
Engineering Novel Time Distributions in Gene Regulatory Networks

Seunghee Shelly Jang
Self-Organizing Systems Laboratory, University of Washington

I. INTRODUCTION

The role of stochasticity in biology has been studied in many
contexts - such as creating variations required to survive in
hostile environments [1], regulating circadian clocks [2], and
differentiation in developing organisms [3]. If we systematically
characterize the stochasticity in each context, we get closer
to the ability to control these biological functions. The ability
to control the development of multicellular systems, for one,
holds fantastic futures like replacement organs grown in vitro or
smarter drugs for cancer [4]. With such potentials, then, which
feature of stochasticity in development should we focus on?

In the development phase of multicellular organisms, an
isogenic group of cells differentiates into multiple groups with
different epigenetics. This behavior can be likened to a group
of people performing a leader election. To fairly elect a leader,
the group can repeatedly and separately perform a task that has
probabilistic outcomes (e.g. coin-toss), where one of the out-
comes is the victory outcome (e.g. a head). When an individual
is the first one who lands a head among the group, he or she
becomes a leader – effectively differentiating him or her from
the group. The leader can then send signals to the rest of the
group, telling them to stop flipping coins and become followers.
These individuals also differentiate from their initial state and
from the new leader. Thus, it is not far-fetched to imagine that a
similar mechanism takes place in developmental differentiation.

Let us assume that an individual lands a head for the first time
after h tries. Because coin-tosses have probabilistic outcomes, h
is a random variable characterized by its probability distribution.
Let us assume that the probability distribution of h can be
manipulated somehow – with a biased coin, for example –
then, the variance of h has an interesting interpretation in the
leader election example. If the variance of h was set small,
the probability of multiple individuals each ending up with the
victory outcome in a short amount of time near the mean is large
– in other words, the victory outcomes are closely synchronized,
and the group may end up with multiple leaders. However, if the
variance is set large, the victory outcomes are asynchronous and
the group is less likely to have multiple leaders. Therefore, the
probability distribution of h affects the population distribution
of differentiated states of leaders and followers. We propose to
systematically characterize this relationship.

The following proposal is organized as follows. In Section
II, we propose a translation of the leader election with a
biased coin-toss example into a cellular context, specifically
in the development phase. Then we identify the objectives to
characterize the probability distribution of h (or some equivalent
random variable in the proper context), both with theoretical
analysis by posing the scenario in mathematical language, and
with experiments by synthesizing the biological biased-coin
equivalent. In Section III, the prerequisite backgrounds for the

characterization methods, both in theory and experiments are
introduced, followed by related works in the field that serve as
helpful starting points for the proposed research. In Section IV,
some preliminary results, conclusions and recommendations are
presented. In Section V, we discuss the plan of work and the
tentative schedule for the next year.

II. APPROACH AND OBJECTIVES

One can suggest several intracellular analogs to the coin-
flip example so long as the mechanism is probabilistic, such as
protein dimerization, folding, or saturation. Let us consider the
protein saturation example, where there is no protein of interest,
X , is present initially and the gene for X gets activated. As
the gene begins to express and the count number of X , nX ,
increases as long as the gene remains activated and the rate of
X degradation is less than the rate of X synthesis. If the gene is
deactivated before nX reaches the saturation value, N, then nX
begins to decrease until the gene is activated again. This process
of gene activation and deactivation occurs repeatedly until at
some time t = Tc, nX reaches N. This time Tc is analogous to h
in the coin-flip example, and we call Tc the completion time of
the protein synthesis process. And if we further assume that X
saturation determines the state of the cell, then the differentiated
distribution of the cell population is affected by the probability
distribution of Tc.

There can be a number of ways to manipulate the probability
distribution of the Tc in this example. One way is to vary the
frequencies of gene activation and deactivation. Another way is
to vary the mechanism that activates the gene - an open-loop acti-
vation from external inputs or a feedback activation/deactivation
by X . Frequency variations change the quantitative features
(system parameter) of the gene regulation, and feedback or
open-loop variations change the qualitative features (structure)
of the gene regulation. The relationship between these features
of gene regulations and the probability distribution of completion
times will help us understand the fundamental design principles
employed by nature to perform development and differentiation
in multicellular organisms. Therefore, we propose the following
objectives to characterize this relationship.
− Synthesize genetic regulatory networks with feedback in
E. coli. Three different mechanisms of gene regulation will
be studied in this research - open-loop, positive feedback and
negative feedback. The synthetic gene network corresponding
to an open-loop mechanism will have a single promoter that
is activated by external inputs. For the two feedback mech-
anisms, a single promoter network that expresses either its
own repressor or activator will be synthesized. These synthetic
networks will have with inducible promoters and a fluorescent
protein gene. The inducible promoters allow us to measure the
completion time from the time of induction, and the level of



