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Abstract

We are interested in the stability and control of dynamigésd)climbing. Moti-
vated by the success of the lateral leg spring (LLS) and ggdaded inverted pendu-
lum (SLIP) templates for transverse and sagittal planeinghon horizontal surfaces,
our effort is to similarly approximate the analyticallyrattable dynamics of a full di-
mensional system through planar models, and develop sicopiol strategies based
on analysis of these approximations. In this report we dhice low-dimensional gen-
eralizations of the LLS and SLIP templates capable of asograhd descending by
considering configurations of the center of pressure oeisithe set of asymptotically
stable configurations in the horizontal plane, and allovértgrust phase to add or re-
move energy from the hopper. We will provide mathematicalysis of these models
where possible, and introduce approximate models and &algiata where analytical
analysis is intractable. Stable control strategies d@ggldrom these low dimensional
templates and approximations are demonstrated throughation.
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1 Introduction

Consider a scenario in which a person is jogging on an eveaotnsidewalk, which

abruptly slopes or even becomes a rough gravel surface. @fsongs transition is

typically smooth and arguably involves very little activentrol-the act of walking

remains a largely repetitive task that requires relatiViethe thinking. However, such

transitions in robotic systems remain difficult. Succeksfiplementations of legged
mobile robots are often sensitive to terrain, and must béyfio@ed or equipped with

extensive sensing and control capabilities. Both of thiasdtions must be overcome
for the next generation of dynamic legged robots to be bdibsbto terrain and simple
to control.

Appropriate level of model fidelity, as well as simple cohtreechanism, are inher-
ent to the robustness and success of any given dynamic leglged Initial approaches
by control theorists and biologists have involved compteqlinear behaviors which
can arise from simple, mechanistic models. The main chgdlémthis arena has been
to create models which are both physically accurate andg/tcelly tractable.

Despite extensive work in modeling, analysis, and contféégged robots on flat
ground, little work has been done to achieve this same ssaresloped terrain. Al-
though we now have basic design strategies for dynamic tegggtems on flat ground,
methods for dealing with slopes and climbing are limitedreating the effects of a
slope as isolated perturbations. The fact that we are stesstén dynamic legged loco-
motion exclusively on a slope breaks the assumptions thdttteasymptotically stable
running on level ground. Still, we hypothesize that simpid aven open-loop control
can be a viable strategy for dynamic legged systems on a.dlopleis report we seek
to resolve this gap by presenting the first analytic work gstjgg a design strategy for
stable and robust dynamic legged climbers requiring liitlao sensing.

1.1 Previous Work

Raibert's seminal work in hopping robots [1] is consideteel first example of robotic
dynamic legged locomotion. Essentially an actuated poig&sstRaibert's hoppers
modeled only one leg, but provided immense utility for cohtheorists and biolo-
gists interested in the stability and control of legged lotion. Although limited
in its scope, the hoppers emulated a variety of behaviorsragbd in actual biological
systems. By modulating leg touch-down angle and thrusttiurgRaibert showed em-
pirically stable hopping utilizing simple controllers buaround the approximation of
decoupled forward velocity and hopping height. Reseascheitding upon his bench-
mark model further explored the stability of legged runramgl the coupling between
forward velocity and hopping height for a class of simplifraddels of Raibert’s hop-
pers termed the spring-loaded inverted pendulum (SLIP).

Control theorists approximated the SLIP return map, thetion mapping hopper
height and forward velocity of at the apex of one hop to thexayfehe following hop.
For certain nonlinear springs, this map was shown to fadl the class of S-Unimodal
functions, guaranteeing asymptotic stability for cerfa@niod-1 gaits where the hopper
returned to the same height and forward velocity at each fjexChaotic attractors
were found [3], and bifurcation diagrams supported thelstaériod-2 “limping” gaits



observed in Raibert’'s hoppers [4] where a small hop was saiezkby a large hop, or
vice versa. Simultaneously, biomechanics researcheesdxglored the SLIP model in
biological systems [5]. Blickhan and Full surveyed a varigtlegged animals, finding
the SLIP model to be an accurate representation of the ceht@ass dynamics in
the sagittal plane [6]. In more explicit collaboration, lbigists and control theorists
studied the neurological control of certain legged anini#lsand illustrated methods
for quantifying stability and maneuverability for leggenimals [8]. These studies led
to an investigation of transverse plane dynamics in matigked biological systems.
Control theorists dubbed this new model, based on the ShiP)ateral leg spring
(LLS).

