
Stability and Control for a Class of
Dynamic Legged Climbers

Kevin Oishi

CMU-RI-TR-06-20

May 2006

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© 2006 Carnegie Mellon University

Submitted in partial fulfillment of the
requirements for the degree of
Master of Science in Robotics





Abstract

We are interested in the stability and control of dynamic legged climbing. Moti-
vated by the success of the lateral leg spring (LLS) and spring-loaded inverted pendu-
lum (SLIP) templates for transverse and sagittal plane running on horizontal surfaces,
our effort is to similarly approximate the analytically intractable dynamics of a full di-
mensional system through planar models, and develop simplecontrol strategies based
on analysis of these approximations. In this report we introduce low-dimensional gen-
eralizations of the LLS and SLIP templates capable of ascending and descending by
considering configurations of the center of pressure outside of the set of asymptotically
stable configurations in the horizontal plane, and allowinga thrust phase to add or re-
move energy from the hopper. We will provide mathematical analysis of these models
where possible, and introduce approximate models and empirical data where analytical
analysis is intractable. Stable control strategies developed from these low dimensional
templates and approximations are demonstrated through simulation.
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1 Introduction

Consider a scenario in which a person is jogging on an even, smooth sidewalk, which
abruptly slopes or even becomes a rough gravel surface. The person’s transition is
typically smooth and arguably involves very little active control–the act of walking
remains a largely repetitive task that requires relativelylittle thinking. However, such
transitions in robotic systems remain difficult. Successful implementations of legged
mobile robots are often sensitive to terrain, and must be finely tuned or equipped with
extensive sensing and control capabilities. Both of these limitations must be overcome
for the next generation of dynamic legged robots to be both robust to terrain and simple
to control.

Appropriate level of model fidelity, as well as simple control mechanism, are inher-
ent to the robustness and success of any given dynamic leggedrobot. Initial approaches
by control theorists and biologists have involved complex,nonlinear behaviors which
can arise from simple, mechanistic models. The main challenge in this arena has been
to create models which are both physically accurate and analytically tractable.

Despite extensive work in modeling, analysis, and control of legged robots on flat
ground, little work has been done to achieve this same success on sloped terrain. Al-
though we now have basic design strategies for dynamic legged systems on flat ground,
methods for dealing with slopes and climbing are limited to treating the effects of a
slope as isolated perturbations. The fact that we are interested in dynamic legged loco-
motion exclusively on a slope breaks the assumptions that lead to asymptotically stable
running on level ground. Still, we hypothesize that simple and even open-loop control
can be a viable strategy for dynamic legged systems on a slope. In this report we seek
to resolve this gap by presenting the first analytic work suggesting a design strategy for
stable and robust dynamic legged climbers requiring littleor no sensing.

1.1 Previous Work

Raibert’s seminal work in hopping robots [1] is considered the first example of robotic
dynamic legged locomotion. Essentially an actuated pogo sticks, Raibert’s hoppers
modeled only one leg, but provided immense utility for control theorists and biolo-
gists interested in the stability and control of legged locomotion. Although limited
in its scope, the hoppers emulated a variety of behaviors observed in actual biological
systems. By modulating leg touch-down angle and thrust duration, Raibert showed em-
pirically stable hopping utilizing simple controllers built around the approximation of
decoupled forward velocity and hopping height. Researchers building upon his bench-
mark model further explored the stability of legged runningand the coupling between
forward velocity and hopping height for a class of simplifiedmodels of Raibert’s hop-
pers termed the spring-loaded inverted pendulum (SLIP).

Control theorists approximated the SLIP return map, the function mapping hopper
height and forward velocity of at the apex of one hop to the apex of the following hop.
For certain nonlinear springs, this map was shown to fall into the class of S-Unimodal
functions, guaranteeing asymptotic stability for certainperiod-1 gaits where the hopper
returned to the same height and forward velocity at each apex[2]. Chaotic attractors
were found [3], and bifurcation diagrams supported the stable period-2 “limping” gaits
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observed in Raibert’s hoppers [4] where a small hop was succeeded by a large hop, or
vice versa. Simultaneously, biomechanics researchers have explored the SLIP model in
biological systems [5]. Blickhan and Full surveyed a variety of legged animals, finding
the SLIP model to be an accurate representation of the centerof mass dynamics in
the sagittal plane [6]. In more explicit collaboration, biologists and control theorists
studied the neurological control of certain legged animals[7] and illustrated methods
for quantifying stability and maneuverability for legged animals [8]. These studies led
to an investigation of transverse plane dynamics in multi-legged biological systems.
Control theorists dubbed this new model, based on the SLIP, the lateral leg spring
(LLS).

The lateral leg spring is essentially SLIP turned on its side. Rather than a pogo stick
bouncing up and down, LLS is a pogo stick bouncing between thewalls of an imaginary
corridor. While SLIP models the up-and-down motions of a legged runner, LLS is
an attempt at distilling the important components of side-to-side running dynamics in
multi-legged animals. If LLS is a pogo stick bouncing between the walls of a corridor,
then the wall positions and curvature of this corridor are determined by the location and
orientation of the sideways pogo stick at the arbitrary moment the “foot” is attached
to the ground. Control theorists and biologists building onthis model have determined
the relationship between body geometry and stable locomotion in terms of heading (the
straightness of the imaginary corridor) as well as overall forward velocity in terms of
body geometry for open-loop gaits [9, 10].

One might wonder about the effectiveness or purpose of developing control strate-
gies for idealized systems. In fact, control strategies developed for the idealized SLIP
and LLS models have translated well into real systems. Robotic platforms, such as
RHex the robotic hexapod have been shown to exhibit SLIP and LLS stability [11],
and benefit from control strategies developed for parameter-matched models [12, 13,
14, 15, 16]. It is important to stress that the goals of control theorists and biologists are
not always the same. Historically control theorists studying legged locomotion have
the design of an engineered system in mind, while biologistshave typically been pri-
marily interested in learning how animals locomote. However, it is interesting to note
that in many cases biologists have gone back and validated mathematical results of the
lateral leg spring stability through experiments on leggedanimals [17, 10, 8].

1.2 Method and Contributions

Models of dynamic running are mechanically elegant, but mathematically complex
and difficult to treat analytically. Our work focuses on stability and control for dy-
namic legged locomotion along sloped and vertical surfacesby decomposing the full
dimensional climber into planar models, and studying the dynamics of these planar
models. It has been shown analytically, and verified experimentally, that under certain
control laws and body configurations, dynamic legged runners based on the planar hy-
brid SLIP and LLS models are guaranteed to converge on certain periodic trajectories
when perturbed, even with little or no sensing. Unfortunately, the pervading simpli-
fying assumptions leading to these results preclude progress into a gravity field, and
dynamic legged climbing remains a largely unexplored problem. This report seeks to
address this problem by generalizing LLS and SLIP models to add and remove en-
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ergy to enable ascending and descending, while keeping these models simple enough
to allow analytic analysis where possible.

The main contribution of this thesis involves the modeling,analysis, and simulation
of four models of dynamic legged locomotion:

1. LLS Peg-Leg Climber

(a) New model of transverse plane dynamics of a climber on a slope.

(b) Analytic conditions for heading stability for open-loop climbers based on
this model.

2. LLS Simplified Hexapod Climber

(a) New model of transverse plane dynamics of a climber on a slope, capa-
ble of more complicated behaviors than the LLS peg-leg climber, though
analytically difficult.

(b) Empirical evidence of the limits of heading stability onsloped surfaces
through simulation.

