count,7)~=0)
y(4)=atan2((Markers(count,2)-Markers(count,8)),(Markers(count,1)-Markers(count,7)));

elseif(Markers(count,13)~=0&&Markers(count,7)~=0)
y(4)=atan2((Markers(count,14)-Markers(count,8)),(Markers(count,13)-Markers(count,7)));

elseif(Markers(count,4)~=0&&Markers(count,10)~=0)
y(4)=atan2(Markers(count,5)-Markers(count,11),Markers(count,4)-Markers(count,10))-pi/2;

end

%then get position of Cg

if(Markers(count,1)~=0)
y(1)=Markers(count,1)-190.5*cos(y(4));
y(2)=Markers(count,2)-190.5*sin(y(4));
y(3)=Markers(count,3);

47

elseif(Markers(count,4)~=0)
y(1)=Markers(count,4)-190.5*cos(y(4)+pi/2);
y(2)=Markers(count,5)-190.5*sin(y(4)+pi/2);
y(3)=Markers(count,6);

elseif(Markers(count,7)~=0)
y(1)=Markers(count,7)+190.5*cos(y(4));
y(2)=Markers(count,8)+190.5*sin(y(4));
y(3)=Markers(count,9);

elseif(Markers(count,10)~=0)
y(1)=Markers(count,10)+190.5*cos(y(4)+pi/2);
y(2)=Markers(count,11)+190.5*sin(y(4)+pi/2);
y(3)=Markers(count,12);

elseif(Markers(count,13)~=0)
y(1)=Markers(count,13)-165.1*cos(y(4));
y(2)=Markers(count,14)-165.1*sin(y(4));
y(3)=Markers(count,15);

end

ysave(count,1:4)=y(1:4);

%y(4)=0;

y(1:3)=y(1:3)/1000;

if(y(4)>-pi && y(4)<-3*pi/4)

K1=[0.5521 -1.0383 -0.0554 -0.0677 1.3518 -0.0344 1.9189 2.2304 0.1674 -0.2808 -0.0212
0.5277
1.0740 0.1291 -0.0456 -1.2853 0.1755 -0.0204 1.8268 2.1732 0.2866 -0.0091 -0.0243

0.4916

0.1128 0.5469 -0.0843 -0.2151 -0.9095 -0.0518 1.4999 1.9645 0.0832 0.0849 -0.0337
0.3666

-0.4091 -0.6205 -0.0940 1.0025 0.2668 -0.0657 1.5921 2.0217 -0.0360 -0.1868 -0.0306
0.4028

0.1440 0.0170 1.6476 -0.1100 0.0266 2.3090 -0.0783 -0.0532 0.0364 0.0004 0.3471 -
0.0277];
op(count)=1;

elseif(y(4)>-3*pi/4 && y(4)<-pi/2)
Y%here
K1=[0.4950 -0.4748 0.0517 0.1606 1.0150 0.0407 1.9063 2.2248 0.0724 -0.1312 0.0123
0.5217
0.1006 0.6986 -0.0493 -1.0566 -0.1186 -0.0269 1.8555 2.1942 -0.0080 0.1411 -0.0223

0.5011

-0.6787 0.2840 -0.0978 -0.0116 -1.0765 -0.0610 1.9374 2.2421 -0.1445 0.0539 -0.0373
0.5351

-0.2842 -0.8893 0.0032 1.2057 0.0571 0.0067 1.9882 2.2726 -0.0641 -0.2184 -0.0027
0.5557

0.1405 -0.1337 1.6988 0.0410 0.1267 2.3411 -0.0148 -0.0047 0.0423 -0.0485 0.3652 -
0.0097];
op(count)=2;

elseif(y(4)>-pi/2 && y(4)<-pi/4)
%yeah
K1=[0.6053 0.6408 0.1683 -0.2301 1.1130 0.0975 1.8162 2.1659 0.1191 0.1988 0.0710
0.4876

48

-0.2018 0.9580 0.1532 -1.2194 0.1121 0.0871 1.9368 2.2457 -0.0275 0.2528 0.0666
0.5316

-0.7658 -0.2558 0.0225 -0.0247 -1.1367 0.0052 1.8084 2.1725 -0.1671 -0.0373 0.0165
0.4753

0.0413 -0.5729 0.0376 0.9646 -0.1359 0.0155 1.6879 2.0927 -0.0205 -0.0913 0.0209
0.4314