fluorescence emitted by the fluorescent protein is measured to
monitor the gene expression activity.
− Model the three gene networks and analyze the com-
pletion time distributions. Using the Chemical Reaction
Network theory, we will propose several models of the gene
networks in varying levels of detail. We will apply a variety
of stochastic analysis tools to the models in order to char-
acterize the completion time, its probability distribution, and
sensitivity to parameter variations and structural variations.
Such analysis tools include the Chemical Master Equation
(CME), the Stochastic Simulation Algorithm (SSA), and cu-
mulant and moment dynamics. We will identify the qualitative
differences of the gene networks arising from the structures,
and discuss how they make each structure a better or worse
suited mechanism for differentiation. Because in addition to
structural differences, parametric sensitivity differences will
also determine the capacity of each network in differentiation,
we propose to investigate the quantitative differences of the
networks as well.
− Iteratively verify predictions made in the models with ex-
periments and modify the models based on the experimental
results. The probability distribution of the completion time
in the synthetic networks will be approximated using cellular
assays, such as time-lapse microscopy or flow cytometry. Time-
lapse microscopy allows us to monitor the individual trajectory
of fluorescence level in a single cell and the time at which
the level reaches an arbitrary saturation value. On the other
hand, flow cytometry reveals the population distribution of
fluorescence level at each measurement. We will measure the
time-series of the distribution and compute the fraction of
population that reached the saturation value, which is equivalent
to the cumulant distribution distribution of completion time.
The experimental results will be used to invalidate and identify
the features of candidate models that require modification
to attain better fidelity to the system. The modified models,
in turn, will be used to design experiments that will better
highlight the key features of the systems. The mathematical
model predictions obtained from this iterative process will
identify the salient features of differentiation mechanisms.

The following section will provide a broad overview of the
fundamentals in both theory and experiments to accomplish our
objectives. Two specific related works are discussed afterwards,
each with a focus on theory and experiments. These works were
chosen based on their close proximity to the objectives of the
proposed research, and served as a foundation for obtaining the
preliminary results.

III. BACKGROUND AND LITERATURE REVIEW

Synthetic gene networks are built from borrowed parts, such
as natural promoters and transcription factors, and the precision
of synthesis is improving with the advance of biotechnology.
Though manipulating genetic materials is not a new technol-
ogy, synthetic biology is different from the traditional genetic
engineering in its intention to engineer novel behaviors, such
as oscillation or bistability [5], [6]. The underlying objectives
of these synthesis-based approach to biology is to identify
and isolate the salient features of complex gene networks and
discover the nature’s design principles. And synthetic biology is
strengthened by two complementary approaches of mathematical
theory and biological experiments. A well-established study of

differential equations is used to analyze the dynamics of the sys-
tems [7], linear systems theory the stability, controllability, and
observability [8], and probability theory the stochastic behaviors
in the mesoscopic level of biological molecules [9]. At the same
time, increasing efficiency of cloning techniques [10], decreasing
cost of DNA synthesis and sequencing [11], and the advance of
experimental equipment all contribute to engineering biological
test beds for verifying hypotheses obtained from mathematical
theories. As the objectives of the proposed research spans both
theory and experiments, the remainder of this section is divided
into two parts to address the fundamentals of each aspect
separately.

A. Mathematical Theory

The Chemical Reaction Network theory provides a standard-
ized foundation from which a mathematical description of chem-
ically interacting species inside a fixed volume can be derived
[12]. A CRN consists of chemical species (Xi) that interact
according to some reactions (R j), the stoichiometric coefficients
of reactants (ui j) and products (vi j) of the reactions, and the rates
of these interactions (λ j). Using the Law of Mass Action, the
dynamically changing concentrations of the chemical species of
the CRN are modeled by a set of ordinary differential equations.
This method translates smoothly into the context of biological
interactions inside a cell. Cellular environments are no different
from the environments inside a chemical processing plant, in
they have biochemical interactions, reactant and product species
of these interactions, and numerical values for the rates of the in-
teractions. However, the key difference is that whereas chemical
systems tend to have a large quantity of each species, biological
species tend to be present in much smaller quantities. Thus,
biological molecules must be expressed as discrete variables
instead of continuous variables. Additionally, the stochasticity
of the biochemical interactions become more pronounced in
systems with species in small quantities. Therefore, biochemical
systems, such as gene regulatory networks, require mathematical
descriptions that properly addresses the discrete copy number of
species and the stochasticity of interactions.