3. SLIP 2-DOF Hopping Climber

(a) New model of sagittal plane dynamics of a climber on a slope.

(b) Numerical study of the stability of this climber throughsimulation.

4. SLIP 1-DOF Model and Approximation to the 2-DOF Hopping Climber

(a) New model of sagittal plane dynamics of a climber on a slope representing
the singular, vertical, climbing mode in the 2-DOF hopping climber.

(b) Closed-form return map for a class of 1-DOF vertical climbers.

(c) Identification and classification of the fixed points of the general 1-DOF
climber.

(d) Empirical evidence suggesting the robust asymptotic stability of the 1-DOF
climber.

(e) Empirical evidence suggesting the viability of the 1-DOF climber as an
approximation to the intractable 2-DOF hopping climber and, by proxy, a
simple control law for stable climbing.

1.3 Organization

Section 2 provides the reader with a brief tutorial in hybriddynamic systems. This
section provides the mathematical framework for the analysis of hybrid dynamic legged
climbers. We then decompose the full-dimensional climber into planar approximations,
in order to discern properties of stability and control. In Section 3 we present transverse
planar dynamics through an extended LLS model. In Sections 4and 5 we approximate
sagittal planar dynamics through an extended SLIP model. Ineach section, we describe
a particular planar approximation, discuss its dynamics, and then analyze the model for
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its stability, despite minimal sensing and control. In the case that analytic results are
not possible, we alternatively provide empirical studies through simulation.

The discussion of transverse plane dynamics begins in Section 3 with the stan-
dard, flat-ground LLS model. We extend this model to capture heading dynamics and
progress against a slope. Building upon a stability argument for the original level
ground LLS model, the body-geometry conditions for stability in a gravity field un-
der an open-loop controller are derived. Resulting stable trajectories are classified,
and limitations of climbers based on this model are discussed. Section 4 continues
the exploration of LLS models, introducing a more complicated, and analytically dif-
ficult hexapod model. Empirical study of this model hints at limitations and illustrates
significant advantages in stability as compared to the peg-leg LLS climber.

The discussion of sagittal plane dynamics begins in Section4 with the standard,
level-ground SLIP model. We extend this model initially to a2-DOF hopping climber.
Unfortunately, as is typical of SLIP-based models, the explicit analytic integration of
stance dynamics in order to compute return maps requires computation of elliptical
integrals, making it analytically intractable. Methods for solving this problem in level
ground rely on approximations which ignore gravity during stance or require symmetry
in stable trajectories, making these techniques inappropriate in a sloped or vertical do-
main. To solve this problem we suggest using the singular vertical mode of the 2-DOF
hopping climber as an easily integrated 1-DOF approximation. A Poincaré section for
hopping climbers is introduced, and fixed points for a representative climber are found
and classified. Stability properties of the 1-DOF hopping climber are discussed, and
empirical evidence suggesting the strength of the approximation to the intractable 2-
DOF model is presented. Section 6 concludes the report with adiscussion of possible
applications of this research and directions for future work.

2 Legged Climbing as a Hybrid Dynamical System

We begin by describing a general model of legged climbing andpresent this model in
the framework of hybrid systems. Later, specific models of legged climbing will be
introduced and analyzed in this setting.

Models for the peg-leg runner in a gravity field and 2-DOF hopping climber are
illustrated in Fig. 2 and Fig. 13, respectively. For a general climber, a single stride is
comprised of several discrete transitions between different sets of constraints, making
the model of a legged climber a hybrid system. This means thatthe dynamics of a
legged climber cannot be represented by a single flow. Instead, the trajectory of a
climber is computed from piecewise integration over a collection of vector fields, with
discrete transformations guiding transitions between vector fields.

Similar to many horizontal legged running models, the dynamics of the legged
climber segments into two major phases, flight and stance [15, 8]. In a sagittal plane
model, energy can be added or removed during stance by further decomposing stance
into three sub-phases, compression, thrust, and decompression [4]. In the frame-
work of hybrid systems, significant points in the trajectoryof the climber, for example
phase transitions, can be represented as zero-crossings infunctions of state and time.
These functions are referred to as threshold functions, andthe zero-crossings are called
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events.
Borrowing notation from Altendorfer [12], we can more precisely describe the

mathematical framework of the model. LetI be a finite index set andXα, α ∈ I

with dim (Xα) = 2N , N ∈ N be a collection of charts, Euclidian spaces describing
the phase space of a constrained system. Suppose we have somesystem withq a vari-

able in configuration space andx =
[

q q̇
]T

a variable in phase space. The vector

field fα : x 7→ ẋ can be integrated to obtain the flowf (·)
α : Xα → Xα. Given the

initial conditionx0 ∈ Xα and integration timet ∈ R, x (t) = f t
α (x0). Supposeβ ∈ I

with β 6= α. Each phase corresponds to the equations associated with anelement of
the index setI. The transition fromfα to fβ corresponds to the threshold function
hβ

α : (Xα, R) → R. Given initial conditionsx0, the next transition event occurs at

the timetα (x0) = min
t>0

{

t : h(·)
α (x0, t) = 0

}

. Put together, this yields the flow map

Fα : x0 7→ f
tα(x0)
α (x0). Finally, the discrete transformations between charts arede-

notedT β
α : Xα → Xβ. In this paper, unless otherwise noted, this transformation is

simply the identity. We will use the index set{f , s, c, t,d} to refer to flight, stance,
compression, thrust, and decompression, respectively.

As suggested by the notation in Fig. 2 and Fig. 13, the trajectory of a legged climber
can be considered periodic. Within certain bounds, trajectories are defined on a recur-
ring series of charts. A single stride is described by the composition of flow maps and
discrete transformations associated with a single cycle through these charts. It should
be noted that unlike level ground running, not all of the dimensions of phase space are
essential in describing the dynamics of locomotion; for example, in models described
in this paper, total system energy and distance along the slope traveled are extraneous
to describing the dynamics of climbing. By projecting down to capture only essen-
tial dimensions, certain trajectories of legged climbers become periodic orbits. We
are interested in the stability or attractiveness of these orbits, and will explore these
properties empirically and analytically through numerical integration and studying the
differential behavior of the orbit.

3 Inclined-LLS: Peg-Leg Runner in a Gravity Field

Schmitt and Holmes [9, 14] first presented the lateral leg spring (LLS) model, which
has been used to characterize the transverse plane dynamicsof cockroaches [8] as well
as multi-legged robots like RHex [11] over level ground. Thebasic idea is that for a
given gait with a well defined “left side” and “right side,” the legs in contact with the
ground during stance can be modeled as a single effective spring-leg. The effective
spring-leg is attached to the ground during stance via a frictionless pin joint at the foot.
In this way a two-sided gait could be likened to bouncing between effective left and
right spring-legs.