0.1419 0.1700 1.7028 -0.0607 0.1277 2.3381 0.1017 0.0547 0.0482 0.0670 0.3724
0.0475];

op(count)=3;

elseif(y(4)>-pi/4 && y(4)<0)
%is
K1=[0.6382 0.4683 -0.0244 0.2663 1.0594 -0.0283 1.3537 1.8762 0.1880 0.0514 -0.0002
0.3075
-0.5352 0.0134 -0.1534 -0.9242 -0.1196 -0.1122 1.2635 1.8193 -0.0875 -0.0438 -0.0477

0.2712

-0.0669 -1.1493 -0.0709 0.2344 -1.3097 -0.0548 1.6357 2.0551 0.0326 -0.3186 -0.0195
0.4144

1.1065 -0.6944 0.0580 1.4249 -0.1307 0.0290 1.7259 2.1120 0.3081 -0.2233 0.0280
0.4507

0.2916 -0.0259 1.6515 0.1891 0.0569 2.2981 -0.0612 -0.0573 0.1013 -0.0075 0.3586 -
0.0097];
op(count)=4;

elseif(y(4)>0 && y(4)<pi/4)
%do something
K1=[-0.7565 1.3469 0.4307 -0.0801 1.5492 0.1884 2.9792 2.7844 -0.2780 0.4022 0.2401
1.0117
-1.7035 -0.7414 0.5521 -1.7136 -0.0321 0.2298 3.1257 2.8584 -0.5758 -0.2333 0.3267

1.0797

-0.2083 -1.3663 0.3416 -0.3674 -1.3915 0.1286 2.7918 2.6973 -0.1930 -0.3881 0.2188
0.9111

07387 07220 0.2202 1.2661 0.1899 0.0873 2.6454 2.6233 0.1048 0.2474 0.1322
0.8431

-0.2582 0.0197 3.4268 -0.0893 0.0659 3.2906 0.4719 0.1984 -0.1595 -0.0179 1.1068
0.2745];

op(count)=5;

elseif(y(4)>pi/4 && y(4)<pi/2)
%and something else
K1=[-1.0722 0.7140 0.2383 0.1305 1.4158 0.1029 3.3931 2.9684 -0.2706 0.2326 0.1353
1.2373
-0.2853 -1.4534 0.3739 -1.5178 -0.1560 0.1652 3.3606 2.9524 -0.0464 -0.4401 0.2072

1.2226

1.0313 -0.6829 0.3359 -0.1187 -1.3919 0.1459 3.3775 2.9617 0.2486 -0.2234 0.1890
1.2295

0.2443 1.4845 0.2003 1.5297 0.1800 0.0837 3.4100 29777 0.0244 0.4493 0.1171
1.2443

0.0480 -0.2166 2.9834 -0.0865 -0.0594 3.0867 0.3308 0.1433 0.0239 -0.1098 0.8761
0.1875];
op(count)=6;

elseif(y(4)>pi/2 && y(4)<3*pi/4)
%almost
K1=[-1.1032 -1.1694 0.1179 -0.3269 1.5334 0.0357 2.8273 2.7181 -0.2564 -0.4547 0.0883
0.9186

49

0.7967 -1.7370 0.3827 -1.7259 -0.0079 0.1634 3.2890 29352 0.3279 -0.5919 0.2210

1.1608
1.9462 0.2144 0.3437 -0.2528 -1.7128 0.1454 3.0122 2.7911 0.7181 -0.0149 0.1990

1.0382
0.0464 0.7820 0.0789 1.1462 -0.1714 0.0178 2.5505 2.5740 0.1338 0.1223 0.0663

0.7961
0.4473 -0.1663 2.9685 -0.1591 -0.1735 3.0762 0.2668 0.1002 0.2149 -0.0838 0.8716

0.1715];
op(count)=7;

else
%the last K!
K1=[-0.2193 -1.7931 0.1134 -0.2204 1.6655 0.0347 3.0356 2.8136 0.0357 -0.6142 0.0858

1.0303
1.9287 -0.8361 0.2898 -1.8039 0.0210 0.1241 3.3421 2.9509 0.7264 -0.3102 0.1672

1.2016
1.3736 0.9929 0.1293 -0.4276 -1.5132 0.0485 2.8323 2.6999 0.5789 0.2187 0.0828

0.9519
-0.7744 0.0359 -0.0471 1.1560 0.1314 -0.0409 2.5258 2.5626 -0.1118 -0.0853 0.0014