Using discrete-state continuous-time Markov processes, the
stochastic and discrete nature of gene regulatory networks can
be modeled [13]. Let the species of a gene regulatory network
be denoted by a vector S = [S1, · · · ,Sn], and the number of each
species denoted by Ni. Then, each discrete state of the system is
denoted by the vector N= [N1, · · · ,Nn]. Because the stochasticity
of gene networks forces the description of the system from a
deterministic value to a probability distribution over the states,
we denote the probability of the system in state N at time t by
p(N, t). The vector of the probabilities of all the states is p(t)
and the probability vector, given some initial distribution p0,
evolves according to the following Chemical Master Equation
(CME).

ṗ(t) = Qp(t), (1)

where the matrix Q = [qi j], and qi j is the transition rate from
state j to state i [14]. The analytical solution of (1) is

p(t) = eQtp0. (2)

The matrix exponential, eQt , makes the computational cost of
the solution (2) prohibitively expensive. Therefore, instead of
solving for the probability distribution dynamics analytically, it



can be solved numerically to provide exact realizations of CRN
with a fixed set of parameters.

The Stochastic Simulation Algorithm (SSA) numerically sim-
ulates individual trajectories of the species of a stochastic CRN
[15]. The method employs the fact that 1) each rate of a chemical
reaction is the inverse of the mean waiting time for the reaction,
and 2) the probability of a reaction is equal to the ratio of the
reaction propensity to the sum of all reaction propensities. By
generating a large number of simulations, the time evolution
of a stochastic system can be approximated and the dynamics
of each species is obtained. It should be clarified that the
probability distribution dealt with in the CME corresponds to
the joint probability distribution of each specific state, P(N, t),
whereas the approximated probability distributions obtained
using the SSA are the marginal probability distribution of each
species, P(N1, t). Though more straightforward for portrayal of
probability distribution dynamics of individual species, the SSA
algorithm requires that the initial condition and the rate constants
be specified a priori. Thus, if an analysis requires a different set
of parameters or initial conditions, a whole new set of large
number of simulations is required.

Another approach to characterizing the evolution of the
probability distribution for stochastic biochemical systems is to
compute the cumulant dynamic of each species of the system
[16]. The cumulants of a random variable are set of values
that characterizes the corresponding probability distribution. For
example, the second order cumulant of a random variable is its
variance and is representative of the width of the probability
distribution. The cumulants are computed using the cumulant
generator function,

GY (s) = log
⟨
esY ⟩ , (3)

where Y is a random variable and ⟨·⟩ denotes the expected
value. The nth order cumulant of Y is computed by taking
the nth derivative of (3) with respect to s and setting s = 0.
Usually, no more than the first four cumulants are computed
for a given species, because cumulants of order five or higher
have no straightforward interpretation related to the probability
distribution characteristics. To compute the time evolution of
cumulants, the extended generator is employed. Let ψ(Y (t)) be
some test function of state Y (t), then the expected value of the
test function evolves according to the following equation.

d ⟨ψ(Y (t))⟩
dt

= ⟨Lψ(Y (t))⟩

=
m

∑
j=1

λ j
(
ψ(Y j(t))−ψ(Y (t))

)
, (4)

where the Y j(t) is the state after the reaction R j : Y (t) 7→ Y j(t)
has occurred, and λ j is the reaction rate constant. The cumulant
dynamics is then obtained by letting ψ(Y (t)) = GY (s), and
solving the resulting set of ordinary differential equations. In
some cases, depending on the reaction order of a CRN, the
cumulants of order i depends on the cumulants of order i+ 1,
requiring calculation of infinitely many orders of cumulants. In
order to obtain a closed-form solution, the cumulants can be
truncated or approximated using various methods [17].