Schmitt and Holmes also showed that under certain conditions, the dynamics of the
LLS model are reflected in a simpler “peg-leg” model [9]. In the peg-leg model, the
spring-leg is replaced with a rigid foot constrained to movealong the lateral axis of
symmetry, attached to the body by a prismatic joint. A singlestride consists of a stance
phase and zero-duration flight phase. During stance the footis attached to the ground
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peg

sled

Wx

Wy

W

Bx

By

B

θ

Figure 1: Peg-leg body geometry. Position in the world frameand body frame are given
in Cartesian coordinates(Wx, Wy) and(Bx, By) respectively. The origin of the body
frame is at the center of mass. Position of the peg is measuredas the distance alongBy

from the center of mass to the peg. Note the isometry between positive and negative
peg positions. The angle betweenBy andWy is measured byθ. In the climbing peg-leg
model it is assumed that the gravity vector points in the−Wy direction.

by a frictionless pin joint moving from some starting position to some ending position
relative to the body center of mass and orientation. At flightthe foot is instantaneously
repositioned at the new starting position. One way to visualize this stride is to imagine
a sled without runners on a frozen lake, with a slot cut out along the lateral axis of
symmetry. An illustration of this sled is shown in Fig. 1. A person riding on the sled
(at the center of mass) is given an ice pick, and allowed to move by repeating three
simple movements:

1. Stab the ice pick into the ice at one end of the slot.

2. Push or pull the ice pick until it is at the opposite end of the slot.

3. Remove the pick from the ice and reposition it at the beginning of the slot.

In the horizontal case, the peg-foot can be thought of as the center of pressure of
the spring-leg LLS model. A key result of this model is that under reasonable body-
geometry assumptions and certain open-loop gaits, the angular momentum of the body
will asymptotically approach zero, meaning the runner willconverge on a particular
heading. This global stability result is reflected in empirical studies of running cock-
roaches and the robot hexapod RHex [8, 11].

Inspired by the simplicity and success of this peg-leg model, the natural starting
place in our study of climbing dynamics is to pitch the peg-leg runner into a gravity
field, as illustrated in Fig. 2.
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pegsled

(b)

sled

peg

(c) (d)

(a) θ

Stance−

Stance−

Stance+

Stance+

lbegin

lbegin

lend

lend

γ γ

Figure 2: Peg-leg climber during stance. (a)-(b) Top view. (a) Beginning of stance.θ
is measured with respect to the climbing surface gradient. In this figure the gradient of
the climbing surface points along the length of the page. (b)End of stance. The sled
has translated and rotated about the fixed peg position. (c)-(d) Side view. (c) Beginning
of stance. The angle of the planar climbing surface relativeto gravity isγ. (d) End of
stance.

3.1 Dynamics

To simplify dynamics, the climber is assumed to have a planarrigid body, symmetric
about the sagittal axis with massm and moment of inertiaI. The climber operates in a
gravity field of magnitudeg, along a planar climbing surfaceγ-degrees from horizontal.
Body angleθ is measured relative to the climbing surface gradient. The coordinate
systems and frames of reference used describing this model is illustrated in Fig. 1. The
origin in body coordinates is located at the center of mass. As in the horizontal peg-leg
model, the body is equipped with a slot running along the sagittal axis of symmetry.
In Cartesian body coordinates(Bx, By), this slot begins at(0, lbegin), and ends at
(0, lend). As in the horizontal peg-leg model, movement is effected through a massless
peg-leg that can be fixed to the running surface and moved relative to the body along
the slot. We assume the sled is frictionless with respect to the ground and peg, and the
point of contact between the peg and ground acts as a frictionless pin joint. Control is
exerted only during stance through the position of the peg,l, relative to the center of
mass along theBy body frame axis.

3.1.1 Flight

During flight the climber slides without friction along the climbing surface subject only
to gravity. Although in our analysis we consider the duration of the flight phase to be
zero, we include the equations of motion here for completeness. The peg is instan-
taneously repositioned at(0, lbegin) in body coordinates when the climber transitions
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from flight to stance. This change in configuration results ina discrete jump in angular
velocity due to the conservation of angular momentum.

θ̈ = 0 (1)

hs

f
(x, t) = 0 (2)

T s

f = diag(1,
mlbeginlend + I

ml2begin + I
) (3)

3.1.2 Stance

During stance the climber slides without friction along theclimbing surface, subject to
gravity and the prescribed position of the peg. In our model we assume the peg position
as a function of timel(t) to be periodic and strictly monotonic during stance. Stance
ends when the peg reaches the opposite end of the slot.

θ̈ = ml

(

g sin γ sin θ − 2l̇θ̇

I + ml2

)

(4)

hf

s
(x, t) = lend − l (5)

3.2 Stability in the Peg-Leg Climber

As with the horizontal peg-leg runner, an easy way to visualize the climbing stride is to
imagine an ice-pick driven sled without runners on a frozen slope. Schmitt and Holmes
showed that on level ground for certain body geometries an open-loop controller can
force the sled to converge on some headingθ [9, 14]. We would like to determine if
there is a similar stability property for the peg-leg climber.

In the horizontal running case, angular momentum about the peg is conserved dur-
ing stride. At the beginning of each new stride the instantaneous change in peg position
causes an angular impulse and a discrete jump in angular velocity, which can be mod-
eled as a linear transformation. In Schmitt and Holmes’ argument [9], this transforma-
tion is expressed in terms of angular momentum. The integrated stance dynamics also
reduces to a linear function of angular momentum, meaning the stability of a particular
runner is determined simply from the eigenvalues of the linear return map.

In the vertical running case the discrete jump in angular velocity between strides
(3) is the same as in the horizontal case. Introducing a gravity field explicitly breaks
the assumption that angular momentum is constant about the peg during stance, and
leads to a nonlinear stride map. Taking a closer look at stride dynamics, we see the
effect of stride on angular momentum.

∂θ̈

∂l
=

m
(

I − ml2
)

(

g sin γ sin θ − 2l̇θ̇
)

(I + ml2)
2 (6)

∂θ̈

∂l̇
=

−2mlθ̇

I + ml2
(7)
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Without loss of generalization, letl > 0. Combining (4) and (6) we see that

sign
(

∆θ̈
)

= sign
(

θ̈
(

I − ml2
)

∆l
)

(8)

There are three cases to consider:

1. If I = ml2, then change inl has no effect on angular acceleration.

2. If I < ml2, then the magnitude of̈θ increases wheṅl > 0 and decreases when
l̇ < 0.

3. If I > ml2, then the magnitude of̈θ decreases wheṅl > 0 and increases when
l̇ > 0.

From (7) we see that

sign
(

∆θ̈
)

= sign
(

−θ̇∆l̇
)

(9)

Again there are three cases to consider:

1. If l̈ = 0, there is no effect on angular acceleration.

2. If l̈ < 0, then the leg is accelerating toward the center of mass, and there is a
change in angular acceleration in the direction of rotation.

3. If l̈ > 0, then the leg is decelerating in the direction of the center of mass, and
there is a change in angular acceleration against the direction of rotation.

Essentially we have just shown the “figure skater” result in agravity field. Like
a horizontally rotating object with adjustable mass positions, pulling mass toward the
pivot point increases angular acceleration, while pushingmass away from the pivot
point decreases angular acceleration. Since we are on a slope, the direction of angular
acceleration depends on gravity.

For a large class of foot trajectories, such as constant velocity during stride, as
illustrated in Fig. 3, we can construct a bound on angular acceleration for a stride as
a function of angular momentum at the beginning of the stride. This bound leads to a
familiar bound on angular momentum, subject to the same stability properties seen in
the horizontal runner.