0.7806
0.4721 -0.0885 2.9024 -0.2364 -0.0558 3.0534 0.1138 0.0276 0.2168 -0.0513 0.8259

0.0941];
op(count)=8;
end

%this one works best of the ones we actually can generate
% K1=[-0.3185 3.3188 -0.0078 -0.3374 5.7522 0.0576 0.9198 1.6365 -0.0544 0.6222 -

0.0292 0.1965

% -3.0552 0.1377 0.1749 -5.6122 0.1046 0.2583 0.6228 1.6067 -0.5238 0.0560
0.0064 0.0312

% 0.3368 -3.0148 -0.2205 0.2436 -5.5276 -0.2408 0.7339 1.5967 0.0955 -0.5241 -
0.0340 0.0642

% 3.0735 0.1663 -0.4031 5.5185 0.1200 -0.4415 1.0310 1.6264 0.5649 0.0421 -0.0696
0.2295

% -0.1081 0.6645 6.6622 -0.2904 0.6881 11.8124 -0.3466 -0.2532 0.0206 0.1134

1.1111 -0.1185];

% this one works best, so far

% This one! This one here!
% K1=[-0.3009 4.8667 1.0192 -0.2861 5.5499 0.6017 5.4947 2.4162 -0.0372 1.0878

0.3776 0.4378

% -3.9514 0.5573 0.9774 -4.7613 0.4568 0.6957 4.8896 5.2672 -0.8627 0.1421
0.3187 0.3789

% 0.2084 -4.6210 -0.6668 0.2419 -5.3727 -0.3968 -3.2533 1.2305 -0.0023 -1.0058 -
0.2448 -0.0698

% 3.8590 -0.3117 -0.6250 4.7171 -0.2796 -0.4908 -2.6483 -1.6205 0.8231 -0.0600 -
0.1859 -0.0109

% -0.5215 0.0197 7.4442 -0.4307 -0.1344 125309 1.1455 0.5540 -0.2031 0.1316

1.2797 0.4269];

50

KI=K1(;,9:12);
KP=K1(:,1:8);

% Estimate States / Proportional Control
if(count<4)

v_inertial =[0 0 0 0
else

V_inertial=(3*y'-4*y2'+y3")/(2*dt);

end

yaw_dot=v_inertial(4);

%coriolis=[-1*v_inertial(4)*y(2) v_inertial(4)*y(1) 0 0]’
%v_body=v_inertial-coriolis;

%Undergo lengthy filtration process
xfl=v_inertial(1);
x_filt=filter(bfilt,afilt,[xf4 xf3 xf2 xf1]);
v_inertial_f(1)=x_filt(end);

xf4=xf3;

xf3=xf2;

xf2=xf1;

yfl=v_inertial(2);
y_filt=filter(bfilt,afilt,[yf4 yf3 yf2 yf1]);
v_inertial_f(2)=y_filt(end);

yfa=yf3;

yf3=yf2;

yf2=yf1;

zfl=v_inertial(3);
z_filt=filter(bfilt,afilt,[zf4 zf3 zf2 zf1]);
v_inertial_f(3)=z_filt(end);

2f4=zf3,;

zf3=zf12;

zf2=zf1,

yawfl=v_inertial(4);

yaw_filt=filter(bfilt,afilt,[yawf4 yawf3 yawf2 yawf1]);
v_inertial_f(4)=yaw_filt(end);

yawf4=yawf3;

yawf3=yawf2;

yawf2=yawf1;

C_b2r=[cos(y(4)) sin(y(4)) 0
-sin(y(4)) cos(y(4)) 0
001];
v_body=C_b2r\v_inertial_f(1:3)";
v_body(4)=v_inertial_f(4);
y3=y2;
y2=y;

xhat(1:3)=y(1:3);
xhat(7)=y(4);
xhat(4:6)=v_body(1:3);
xhat(8)=v_body(4);

51

%
%
%
%
%

u_prop=(KP*xhat")’;
xhatplot(count,1:8)=xhat;