B. Biology Background

Within a single cell resides a genome, a chain of DNA
molecules, containing all the genetic information the cell needs

to harvest energy, reproduce and survive. Though mighty in its
information content, the genome alone cannot make a living
organism. It requires molecular machinery that actualizes the
information in a useful form. Thus, DNA is transcribed into
RNA, RNA is translated into protein, and proteins perform the
necessary biological functions [18]. The gene regulatory function
of proteins are crucial, such that without the proper regulation
of transcription and translation, the entire genome would be
uniformly transcribed and translated all the time and mean a
disaster for the cell. The intricately connected networks of gene
regulation exists to ensure that each cell is viable and functional.

The two major components of gene regulatory mechanisms
are promoters and transcription factors (TF). TFs are protein
complexes that binds to the promoter of a gene to regulate the
expression. Promoters are sequences of DNA that are found
at the 5’-end of a gene and are serves as the recognition
site for RNA polymerase to initiate an RNA synthesis. The
promoter sequences contain operators that serve as binding sites
for specific TFs. A large number of TF and promoter pairs have
been identified, and synthetic gene networks are designed and
built by arranging them in specific configurations[19], [20]. For
example, the critical structure of stress response in B. subtilis
were identified by synthesizing a gene network with identical
promoters and TFs, but with one of the two feedback loops
(coupled positive and negative feedbacks) removed [21]. This
synthetic version, when transformed inside cells, prohibited the
cells from leaving their competence state, showing that the
removed feedback is critical to the overall mechanism of B.
subtilis stress response.

There are other examples where feedback mechanisms are
observed. A class of gene networks that give rise to stochastic
state switching (e.g. cancer and developmental differentiation)
has been consistently shown to contain positive feedback loops
[22], [23], [24], [25]. Another type of behavior that arises from
gene networks with positive feedback loops is procrastinating
differentiation [26]. It refers to the phenomenon observed in
isogenic cells, that when triggered for specific response (e.g.
sporulation, apoptosis), the response times of the cells widely
vary within the microcolony. This phenomenon is closely re-
lated to the leader election example – however, the lack of
communication between the individuals presents itself in the
form of unimodal steady-state after some transient multimodal
distribution.

C. Biological Experiments

Gene network synthesis procedure can be broken into two ma-
jor steps. The first step is acquiring the desired DNA sequences
(e.g. promoters, transcription factor genes), and the second step
is joining these pieces together in the right order. Natural
promoters and genes are obtained from the host organism’s
genome through Polymerase Chain Reaction (PCR). In this
process, the desired sequence is isolated and amplified by using
two short pieces of single-stranded DNA that are complementary
to the 3’- and 5’-ends of the desired sequences. Through cyclical
temperature manipulation of the reaction chamber, the copy
number of the desired sequence amplifies exponentially. Then
the amplified pieces are digested using restriction enzyme to
introduce recognizable sticky (or blunt) ends to each piece, and
assembled together using DNA ligase. The restriction enzymes
were chosen strategically to ensure that when the DNA ligase



assembles the pieces together,the right order and direction are
maintained. The product is transformed into a host organism by
electroporation before it is ready for assays.

Modern cellular assay tools such as the flow cytometry,
time-lapse fluorescence microscopy, and plate readers are made
possible by Green Fluorescent Protein (GFP) [27]. GFP can
be fused to or co-expressed with a protein of interest, and by
measuring the level of fluorescence emitted when excited at
the appropriate wavelength the gene activity is monitored. For
example, in a flow cytometer, cells suspended in liquid culture
are passed through a cylindrical passage where they are subject
to laser excitation. The intensity and amount of scattered light
is used to compute the relative size, internal complexity and
fluorescence intensity of cells. In addition to GFP, there are
several different types of fluorescence protein that can be used
for multicolor live cell imaging to monitor several different gene
activities simultaneously.

D. Related Work

Using the Laplace transform, the CME of 1-dimensional
complex biochemical processes can be solved [28]. In this work,
a kinetic proofreading (KPR) process was modeled by a Markov
chain with an absorbing state that corresponds to the completion
of the proofreading process. Then, the time derivative of the
absorbing state probability is equal to the probability distribution
of completion time [29], which can be solved exactly using
the Laplace transform. The solution showed that the distribution
approaches to Γ- or exponential distribution depending on the
direction of the bias imposed by the transition rates. However,
the solution and the conclusion is limited to an open-loop
system where the transition rates are independent of the states.
The Laplace transform approach discussed in this work, after
significant modification, may prove to be helpful in analyzing
systems with feedback – those with state-dependent transition
rates.