Unlike the horizontal runner, the stance dynamics leads to only four fixed points
unique up to isomorphism. Three of these points are marginally stable and one is
asymptotically stable. When pulling the sled there are two marginally stable fixed
points:

1. Pulling withθ̇ = 0 and a heading which climbs the surface gradient is marginally
stable.

2. Pulling withθ̇ = 0 and a heading which descends the surface gradient is marginally
stable.

When pushing the sled there is one marginally stable fixed point and one asymptotically
stable fixed point:
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Stable Peg−Leg Climber Trajectory

θ̇ vs. θ

θ vs. t

l̇ vs. l

θ̇ vs. t

θ̇

θ̇
θ

θ

tt

l̇

l

Figure 3: Trajectory of a stable peg-leg climber. System parameters are defined as
lbegin = 3, lend = 5, l̇ = 2, θ0 = pi

2 , θ̇0 = 0.1. Note there is an isometry between this
climber and one wherelbegin = −3, lend = −5, andl̇ = −2. Points on the trajectory
denote the beginning of the run and the end of stance phases. Note the discrete jumps
in angular velocity following the end of each stance. (a) Phase plane plot of the stable
climber. (b) Leg trajectory for this climber. (c) The angleθ as a function of time. (d)̇θ
as a function of time.

1. Pushing witḣθ = 0 and a heading which climbs the surface gradient is marginally
stable.

2. Pushing withθ̇ = 0 and a heading which descends the surface gradient is asymp-
totically stable.

Regardless of the gravity field, we see that heading is asymptotically stable only
when the slot is entirely behind the center of mass and the peg“pushes” away from
the center of mass during stance. However, because our modelexplicitly accounts for
the effect of gravity, we see that only descending is asymptotically stable–ascending
is only marginally stable. This result shows the importanceof including gravity in
models of legged locomotion. The simple peg-leg model whichadequately models
transverse plane dynamics over flat-ground is missing important complexities neces-
sary for climbing. In fact, a brief exploration of a more complex open-loop leg-spring
model confirms that it is possible to ascend a slope or vertical surface with asymptotic
stability on heading.

3.3 Initial Experimental Results

In our experiments we focus on two distinct methods of leggedlocomotion derived
from experimentally designed robots RHex and RiSE, and testthe effectiveness of
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these climbing methods through simulation in the context ofthe peg-leg climber. Both
RHex and RiSE are symmetric hexapods with compliant legs, and are capable of lo-
comotion through alternating tripod gaits, meaning that left and right legs work in
conjunction to form alternating and symmetric tripods. Though RHex and RiSE share
some similarities, their motivated design goals are very different.

RHex was designed for flat-ground running. RHex bounces fromtripod to tripod
with heading stability of a LLS model. Abstracting away details like duty cycle and
precise model parameters, we view this style of bouncing legged locomotion of as a
possible method for climbing inclined planes. Alternatively, RiSE was designed to
climb extreme slopes, and remaining firmly attached to the wall is important for this
method of legged locomotion. In an alternating tripod gait,RiSE firmly attaches itself
to the substrate with each tripod, releasing only once the opposite tripod has attached.

Using a relatively high-fidelity dynamic hexapod model developed by Seipel, Full,
and Holmes [10] which has been shown to exhibit LLS stabilityfor certain open-loop
controllers on flat ground, we will make sleight modifications, introducing a gravity
field and changing the stride switching function, in order toimplement and test the
effectiveness of both RHex and RiSE climbing methods in terms of heading stability
as a function of model parameterization and climbing slope.

3.3.1 Dynamics

The level-ground hexapod body geometry and coordinate systems are illustrated in
Fig. 4 [10]. The basic idea is that tripods formed by hip-leg-foot sets 1,2,3 and 4,5,6
alternate and symmetrically drive the body through effective spring-resting length and
hip position during stance with a nominal frequency off . Though the model shares
some simplifying assumptions with the peg-leg runner, it remains extremely complex
and difficult to treat analytically. The body is assumed to berigid with massm and
moment of inertiaI. In the Fig. 4,θ measures the orientation of the body (heading)
relative to they inertial axis, whileδ measures the direction of the velocity of the center
of mass relative to they inertial axis. The body consists of 6 slots which constrain the
movements of six hips. Drawn individually for clarity in thefigure, the hips and slots
are actually collinear, located along the longitudinal axis of symmetry, passing through
the center of mass. Hip, leg, and foot configurations are indexed according to the figure.
The location of each hip along thee2 body axis relative to the center of mass is denoted
di. Each hip is attached to a linear spring-leg with spring constantki and resting length
li. The vector from the foot to the hip is denotedqi. The position of each foot relative
to the center of mass in body coordinates(e1, e2) at the beginning of stance is given
by bi. The position of the center of mass in the inertial frame is denotedr.

Control is open-loop, and exerted during stance through thespring-leg resting
length li and position of the hipdi, which are computed ahead of time to match an
idealized sinusoidal foot force profile and desired fore-aft velocity Vd. In their pa-
per, Seipel, Full, and Holmes parameterized their model to match idealized sinusoidal
foot forces measured from running cockroaches, and we follow their parameterization,
illustrated in Fig. 5 [10].

In our model, we explicitly account for the force of gravityg, which acts along
the−y inertial axis, and a climbing surface with slopeσ. We denote the force on the
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Figure 4: Seipel, Full, and Holmes’ hexapod body geometry [10]. Position in the
inertial (world) frame and body frame are given in Cartesiancoordinates(x, y) and
(e1, e2) respectively. In this figurēv denotes the velocity of the center of mass. The
angle between̄v and they-axis of the world frame is expressed asδ. Similarly, the
angle between they-axis of the world frame and thee2-axis of the body frame is
measured byθ. Hip, spring-leg, and foot configurations are indexed as illustrated in
the figure. In this way 1,2,3 and 4,5,6 denote alternating tripod stances. For clarity, all
6 slots constraining hip movement are illustrated separately in this figure; however, in
actuality the constraining slots are all collinear.

(a)

(b)

Perscribed Foot and Hip Trajectories For Tripod {1,2,3}

Figure 5: Prescribed foot and hip trajectories as presentedby Seipel, Full, and Holmes,
computed for the 1,2,3 tripod [10]. Note that the trajectories for the 4,5,6 tripod are
identical except for the stride-frequency phase shift.
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center of massF, the total moment about the center of massM, and the inertial frame
x or y component of any vector value with a subscriptx or y. With this notation, the
equations of motion become:

mr̈ = F (10)

Fx =
∑

i

ki (li − |qi|)
qix

|qi|
(11)

Fy =
∑

i

ki (li − |qi|)
qiy

|qi|
g sin σ (12)

Iθ̈ =
∑

i

−
diFi

|qi|
(qix cos θ + qiy sin θ) (13)

The stance threshold function has two forms, one for each climbing method. For
the RHex climbing method switching is dependent on foot force minus the effect of
gravity:

hs

s (x, t) = min {ki (|qi| − li)} (14)

For the RiSE climbing method, switching is dependent on stance time only.

hs

s (x, t) = mod

(

t,
1

f

)

(15)

3.3.2 RHex Configuration

This model is robust to perturbations to heading and velocity on flat ground, and shown
by SFH to have a large basin of attraction for parameterizations in the neighborhood
of measured values. On level ground, the model converges on aheading rapidly, as
illustrated in Fig. 6 and Fig. 10.

In our experiments we run simulations of a particular hexapod with some initial
conditions in the neighborhood of a stable flat-ground running parameterization over
a range of slopes. Simulations are run in Matlab using default settings for the ode45
solver. Each run consists of 400 left-right strides to ensure stability. We compute the
mean and variance of the heading for stabilized climbers, using only the last half of the
time-ordered data set.

Data presented here is from a series of runs, each with the same initial conditions.
Effectively plots conveying asymptotic heading are only showing half of the picture.
In most cases, a small change, for example reversing the initial tripod stance (starting
on the right side instead of the left), would result in a heading sign change.