% Integral Control

r=[xpos ypos zpos yaw];
new_ref_error=r-y;

for i=1:4

traprule2(i)=(new_ref_error(i)+ref_error(i))*dt*.5;

integralState(i)=integralState(i)+traprule2(i);

if(integralState(i)>int_saturation) %cap the integrator

integralState(i)=int_saturation;
elseif(integralState(i)<-1*int_saturation)
integralState(i)=-1*int_saturation;
end
end
ref_error=new_ref_error;
u_int=(KI*integralState")’;
% Give Control Voltages to Arduino
u=u_int-u_prop;
usave(count,1:5)=u;

form=1:5
if(u(m)>0)

dir(m)=1;

if(u(m)>6)
u(m)=6;
n(m)=max_n*(u(m)/12);
n(m)=n(m)*(forward_coefficient);
%n(m)=max_n;

else
n(m)=max_n*(u(m)/12);
n(m)=n(m)*(forward_coefficient);

end

else
dir(m)=0;
if(u(m)<-6)
u(m)=-6;
n(m)=max_n*(u(m)/12);
%n(m)=max_n;
else
n(m)=-max_n*(u(m)/12);
end
end
if (n(M)<30&&n(m)>15)
n(m)=30;
elseif (n(m)<=15)
n(m)=0;
end
end

52

if (abs(ref_error(1))<=.1&&abs(ref_error(2))<=.1&&abs(ref_error(4)<=.25))
Output=zeros(1,10);
fwrite(s,uint8([255 Output]))
else
n=n*2.5;
for k=1:5;
if n(k)>127
n(k)=127;
end
end
Output=[n',dir1;

fwrite(s,uint8([255 Output]))
end

%Output
Outputsave(count,1:10)=Output;
pause(dt);

end
end
disp('Session Ended! Have a nice day!")
%Disconnect from the System and Unload the Library
calllib (‘CG', 'Disconnect’);
unloadlibrary CG
%fclose(s);

9.3.3 Linearized Model

clear all; close all; clc

Drag=.1; %random drag coefficient thing

rf=.3; %radius of motors from Cg

x=[0 0000 0 7*pi/8 0]; %linearization point
k=[0 0 0 0 0]; %needed for linmod syntax but not used
[A,B,C,D]=linmod('Non_linear_u2x',x,k);
%linmod only makes valid A and B, so make C
C=zeros(4,8);

Cc(1,1)=1;

C(2,2)=1,

C(3,3)=1;

C(4,7)=1,

Alarge = [A,zeros(8,4);C,zeros(4,4)];

Blarge = [B;zeros(4,5)];

poles=1.5*[-2 -4 -3 -2.5 -6 -5.5 -7.5 -6+.2i -6-.2i -7 -8 -5];
K=place(Alarge,Blarge,poles)

KI=K(:,9:12);

KP=K(:,1:8);

9.3.4 State Space Model

53

%A_state=A+.1*(-1 + (2).*rand(8));

%B matrix

B=zeros(8,5);

B(4,:)=[0-a/M 0 a/M 0];
B(5,:)=[a/M 0 -a/M 0 0];
B(6,5)=a/M;

B(8,:)=[a*rf/J a*rf/J a*rf/J a*rf/J O];

% %C matrix
C=zeros(4,8);
C(1,1)=1;
C(2,2)=1;
C(3,3)=1;
C(4,7)=1;

D=zeros(4,5);
w=[0 0 0 Dr*Ux"2 Dr*Uy~2 Dr*Uz*2 0 0]";

M=ctrb(A,B);
rankct=rank(M);

% %Mo=0bsv(A,C);

% %rankobs=rank(Mo);
% Clarge=eye(12);

% Clarge(1,1)=cos(tz);
% Clarge(2,1)=sin(tz);

% Clarge(2,2)=cos(tz);
% D=0;

%

% % %Controller Design
Alarge = [A,zeros(8,4);C,zeros(4,4)];
Blarge = [B;zeros(4,5)];

Mi=ctrb(Alarge,Blarge);
rankcti=rank(Mi);

%poles=1*[-2 -3 -10 -6 -4+1i -4-1i -11 -5+2i -5-2i -5 -9 -8];
poles=.15*[-2 -4 -3 -2.5 -6 -5.5 -7.5 -6+.2i -6-.2i -7 -8 -5];
%poles=.25*[-2+1i -2-1i -3 -8-2i -8+2i -1 -4+1i -4-1i -7 -5+2i -5-2i -6];
K=place(Alarge,Blarge,poles);

KI=K(:,9:12);
KP=K(;,1:8);

poles_obs=real(poles)*5;
L=place(A',C',poles_obs(1:8))";
% Sysc=ss(A,B,C,D)

% SYSD=c2d(Sysc,.1)
% [am,bm,cm,dm]=ssdata(SY SD)

54

55