A feedback loop in a gene regulatory network involves a
promoter that are regulated by the protein that acts as the
regulator for the promoter. Naturally occurring feedback loops
are interesting in themselves, but a synthetic class of hybrid pro-
moters developed to exhibit the programmability of promoters
expands the possible design space [30]. Hybrid promoters are
synthesized by combining multiple operator sites corresponding
to different TFs, and often have tighter regulation of un-induced
leaky expression and larger range of expression. The range of
expression are controlled by varying the inducer concentrations
and because of this feature, a fine-tune control over synthetic
gene networks is possible.

IV. PRELIMINARY RESULTS

A. Approximation of the probability distribution of completion
time

Using the basic understanding of the gene expression mech-
anism, we expressed the feedback gene regulatory network with
the following Chemical Reaction Network.

Gu +X
ka−−−⇀↽−−−

α ka
Gb Gu

β2ex−−⇀β2ex−−⇀ Gu +X

X
dx−⇀dx−⇀ ϕ Gb

β1ex−−⇀β1ex−−⇀ Gb +X

where X is the transcription factor, Gu is an X gene not bound
with X , and Gb is an X gene bound with X . The rate con-
stants of reactions are: rate of transcription factor binding (ka),
unbinding-to-binding ratio (α), ratio of unbound gene expression
to basal expression (β1), ratio of bound gene expression to
basal expression (β2), and degradation/dilution rate of X (dx).
We simulated 1000 SSA realizations of the CRN to visualize
the dynamic of X and approximate the probability distribution
of the completion time using these parameters (Figure 1). We
denote the number of X with nX and set the completion of
protein saturation to be when nX reaches its half steady-state
value, N, because it was observed that after a single trajectory
with nX is sufficiently higher than N, the probability of the nX
dropping below N is small. In fact, we have not observed such
an event in the simulations. We can be convinced with some
confidence that the cell is committed to its fate, after nX number
exceeds N. For future work, we propose to model the system as
a Markov process and rigorously determine the probability of
the system returning to its initial state after reaching the state of
nX ≥ N. We applied the extended generator method to compute
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Fig. 1: (a) Thousand trajectories of the CRN obtained from the Stochas-
tic Simulation Algorithm. (b) the approximated probability distribution
of completion time (completion is when nX > N, the horizontal black
line in (a)). The parametric values used are [ka,α,β1,β2,ex,dx] =
[10−3 log(2), 0.1, 10, 1, 10 log(2), log(2)] and the initial condition is
[Gunboud ,Gbound ,X ] = [5, 0, 0]. The green curve is the approximated
completion time distribution using the cumulant truncation method.

the cumulant dynamics of the system. Because the reaction order
of the CRN is 2 (because of the bimolecular reaction), each ith
order cumulant is a function of i+1th order cumulants, requiring
infinitely many orders of cumulants. Therefore, the cumulants
with order 3 and higher were truncated to obtain a closed-form
solution. This is equivalent to assuming that the population of
each species has a Gaussian distribution at all times. And since
a Gaussian random variable is distributed by,

g(n̂X ) =
1√

2πκnX nX

exp

(
− (nX −κnX )

2√
2κnX nX

)
, (5)

the fraction of X above N as a function of time is given by

F(N, t) =
1
2
± 1

2
erf

(
N −κnX (t)√

2κnX nX (t)

)
(6)

where κnX and κnX nX are the first and the second order cumulants
of nX . This function is an approximation of the cumulative
distribution of the completion time. By taking the derivative
of (6) with respect to time, the probability distribution of



completion time is approximated as follows.

f (N, t) =
∂
∂ t

F(N, t)

=
1
2

(
−
√

κnX nX (t)κ̇nX (t)− κ̇nX nX (t)(N −κnX (t))
κnX (t)

)
×

exp
(
− (N −κnX (t))

2

κnX nX (t)

)
(7)

where κ̇ denotes the time derivative. The method requires
numerical solution to the nonlinear ODE of cumulants and
differentiation of the cumulative distribution of completion time.
Also, depending on the choice of the threshold, the integral
of f (N, t) does not approach 1 as t → ∞. But in such cases,
we are able to compute the exact error. Using this cumulant
truncation method, completion time probability distributions of
two different sets of parameters and initial conditions were
approximated (Figure 1). For the first set, the curve (cumulant
truncation) agrees well with the histogram (SSA), but in the
second set, the curve shows a bimodal distribution where the
first mode is a fair approximation of the histogram, whereas the
second mode is unseen in the histogram. We will investigate the
source of error, such as the numerical algorithm used to solve
the cumulant dynamics ODE.
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Fig. 2: Completion time probability distribution approximated using
the SSA and the cumulant truncation method. (a) [ka,α,β1,β2,ex,dx] =
[10−2 log(2), 0.1, 1, 0.001, 101.5 log(2), log(2)] and the initial condition
is [Gunboud ,Gbound ,X ] = [9, 1, 1]. (b) Identical to the condition used in
Figure 1.