We found that for a particular model parameterization, the limit heading is not arbi-
trary, and depends on the climbing slope. Data from a representative trial are illustrated
in Fig. 8, which shows the mean and variance of the heading fora stabilized gait as a
function of climbing slope. For the smallest slopes, heading converges on the climibng
surface gradient–directly ascending the fall-line. This is followed by a range inσ where
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Figure 6: Trajectory of the flat-ground (g = 0) RHex Configuration hexapod,ki = 1
for i ∈ 1, 2, 3, 4, 5, 6. (a) Trajectory of the center of mass in the(x, y) inertial frame.
(b) Oscillatory trajectory of headingθ as a function of time. Note the rapid convergence
aboutθ = −0.4.
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Figure 7: Trajectory of the flat-ground (g = 0) RHex Configuration hexapod,ki = 2
for i ∈ 1, 2, 3, 4, 5, 6. (a) Trajectory of the center of mass in the(x, y) inertial frame.
(b) Oscillatory trajectory of headingθ as a function of time. Note the extremely rapid
convergence aboutθ = 0.
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Figure 8: Heading beyond the range of stable climbing slopesfor a RHex Configuration
climber,k = 2, g = 9.8. (a) Heading is computed as the averageθ over a series of
strides for a stabilized climber. Note that this map represents a bifurcation diagram
symmetric aboutθ = 0. (b) The variance ofθ correlates with stable bifurcations
throughσ = 4.5 · 10−4.

as slope increases the asymptotic heading skews from vertical, but never reaches an an-
gle perpendicular to the climbing gradient. After this the heading abruptly returns to
vertical before falling into a stable bifurcation at the limits of its skew climbing. Fi-
nally the climber reaches its maximum climbable slope, beyond which the trajectory
falls into chaos, as shown by the heading variance.

3.3.3 RiSE Configuration

We reproduce similar experiments now with the RiSE Configuration.We use the same
initial conditions as we did for the RHex Configuration in Section 3.3.2. In the analysis
that follows, note that plots depicting heading or heading rate of change should be seen
as half of a bifurcation which is symmetric aboutθ = 0 or θ̇ = 0.

For the RiSE configuration we experimented both on flat groundas well as an in-
clined slope. In our flat ground experiments RiSE Configuration climbers were allowed
to run for 200 left-right strides each over a range ofVd values. Initial conditions we
chosen in the neighborhood of stable flat-ground RHex Configuration parameteriza-
tions. This time, the mean angular velocity was computed from the last half of the
time-ordered data set to ensure the data represented a stabilized runner.

We did not find a stable heading; however, despite being driven by a symmetric
alternating tripod gait, we did find stable rates of heading change. In other words, al-
though the climber did not run in a straight line, it did converge to stable circular paths,
as illustrated in Fig. 9. Although this is not the same as heading stability as observed
in LLS runners, we consider the similarity stability in angular velocity warrants further
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Figure 9: Trajectories of the center of mass of RiSE Configuration dynamic runners
in Cartesian(x, y) world coordinates. The climber is parameterized withki = 1,
Vd = 0.25, 0.225, 0.2. Note the stable circular trajectories of different curvatures. Ini-
tial conditions were a heading and forward velocity along the y-axis with no angular
velocity component. In this case, starting with the “opposite foot” would lead to tra-
jectories symmetric about they-axis.

study. The curvature of these paths could be controlled by changing the parameter for
desired velocity,Vd, in the open-loop controller. Plotting the mean angular velocity
of stabilized gaits againstVd we found a characteristic unimodal function with clear
minimum and maximum curvatures as shown in Fig. 10.

In our climbing experiments, we again ran the hexapod simulation for 500 left-
right strides over a range of slopes using parameterizations in the neighborhood of
those which produced stable gaits on level ground. Again, the mean and variance of
heading are computed from only the last half of the time-ordered data for each run.

Curiously, we found that despite our flat-ground results theclimber tended to di-
rectly ascend the slope gradient, except for a relatively small range of slopes near the
edge of its stable region where the climber stabilized on minutely skew headings, as
shown in Fig. 11. As with the RHex configuration, there is a limit to the range of
climbable slopes for any particular model parameterization; however it is interesting
to note that for identical parameterizations, the RiSE model appears to cover a greater
range of slopes than the RHex Configuration.

4 Inclined-SLIP: 2-DOF Hopping Climber

While Section 3 focused on lateral dynamics, we now focus in Section 4 on the lon-
gitudinal. The extended SLIP model presented in this section builds upon previous
flat-ground models of sagittal-plane dynamics, but directly incorporates the effects of
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Figure 11: Mean and variance of heading as a function of climbing slope for the RiSE
Configuration climber,k = 1, g = 9.8. (a) Note that the mean heading remains
zero except for a small decrease inmean(θ) just before the climber falls into chaotic
instability. (b) The approximate limit of stable climbing slopes is clearly illustrated
with the spike invar(θ) nearσ = 1.56 · 10−3.
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gravity on a legged climber. For now, following the Raibert assumption of decoupled
transverse and sagittal plane dynamics [1] we assume a stable heading and propose a
model of the sagittal plane dynamics of a legged climber based on the successful SLIP
template [2].

The standard flat-ground SLIP template is a pogo stick. A point-mass is mounted
to the top of a massless spring leg, and control is exerted by choosing the angle of the
leg relative to the level ground at touchdown. The leg angle can only be controlled
during flight, when the pogo stick is airborne and ballistic,and no control is exerted
during stance. The SLIP template has been used to model biological [6, 7] and robotic
[13, 18, 16] systems on level ground, and has been shown in this setting to exhibit sta-
bility properties enabling the decoupled control of hopping height and forward velocity
through leg touch-down angle [1, 12, 2, 4, 15, 19, 3].

In order to extend the existing SLIP model to vertical and sloped domains, we
model the addition or removal of energy through a “thrust” phase during stance.

4.1 Dynamics

The body geometry and coordinate system of the 2-DOF climberis shown in Fig. 12,
while the complete dynamical mode, with five phases of operation, is show in Fig. 13.
The climber is assumed have a rigid body of massm. The body acts as a point-mass
mounted directly on top of the leg, eliminating pitching during stance. The leg is a
massless spring of lengthρ with resting lengthρrl. Leg angle relative to gravity is de-
notedφ, and the leg angle at touchdown isφTD. The distance from the climbing slope
to center of mass of the climber along world frame axisWz is denotedz. The position
of the climber center of mass in the world frame along theWy axis is denotedy. The
climber operates in a gravity field of magnitudeg and climbs a surface with constant
slopeσ relative to gravity. We assume no energy loss in spring compression or decom-
pression, and no friction due to drag in stance or flight. In stance we assume perfect
ground attachment, meaning that the foot-ground contact ismodeled as a frictionless
revolute joint. Climber configuration is specified as the tuple (y, z, φ). No control is
exerted during stance, and the only control consists of selectingφTD.

For our extended SLIP models we consider linear springs under finite and instan-
taneous thrust duration as well as two models of an “air” spring under instantaneous
thrust duration. For linear springs, spring force is governed byF = −kiρ, whereki

is the spring constant. Instantaneous thrust is exerted by adiscrete change in spring
constant fromk1 to k2. Finite duration thrust is exerted by stretching or compressing
the spring at a constant rater for a timeδt. For the two models of “air” springs, spring
force is governed byF = −ki

ρ
[4] andF = −ki

ρ3 [15, 16]. Instantaneous thrust is again
exerted by a discrete change in spring constant fromk1 to k2. For ease of notation,
we will denote the spring potential generated with spring constantk, leg lengthρ, and
resting leg lengthρrl by V (k, ρ, ρrl).