The lateral leg spring is essentially SLIP turned on its.sRigther than a pogo stick
bouncing up and down, LLS is a pogo stick bouncing betweewtils of an imaginary
corridor. While SLIP models the up-and-down motions of agkd runner, LLS is
an attempt at distilling the important components of sigisitle running dynamics in
multi-legged animals. If LLS is a pogo stick bouncing betwége walls of a corridor,
then the wall positions and curvature of this corridor arteained by the location and
orientation of the sideways pogo stick at the arbitrary miointiee “foot” is attached
to the ground. Control theorists and biologists buildingltis model have determined
the relationship between body geometry and stable locematiterms of heading (the
straightness of the imaginary corridor) as well as overlivhrd velocity in terms of
body geometry for open-loop gaits [9, 10].

One might wonder about the effectiveness or purpose of dpireg control strate-
gies for idealized systems. In fact, control strategiestiped for the idealized SLIP
and LLS models have translated well into real systems. Rolptatforms, such as
RHex the robotic hexapod have been shown to exhibit SLIP drfl dtability [11],
and benefit from control strategies developed for pararnmttched models [12, 13,
14, 15, 16]. Itis important to stress that the goals of cdnitreorists and biologists are
not always the same. Historically control theorists stadylegged locomotion have
the design of an engineered system in mind, while biologiate typically been pri-
marily interested in learning how animals locomote. Howegités interesting to note
that in many cases biologists have gone back and validatdtematical results of the
lateral leg spring stability through experiments on leggeiinals [17, 10, 8].

1.2 Method and Contributions

Models of dynamic running are mechanically elegant, buthesatatically complex
and difficult to treat analytically. Our work focuses on sliaband control for dy-
namic legged locomotion along sloped and vertical surfagedecomposing the full
dimensional climber into planar models, and studying theadyics of these planar
models. It has been shown analytically, and verified expemtaily, that under certain
control laws and body configurations, dynamic legged rusibased on the planar hy-
brid SLIP and LLS models are guaranteed to converge on ngy&iodic trajectories
when perturbed, even with little or no sensing. Unfortulyatde pervading simpli-
fying assumptions leading to these results preclude pssgreo a gravity field, and
dynamic legged climbing remains a largely unexplored pobl This report seeks to
address this problem by generalizing LLS and SLIP modeldtband remove en-



ergy to enable ascending and descending, while keeping thedels simple enough

to allow analytic analysis where possible.
The main contribution of this thesis involves the modelemgglysis, and simulation

of four models of dynamic legged locomotion:
1. LLS Peg-Leg Climber

(&) New model of transverse plane dynamics of a climber onges|

(b) Analytic conditions for heading stability for open-jpalimbers based on
this model.

2. LLS Simplified Hexapod Climber

(@) New model of transverse plane dynamics of a climber oropesicapa-
ble of more complicated behaviors than the LLS peg-leg acimthough
analytically difficult.

(b) Empirical evidence of the limits of heading stability sloped surfaces
through simulation.

3. SLIP 2-DOF Hopping Climber

(&) New model of sagittal plane dynamics of a climber on aelop
(b) Numerical study of the stability of this climber througimulation.

4. SLIP 1-DOF Model and Approximation to the 2-DOF Hoppinintier

(@) New model of sagittal plane dynamics of a climber on asl@presenting
the singular, vertical, climbing mode in the 2-DOF hoppifimber.

(b) Closed-form return map for a class of 1-DOF vertical tlers.

(c) Identification and classification of the fixed points oé theneral 1-DOF
climber.

(d) Empirical evidence suggesting the robust asymptaioikty of the 1-DOF
climber.

(e) Empirical evidence suggesting the viability of the 14€imber as an
approximation to the intractable 2-DOF hopping climber d@mdproxy, a
simple control law for stable climbing.