B. Synthetic positive feedback gene network in E. coli
Design and Construction. Because even a small amount

of output can trigger the rapid activation of a positive feed-
back mechanism, we employed promoters that have minimal
leaky expression and give maximal control over the range of
expression [31]. We selected two hybrid promoters from [30]
– A12 and D61 – that have operator sites from the pBAD
promoter that is activated by AraC-arabinose complex, and the
pLac promoter that is repressed by LacI protein. To create a
positive feedback loop, we cloned araC gene downstream of the
promoter so that when induced with arabinose, the promoter is
activated (Figure 3 (a)). Additionally, we used a strain of E. coli
that constitutively expresses lacI, to keep the promoter tightly
regulated when uninduced by IPTG. The recombinant DNA was
obtained using restriction enzymes and DNA ligase. Currently,
there are several variations of the positive feedback gene network
(Figure 3 (b)). Each network has the promoter A12 or D61,
and placed in a plasmid with the origin of replication pMB1,
pSC101, or pSB3K31.

1Each has an approximate copy number of 100,101, and 102, respectively

Fig. 3: A diagram of a synthetic positive feedback gene regulatory
network. (a) The pLac/ara hybrid promoter is induced by IPTG
and arabinose. IPTG inhibits the LacI repression of the promoter,
whereas arabinose forms a complex with AraC protein and activates
the promoter. (b) The network has a hybrid promoter, controlling the
expression of araC and gfp downstream, an origin of replication and
an antibiotic resistance marker.

Assays. Three different types of assay were used to char-
acterize the A12 promoter variant of the positive feedback
gene network in varying concentrations of IPTG and arabinose.
The following is a brief summary of each assay, including the
objectives, methods, results, and conclusion.

− plate spectrophotometry
· Objective. To confirm the response behavior of the hybrid

promoter predicted in the original paper [30] in changing
concentrations of two inducers.

· Methods. We inoculated LB media with a single colony from
the agar plate of transformed cells. The culture was diluted
1:150 in PBS with 48 different concentrations of IPTG and
arabinose in a 96 well plate (duplicates were made for each
condition). Each well contained 0%, 0.01%, 0.05%, 0.1%,
0.5%, 1% or 2% arabinose and 0uM, 10uM, 50uM, 100uM,
500uM, or 1mM IPTG. The plate reader was set to measure the
optical density and the fluorescence level of each well every 20
minutes over 24 hours. The plate was kept in 37C and shaken
for 10 minutes before each measurement.

· Results and Discussion. The rate of fluorescence increase
was slower and the steady-state expression level was lower
for arabinose induction conditions relative to IPTG (Figure 4
(a)). This confirmed that the hybrid promoter response was
consistent with the prediction.

− flow cytometry
· Objective. To measure the distribution of fluorescence level

of cells from the time they are induced until steady-state is
reached, and to observe the transient in the mean and the
variance of the fluorescence level.

· Methods. We used the same colony from the spectrophotometry
assay to inoculate LB cultures with varying concentrations of
IPTG and arabinose. 12 different concentrations were tested,
and each culture tube contained 0%, 0.1% 1% or 10% arabi-
nose and 0uM, 10uM or 100uM IPTG. In 15 minute intervals,
for 4.5 hours, 10uL of culture from each tube was diluted
1:15 in 96 well plates with PBS in each well. 25000 events
(cells) from each well were screened using a Accuri C6 flow
cytometer. Additional measurements were made at 5 hrs, 6 hrs,
20.5 hrs and 21.5 hrs after induction.

· Results and Discussion. At 30 minutes after induction, the
mean of the fluorescence level distribution was higher com-
pared to the initial mean value at the time of induction. From
45 min to 105 min after induction, the mean fluorescence level
decreased. At 120 min, two distinct populations of fluorescence



level were observed and again at 135 min (Figure 4 (b)).
However, the bimodal distribution disappeared abruptly in the
next measurement and no more higher fluorescence population
was observed. We hypothesize that the cell population with ac-
tivated positive feedback are suffering from AraC/gfp toxicity.