In the following, we formulate the equations of motion and the switching surfaces
for the extended SLIP model corresponding to each of the fourspring cases: Flight,
Compression, Thrust, and Decompression.
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Figure 12: 2-DOF hopping climber body geometry. Position inthe world frame is given
in Cartesian coordinates(Wy , Wz). The gravity vector points in the−Wz direction.
The scalarz measures the height of the center of mass above the ground along theWx

axis. ρ measures the length of the spring-leg. The angle between thespring-leg and
Wx is mesaured byφ.
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Figure 13: 2-DOF hopping climber model executing a single stride. (a) At apex in
flight. (b) Touchdown. The angle of the leg relative to gravity is φTD. (c) The rate
of leg compression has gone to zero. At this moment the climber begins exerting a
thrust force. (d) After a specified thrust duration the leg behaves again like a simple
unactuated spring. (e) The leg has extended to its original rest length. At this point the
hopper loses contact with the ground. (f) Apex of flight.
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4.1.1 Flight

During flight the hopping climber is not in contact with the ground and the leg is at
its rest length. Because of our simplifying assumptions, inflight the climber behaves
as a ballistic point mass in a gravity field without drag. Flight begins at liftoff, when
the hopper loses contact with the ground, and ends at touchdown, when the hopper
contacts the ground with downward velocity and leg at angleφTD.

[

ÿ

z̈

]

=

[

0
−g

]

(16)

hc

f (x, t) = z − ρrl cos(φTD) − (y + ρrl sin(φTD))σ (17)

4.1.2 Compression

During compression the hopper is in contact with the ground and the leg length is de-
creasing. Compression begins with touchdown and ends with bottom-of-stance, when
the rate of leg compression goes to zero. It should be noted that the equations of motion
are different for each type of spring.

[

ÿ

z̈

]

=
∂V (k1, ρ, ρrl)

∂ρ

1

m

[

− sin(φTD)
cos(φTD)

]

−

[

0
g

]

(18)

ht

c
(x, t) = ρ̇ (19)

4.1.3 Thrust

In the instantaneous thrust cases, this phase has duration 0, and we move directly to
the decompression phase. In the finite thrust duration linear spring case, we imagine
the leg spring being stretched or compressed independent ofthe actual leg length and
“resting” leg length, at a rater for a timeδt. We denote the elapsed time since the
beginning of thrustst.

[

ÿ

z̈

]

=
∂V (k1, ρ, ρrl + rst)

∂ρ

1

m

[

− sin(φTD)
cos(φTD)

]

−

[

0
g

]

(20)

hd

t
(x, t) = δt − st (21)

4.1.4 Decompression

Decompression is very similar to compression. Decompression begins at end-of-thrust
and ends at liftoff, when the leg has extended to its originalresting lengthρrl. The
equations of motion are different for each type of spring andthrust model. For the
linear spring finite duration thrust model,

[

ÿ

z̈

]

=
∂V (k1, ρ, ρrl + rδt)

∂ρ

1

m

[

− sin(φTD)
cos(φTD)

]

−

[

0
g

]

(22)
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For instantaneous thrust models,

[

ÿ

z̈

]

=
∂V (k2, ρ, ρrl)

∂ρ

1

m

[

− sin(φTD)
cos(φTD)

]

−

[

0
g

]

(23)

hf

d
(x, t) = ρrl − ρ (24)

4.2 Intractability of the 2-DOF Hopping Climber

Attempts to analytically solve for stability conditions ofthis model quickly reveal the
intractability of the climbing SLIP model. Unfortunately,as with flat-ground 2-DOF
SLIP models, we are unable to integrate exact stance dynamics without elliptic integrals
[15].

Previous efforts to circumvent the elliptic integrals in level-ground SLIP models
were based on nonlinear stance approximations [15, 16], as well as exploited symme-
tries to asses stability of periodic orbits through return maps [12].

While in level-ground models, researchers have neglected gravity during the stance
phase to aid in these approximations, we believe the gravityfield must be incorporated
during all phases for the extended SLIP model to accurately reflect actual physical
phenomena. Further difficulties arise in our analysis because with gravity, the periodic
orbits are now asymmetric – this is due simply to the fact thatthe robot climbs with each
period. Some sort of approximation is inevitable, as we havedemonstrated here that the
2-DOF model is intractable. However, we insist on an approximation which does not
neglect gravity and which can accommodate the inherent asymmetry in climbing. In the
next section, we propose a 1-DOF model for which tractable analysis is still possible
– this model provides a novel simplification of the 2-DOF extended SLIP climber yet
allows tractable analysis and provides insight into the original 2-DOF model.

5 Inclined-SLIP: 1-DOF Approximation to the 2-DOF
Hopping Climber

We desire an approximation to the nonlinear 2-DOF hopping climber that allows a
closed-form return map without analytically opaque elliptic integrals. Our explicit
consideration of a gravity field prevents us from using level-ground approximation
techniques which assume zero-gravity during stance [15, 16], or require a time reversal
symmetry [12]. Surprisingly, when the climbing slope of the2-DOF hopping climber
becomes vertical, the resulting return map is closed-form and has a tractable integral. In
this section we introduce this model as a 1-DOF hopping climber. We define a Poincaré
section for hopping climbers, derive the 1-DOF hopping climber return map for our
spring and thrust models, and explore significant stabilityfeatures. Finally we present
experimental evidence suggesting our analysis of the 1-DOFmodel is indicative of the
more general 2-DOF model.
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Figure 14: 1-DOF hopping climber model executing a single stride. All events are
analogous to events in the 2-DOF hopping climber model. (a) Apex of flight. The
ground is rising at the ratev. (b) The hopper contacts the ground. At this moment
the ground instantaneously stops rising. (c) Beginning of thrust phase. (d) End of
thrust phase. (e) Beginning of flight phase. At this moment the ground instantaneously
resumes rising at velocityv. (f) Apex of flight.

5.1 Dynamics

The 1-DOF sagittal plane hopping climber is shown in Fig. 14,and should appear very
similar to the 2-DOF hopping climber, since it is essentially the 2-DOF climber on a
vertical climbing surface. Many of the assumptions about the 2-DOF hopping climber
hold for the 1-DOF hopping climber. The rigid body acts like apoint mass of massm.
The leg is a massless spring of lengthl and resting lengthlrl. The climber operates in
a gravity field of magnitudeg. To approximate the coupling between horizontal and
vertical progress we change the ground heightn during flight by moving the ground
relative to the world frame at constant velocityv. At the moment stance begins the
ground instantaneously achieves zero velocity relative tothe world frame. The config-
uration space becomes(z, n). Again, we assume no friction, no drag, and no energy
loss in compression or decompression. The climber runs open-loop, and other than
choosing an initial “dropping height”z0, there is no control in flight or stance. We
consider the same spring and thrust models proposed for the 2-DOF climber model.
Phases and events in the 1-DOF model are analogous to those inthe 2-DOF model,
and purposefully named to reflect their similarity.

5.1.1 Flight

The 1-DOF flight phase differs from the 2-DOF flight phase onlyin that the the ground
moves relative to the world frame with velocityv. Since the ground stops instanta-
neously on touchdown, the discrete transformation betweenflight and compression
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charts is no longer the identity.
ṅ = v (25)

[

z̈

n̈

]

=

[

−g

0

]

(26)

hc

f
(x, t) = z − lrl − n (27)

T c

f = diag(1, 1, 1, 0) (28)

5.1.2 Compression

Compression again begins with touchdown and ends with bottom-of-stance. The ground
velocity is zero, and the phase transition transformation is the identity.