1.3 Organization

Section 2 provides the reader with a brief tutorial in hyltidhamic systems. This
section provides the mathematical framework for the aigbfhybrid dynamic legged
climbers. We then decompose the full-dimensional climb&r planar approximations,
in order to discern properties of stability and control. Btson 3 we present transverse
planar dynamics through an extended LLS model. In Secti@msisb we approximate
sagittal planar dynamics through an extended SLIP modeladh section, we describe
a particular planar approximation, discuss its dynamied,then analyze the model for



its stability, despite minimal sensing and control. In tlhsethat analytic results are
not possible, we alternatively provide empirical studieetigh simulation.

The discussion of transverse plane dynamics begins inde8tiwith the stan-
dard, flat-ground LLS model. We extend this model to captaedimg dynamics and
progress against a slope. Building upon a stability argurf@anthe original level
ground LLS model, the body-geometry conditions for stapiln a gravity field un-
der an open-loop controller are derived. Resulting stafaliedtories are classified,
and limitations of climbers based on this model are disaissgection 4 continues
the exploration of LLS models, introducing a more compkchtand analytically dif-
ficult hexapod model. Empirical study of this model hintsimtitations and illustrates
significant advantages in stability as compared to the pgd-LS climber.

The discussion of sagittal plane dynamics begins in Sedctiaith the standard,
level-ground SLIP model. We extend this model initially t8-OF hopping climber.
Unfortunately, as is typical of SLIP-based models, the iekm@nalytic integration of
stance dynamics in order to compute return maps requireputtion of elliptical
integrals, making it analytically intractable. Methods $olving this problem in level
ground rely on approximations which ignore gravity duritenee or require symmetry
in stable trajectories, making these techniques inapatgin a sloped or vertical do-
main. To solve this problem we suggest using the singuldaicaédmode of the 2-DOF
hopping climber as an easily integrated 1-DOF approximat##foPoincaré section for
hopping climbers is introduced, and fixed points for a regméative climber are found
and classified. Stability properties of the 1-DOF hoppinmbkr are discussed, and
empirical evidence suggesting the strength of the appratxam to the intractable 2-
DOF model is presented. Section 6 concludes the report wdthcaission of possible
applications of this research and directions for futurekwor

2 Legged Climbing as a Hybrid Dynamical System

We begin by describing a general model of legged climbingedent this model in
the framework of hybrid systems. Later, specific models gfés climbing will be
introduced and analyzed in this setting.

Models for the peg-leg runner in a gravity field and 2-DOF hiogglimber are
illustrated in Fig. 2 and Fig. 13, respectively. For a gehelimber, a single stride is
comprised of several discrete transitions between diffiesets of constraints, making
the model of a legged climber a hybrid system. This meanstkieatlynamics of a
legged climber cannot be represented by a single flow. Idstis trajectory of a
climber is computed from piecewise integration over a @bite of vector fields, with
discrete transformations guiding transitions betweenordizlds.

Similar to many horizontal legged running models, the dyicanof the legged
climber segments into two major phases, flight and stanceg[19n a sagittal plane
model, energy can be added or removed during stance by ful#ftemposing stance
into three sub-phases, compression, thrust, and decosmmefgl]. In the frame-
work of hybrid systems, significant points in the trajectofyhe climber, for example
phase transitions, can be represented as zero-crossifigsctions of state and time.
These functions are referred to as threshold functionstlengero-crossings are called



events.

Borrowing notation from Altendorfer [12], we can more pragly describe the
mathematical framework of the model. LEtbe a finite index set an&,,, o € I
with dim (X,) = 2N, N € N be a collection of charts, Euclidian spaces describing
the phase space of a constrained system. Suppose we haveysiame withqg a vari-

. . . . T . .
able in configuration space asd= [ a q ] a variable in phase space. The vector

field f,, : x — % can be integrated to obtain the flof/&') : X, — X,. Given the
initial conditionx, € X, and integration time € R, x () = f! (xo). Supposed € T
with 3 # a. Each phase corresponds to the equations associated wétleragnt of
the index set/. The transition fromf,, to f3 corresponds to the threshold function
h? : (X,,R) — R. Given initial conditionsx,, the next transition event occurs at

the timet, (xo) = min {t b (x0,t) = 0}. Put together, this yields the flow map

F, : xo — fﬁ;"(x") (x0). Finally, the discrete transformations between chartslare
noted7? : X, — Xg. In this paper, unless otherwise noted, this transformasio
simply the identity. We will use the index séf, s, c,t,d} to refer to flight, stance,
compression, thrust, and decompression, respectively.