− time-lapse microscopy
· Objective. To confirm whether the high fluorescing cells – the

cells with activated positive feedback – have different viability
compared to the lower fluorescing cells.

· Methods. An agar plate with 10% arabinose and 1mM IPTG
was prepared. An overnight culture was diluted in the morning
and grown for 3 hours to reach log-growth phase. 2uL of cells
were transferred onto the agar plate. Using the microscope,
10 sparsely populated areas were selected. Within each area, a
single cell was marked for tracking, and every 10 minutes for
12 hours an image processing macro tracked each cell, adjusted
the focus, and took an image of the cell.

· Results and Discussion. The cells that began to emit high level
fluorescence were shown to grow larger than its peers with low
level fluorescence (Figure 4 (c)). Eventually these cells died,
supporting the theory that over-expression of araC is toxic.
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Fig. 4: Preliminary results from three assays - (a) Plate spectrophotom-
etry, (b) flow cytometry, and (c) time-lapse microscopy. (a) Normalized
fluorescence over 24 hour in 48 different conditions of IPTG and
arabinose are shown. Each subplot has fluorescence level range (y-
axis) from 5500 to 16500 [au], and time (x-axis) from 0 to 24 hours.
The inducer concentrations of IPTG and arabinose are shown in the
top row and the first column. (b) Fluorescence distributions time-series
measured over 4.5 hours in 15 minute intervals. The emergence and
disappearance of high fluorescence population is indicated with a red
circle. (c) Three sample images from a time-lapse microscopy – 1 hr,
6 hr, and 12 hr (Cell population shown in parenthesis).

V. PLAN OF WORK

A. Theory

The approximation method introduced in the Preliminary
Results section will be investigated further. Though a fair
approximation, the Gaussian assumption approach requires nX
be a continuous random variable. Therefore, an approximation
with a discrete probability mass function equivalent to the
Gaussian function will be explored to obtain a similar solution.
An alternative way of approaching the problem is to identify
the upper and lower bounds of the mean and the variance of
the completion time. Using a variety of tools (matrix norms,
asymptotics, etc,) we will obtain the analytical solutions for
the limits and their parametric sensitivity. This analysis will
help us identify the parameters that would result in the largest

observable difference in the experiments with the synthetic
gene network. Additionally, we will study the possibility of
engineering the gene networks to obtain arbitrary shape of
completion time probability distributions, such as Gaussian or
uniform. Furthermore, we will analyze negative feedback and
open-loop systems using analogous approach. We will compare
and contrast the features of the completion time probability
distributions and discuss how each network is suited for different
differentiation steps.

B. Experiments

We plan on conducting single-cell tracking time-lapse fluores-
cence microscopy experiments in varied concentrations of the
inducers to obtain time series data of fluorescence level that
resemble Figure 1 (a), and approximate the completion time
probability distribution that resembles Figure 1 (b). Additionally,
we will tune the gene network with respect to the system
parameters used in the CRN. For example, we can change
the ex value – the rate of gene expression – by tuning the
ribosome binding site of the RNA or the operator sites of the
promoter. The tuning and estimation of parameters will help
us systematically reconcile the model and the actual system.
As with the theoretical approach, we will synthesize negative
feedback and open-loop gene network with focus on keeping the
extraneous details – the inducers, plasmids, and E. coli strain – as
equivalent as possible between the three variations to minimize
external bias affecting the analysis.

We will repeat the concentration variation assays for the
D61 hybrid promoter and other hybrid promoters with varied
expression range. To test the hypothesis of AraC/GFP toxicity
we will employ an araC-knockout strain of E. coli to eliminate as
much background effect as possible and repeat the assays [32].
Because the inducer concentration will affect the accumulation
rate of AraC, we will investigate whether an optimal concen-
tration exists in order to keep the cell viable for a reasonable
duration.

VI. SCHEDULE AND REQUIRED RESOURCES

The schedule of work is shown in Figure 5. The biological
equipments and computational software required for the research
are funded by the Molecular Programming Project, part of
the National Science Foundation’s Expedition in Computing
program.

Identify the optimal concentrations of inducers

Measure the single cell dynamics

Modify the synthetic construct and repeat assays

Identify the analytical solution for CTPD

Sensitivity and Limitation Analysis

Fig. 5: Schedule of work
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