[

z̈

n̈

]

=

[

∂V (k1,l,lrl)
∂l

1
m

− g

0

]

(29)

ht

c
(x, t) = ż (30)

5.1.3 Thrust

Just as in the 2-DOF climber model, in the instantaneous thrust cases we skip directly
to decompression. Finite thrust duration for the linear spring works just as it did in the
2-DOF model.

[

z̈

n̈

]

=

[

∂V (k1,l,lrl+rst)
∂l

1
m

− g

0

]

(31)

hd

t
(x, t) = δt − st (32)

5.1.4 Decompression

Since the ground instantaneously starts moving with velocity v on liftoff, the discrete
phase transition transformation is no longer the identity.For the linear spring finite
thrust model,

[

z̈

n̈

]

=

[

∂V (k1,l,lrl+rδt)
∂l

1
m

− g

0

]

(33)

For the instantaneous thrust models,

[

z̈

n̈

]

=

[

∂V (k2,l,lrl)
∂l

1
m

− g

0

]

(34)

The threshold function and chart transformation is the samein both cases.

hf

d
(x, t) = lrl − (z − n) (35)

T f

d
= diag(1, 1, 1, v) (36)
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5.2 Poincaŕe Section for the 1-DOF and 2-DOF Hopping Climbers

The Poincaré section is a surface in the phase space of a periodic system that (within
certain bounds) is crossed only once per period. The relationship between the point
that a trajectory leaves the Poincaré section and the pointthat trajectory intercepts the
Poincaré section at the end of the period is referred to as a return map. Solutions to the
return map of the formx = f(x) represent “fixed” points of periodic orbits.

We define the Poincaré section of our hopping climbers as lying on the hyperplane
ż = 0. To guarantee the Poincaré section is crossed only once perstride, we restrict the
surface toz ≥ n+lrl in the 1-DOF model, andz > (y+ρrl sin(φTD))σ+ρrl cos(φTD)
in the 2-DOF model. The section covers points where the hopper is at apex of flight
and excludes points where the hopper is at bottom-of-stance.

Using apex of flight as our Poincaré section, a natural minimal periodic represen-
tation of our phase space is the space of height of the center of mass of the hopper
above the ground and velocity of the center of mass in the world frame. Let the phase
space of our 1-DOF hopper be(z, n, ż, ṅ)T and the phase space of our 2-DOF hopper
be (y, z, ẏ, ż)T . Then projections into reduced periodic space are expressed as linear
transformations,

T1DOF =









1 −1 0 0
0 0 1 0
0 0 0 0
0 0 0 0









(37)

T2DOF =









−σ 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









(38)

This Poincaré section allows us to study the stability of period-1 strides. In other
words, it enables us to quantify the tendency of the climber to converge to or diverge
from some configuration at apex. For the 1-DOF hopping climber we are interested in
strides where the height of the climber above the ground at the end of stride is equal to
the dropping height at the beginning of stride. For the 2-DOFhopping climber we are
interested in strides where the height above the ground as well as the forward velocity
of the climber at apex is equal to the height above the ground and forward velocity at
the beginning of the stride.

5.3 1-DOF Hopping Climber Return Map

We found that for all spring and thrust models we investigated the 1-DOF hopping
climber admitted a closed-form return map. This means that the dynamics of the pe-
riodic orbit can be reduced from piecewise integration overa collection of differential
equations to a single difference equation.

Let z0 be the initial height above ground at apex withtc the time from apex to
touchdown.

1
2gt2c = z0 − l − vtc , tc > 0 (39)
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Using the spring potential functionV , height of the hopper above ground at bottom of
stance can be computed fromtc.

1
2m(gtc)

2 + mg(l − zc) = V (k1, zc, lrl) , zc < lrl (40)

For the linear hopper with finite thrust, the heightzt of the hopper above ground during
thrust, has a closed-from solution as a function of time.

z̈t(t) =
k1(lrl + rt − z)

m
− g

żt(0) = 0

zt(0) = zc

(41)

zt(t) =
1

k1

(

k1lrl − gm + k1rt

+ (gm + k1(zc − lrl)) cos

(

t

√

k1

m

)

−r
√

k1m sin

(

t

√

k1

m

))

(42)

Knowing the position and velocity of the climber at end-of-thrust, we can computeza,
the apex height relative to the ground height at liftoff.

mg(za − zt) =
1

2
mż2

t + V (k1, zt, lrl + rδt) − V (k1, lrl, lrl + rδt) (43)

For instantaneous thrust models,za can be computed directly fromzc.

mg(za − zc) = V (k2, zc, lrl) (44)

Now that we know the apex height, finding the time from liftoffto apex,ta, is similar
to finding the time to touchdown.

ta =
1

2
gt2a = za − lrl (45)

Finally, we can solve for the resulting hopping height,z1, on the Poincaré section in
our projected space.

z1 = za − tav (46)

Although the resulting return map is still generally difficult to analyze, numerical
study shows unimodal behavior for all of our spring and thrust models. Removing
gravity from our model during stance removed the unimodal behavior, resulting in en-
tirely unstable or entirely stable fixed points for ascending and descending respectively.
Contrary to studies of dynamic legged climbing in a level-ground domain, this result
underscores the importance of gravity during stance in dynamic climbing. Fig. 15 illus-
trates return maps over a range of values for the linear spring with finite thrust duration.
Note that return maps may have 0, 1, or 2 fixed points, depending on the stiffness of
the linear spring. The implications for this will be discussed next.
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Figure 15: Return maps for a 1-DOF finite thrust linear springclimber. The climber
is parameterized ask1 = 4500, r = 8, δt = .01, g = 9.8, m = 8.5, lrl = .1702.
The difference between hopping height and dropping height∆z = z1 − z0 is plotted
against dropping heightz0. Solid lines are return maps. Intersections with the dashed
line at∆z = 0 are fixed points. Note that two of the return maps have two fixedpoints,
while one return map has just one fixed point. Return maps correspond to dashed lines
in Fig. 16(a).

5.4 Stability of the 1-DOF Hopping Climber

In addition to finding fixed points of the return maps for our hopping climbers, we
would like to know what behavior to expect if the trajectory of the hopper is perturbed
from its periodic orbit. Within some neighborhood of the fixed point, a trajectory may
asymptotically approach the periodic orbit, or diverge from it. One intuitive way to
investigate the local stability of a fixed point is to evaluate the Jacobian of the return
map at that point.

Since the return map of our vertical climber has only a singledegree of freedom,
the eigenvalue of the Jacobian of the return map is simply thederivative with respect to
hopping height. A unimodal return map would indicate three possible configurations
of fixed points for each parameterization of spring, thrust,and ground speed. Either
there are two fixed points, one asymptotically stable and oneunstable, one marginally
stable fixed point, or no fixed points.

Fig. 16 provides a clear picture of the classification of these fixed points for an
ascending climber. In the upper plot we show fixed points for afinite thrust, linear
spring, climber with parametersk1 = 4500, r = 8, δt = .01, g = 9.8, m = 8.5, and
lrl = .1702. In the lower plot we show the eigenvalue of the Jacobian of the return
map evaluated at these fixed points. We see that as the value ofz0 increases fromlrl,
the steady-state value ofv decreases quickly, then begins to increase again. Dualz0

solutions are expected, since each cross section corresponds to a return map. It follows
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Figure 16: Fixed points and eigenvalue of the Jacobian of thereturn map for a finite
thrust linear spring climber.k1 = 4500, r = 8, δt = .01, g = 9.8, m = 8.5,
lrl = .1702. (a) Rising ground ratev is plotted against dropping heightz0. The solid
line represents fixed points. Horizontal slices correspondto return maps. Dashed lines
represent return maps illustrated in Fig. 15. (b) Eigenvalue of the Jacobian of the return
mapλ is plotted againstz0.

that for each value ofv that corresponds to two steady-state values ofz0, one param-
eterization is stable and the other is not. Indeed, looking at the plot of eigenvalues,
we see that values ofz0 close tolrl represent stable fixed points while larger values
of z0 represent unstable fixed points. This suggests that while ascending a slope, a
climber should have an apex height close to its height at touchdown. Conversely, when
descending a slope, a climber should have an apex height close to its liftoff height. Al-
though the figure corresponds to a particular parameterization of a specific spring and
thrust model, we found the features identified to be persistent over all spring and thrust
models described in this paper.

5.5 Comparison of the 1-DOF Hopping Climber to the 2-DOF Hop-
ping Climber

In this section we present empirical evidence supporting the hypothesis that the 1-DOF
hopping climber captures important features of the dynamics of the 2-DOF hopping
climber within some bounds.

In Fig. 17 we show a slice of the the return map of a instantaneous thrust, nonlinear
1
ρ

“air” spring with ẏ = .7, φTD = π
16 , k1 = 40, k2 = 50, σ = .15, g = 9.8, m = 8.5,

ρrl = .1702. Since the reduced dimension phase space is really three dimensional,
the the return map is actually inR4. Because of this, the intersections shown in the
return map do not represent fixed points themselves, but contours along which a fixed
point might be found. The slice of the return map is acquired by projecting down to
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Figure 17: (z0, z1) slice of the 2-DOF instantaneous thrust nonlinear1
ρ

spring. The
model parameters arėy = .7, φTD = π

16 , k1 = 40, k2 = 50, σ = .15, g = 9.8,
m = 8.5, ρrl = .1702. ∆z = z1−z0. The return map actually lies inR4, so the dashed
line represents a hyperplane ofR

4, and intersections with that dashed line correspond
to contours fixed points might lie on. The sectionz0 ∈ [.1702, .4] is magnified to show
similarity to the 2-DOF return map nearz0 = ρrl.

dimensions analogous to “dropping height” and “apex height” in the 1-DOF hopping
climber. In Fig. 17 the(z0, z1) slice of the return map nearz0 = ρrl is reminiscent of
the shape of the 1-DOF return map. In other words, this figure suggests that where the
dropping height is reasonably near the spring-leg rest length, the 2-DOF climber has a
hopping height stability behavior similar to the 1-DOF climber.

Fig. 18 explicitly examines fixed points of the 2-DOF hoppingclimber. Letξ be
the height of the center of mass of the hopper directly above the ground. In Fig. 18
φTD = π

16 , k1 = 40, k2 = 50, g = 9.8, andρrl = .1702. In the 1-DOF approximation
the coupling betweeṅy andσ (forward velocity and ground slope) is modeled as the
rising ground ratev. The top plot shows shows theẏ component of the fixed point as a
function ofz0, and the middle plot shows the ground slope that correspondsto that fixed
point. Althoughσ increases monotonically withz0, the unimodal relationship between
z0 and ẏ resembles the mapping betweenz0 and v in the 1-DOF hopping climber
shown in Fig. 16. In other words, for fixed points in the 2-DOF hopping climber,
although climbing slope monotonically increases with dropping height, the coupling
and between forward velocity and dropping height can be understood as similar to the
coupling between rising ground velocity and dropping height for the 1-DOF hopping
climber. Finally, the lower plot shows the nonzero eigenvalues of the(ẏ, ξ) Jacobian.
This plot shows greater coupling betweenz0 andẏ for larger valuesz0, which correlates
with destabilizing effect of increasingz0 in the 1-DOF model. As dropping height
increases, forward velocity has a greater effect on apex height. This also suggests that
for small values ofz0, i.e. the stable region predicted by the 1-DOF model, a simple
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Figure 18: Fixed points of the 2-DOF instantaneous thrust nonlinear 1
ρ

spring.φTD =
π
16 , k1 = 40, k2 = 50, g = 9.8, m = 8.5, ρrl = .1702. (a) ẏ is plotted againstz0. The
coupling betweeṅy andz0 is similar to the coupling betweenv andz0 in the 1-DOF
climber shown Fig. 16(a). (b)σ appears monotonic inz0. (c) Nonzero eigenvalues of
the(ẏ, ξ) Jacobian plotted againstz0.

Raibert-like controller, which assumes forward velocity and apex height are decoupled,
may be effective [19, 3, 4].

6 Conclusion and Future Work

The analytic and experimental results in Sections 3, 4, and 5provide initial forays into
the problem of legged climbing on a slope. In particular, ourresults indicate that it
is not enough to merely apply flat-ground models to a robot on an incline – we have
demonstrated that gravity must be explicitly included in the modeling for the analysis
to be representative of actual physical behaviors.

The LLS and SLIP templates have been successful in modeling legged locomotion
on level ground; however their naive application to a slopeddomain introduces many
complexities. Although the peg-leg LLS template does offerglobal heading stability,
the asymptotically stable fixed point only allows for descending. This suggests the
need for a more complex transverse plane model, and is confirmed by a brief empirical
exploration of the simple planar hexapod. Approaching the dynamic legged climbing
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problem from the sagittal plane, a simple modification of theSLIP template yields an
intractable 2-DOF hopping climber; however constraining this model to a 1-DOF ver-
tical climber yields an analytically tractable model with an interesting unimodal return
map. Numerical study of the 2-DOF hopping climber shows stability properties similar
to to those resulting from 1-DOF vertical climbing. The 1-DOF vertical climber can be
used as an approximation to the 2-DOF hopping climber, indicating the usefulness of
a simple Raibert controller in legged climbing

Further work may branch in a few different directions. For the inclined-LLS mod-
els, we would like to investigate the dynamics of the simple hexapod. Bifurcations with
a large basin of attraction are key to the interesting dynamical behavior in the simple
hexapod; however we do not have a good understanding of the underlying mechanism
of these bifurcations. It would be useful to distill an even simpler model from the
hexapod for both RHex and RiSE gait modifications.

For the inclined-SLIP models, the 1-DOF climbing model may be pursed both as an
approximation to the 2-DOF hopping climber and as an independent model of vertical
climbing. As an approximation, we would like to develop explicit bounds in the 2-
DOF system where the approximation is appropriate. We assert that our analysis of
the 1-DOF model suggests a Raibert controller [19, 3, 4] may be used to control a 2-
DOF hopping climber. Future work might address the effect ofground slope on the
size of the basin of attraction for that type of controller. Seen as a model of vertical
climbing, the 1-DOF hopping climber could be the subject of future analytic study. It
may be useful to further develop a precise mathematical classification of spring and
thrust models that produce the stability properties outlined in this paper.

Finally, we would like to pursue the coupling between transverse and sagittal plane
dynamics of full dimensional climbers as a function of gravity magnitude and climbing
slope. This may be addressed through empirical study of RHex[11] and RiSE [20]
using controllers developed from this paper.
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