As suggested by the notation in Fig. 2 and Fig. 13, the trajgdf a legged climber
can be considered periodic. Within certain bounds, trajées are defined on a recur-
ring series of charts. A single stride is described by thepusition of flow maps and
discrete transformations associated with a single cyctautih these charts. It should
be noted that unlike level ground running, not all of the dusiens of phase space are
essential in describing the dynamics of locomotion; formegke, in models described
in this paper, total system energy and distance along tipe staveled are extraneous
to describing the dynamics of climbing. By projecting dowencapture only essen-
tial dimensions, certain trajectories of legged climbegsdme periodic orbits. We
are interested in the stability or attractiveness of thebé@sy and will explore these
properties empirically and analytically through numefringegration and studying the
differential behavior of the orbit.

3 Inclined-LLS: Peg-Leg Runner in a Gravity Field

Schmitt and Holmes [9, 14] first presented the lateral legngp(LLS) model, which

has been used to characterize the transverse plane dyrafroacskroaches [8] as well
as multi-legged robots like RHex [11] over level ground. Haesic idea is that for a
given gait with a well defined “left side” and “right side,"@éHegs in contact with the
ground during stance can be modeled as a single effectiwegsieg. The effective
spring-leg is attached to the ground during stance via &dritess pin joint at the foot.
In this way a two-sided gait could be likened to bouncing lestw effective left and
right spring-legs.

Schmitt and Holmes also showed that under certain conditibie dynamics of the
LLS model are reflected in a simpler “peg-leg” model [9]. I theg-leg model, the
spring-leg is replaced with a rigid foot constrained to mal@ng the lateral axis of
symmetry, attached to the body by a prismatic joint. A sirsfliele consists of a stance
phase and zero-duration flight phase. During stance thad@itached to the ground



Figure 1: Peg-leg body geometry. Position in the world frame body frame are given
in Cartesian coordinaté$V,,, W,)) and (B, B,) respectively. The origin of the body
frame is at the center of mass. Position of the peg is meassrét distance along,
from the center of mass to the peg. Note the isometry betwesitiye and negative
peg positions. The angle betweBp andV, is measured bg. In the climbing peg-leg
model it is assumed that the gravity vector points in+i&, direction.

by a frictionless pin joint moving from some starting pasitito some ending position
relative to the body center of mass and orientation. At fligktfoot is instantaneously
repositioned at the new starting position. One way to vigadhis stride is to imagine
a sled without runners on a frozen lake, with a slot cut ouh@lthe lateral axis of
symmetry. An illustration of this sled is shown in Fig. 1. Arpen riding on the sled
(at the center of mass) is given an ice pick, and allowed toentiywrepeating three
simple movements:

1. Stab the ice pick into the ice at one end of the slot.
2. Push or pull the ice pick until it is at the opposite end &f stot.
3. Remove the pick from the ice and reposition it at the beagoof the slot.

In the horizontal case, the peg-foot can be thought of as ¢méec of pressure of
the spring-leg LLS model. A key result of this model is thatlanreasonable body-
geometry assumptions and certain open-loop gaits, thdamgomentum of the body
will asymptotically approach zero, meaning the runner wilhverge on a particular
heading. This global stability result is reflected in engatistudies of running cock-
roaches and the robot hexapod RHex [8, 11].

Inspired by the simplicity and success of this peg-leg moithel natural starting
place in our study of climbing dynamics is to pitch the peg-+lenner into a gravity
field, as illustrated in Fig. 2.
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Figure 2: Peg-leg climber during stance. (a)-(b) Top viea).Reginning of stance?

is measured with respect to the climbing surface gradierthit figure the gradient of
the climbing surface points along the length of the page Ef of stance. The sled
has translated and rotated about the fixed peg positiorfd{Qide view. (c) Beginning
of stance. The angle of the planar climbing surface relatvgravity is~. (d) End of
stance.

3.1 Dynamics

To simplify dynamics, the climber is assumed to have a plagat body, symmetric
about the sagittal axis with massand moment of inertid. The climber operatesin a
gravity field of magnitude, along a planar climbing surfagedegrees from horizontal.
Body anglef is measured relative to the climbing surface gradient. Tderdinate
systems and frames of reference used describing this noilaktrated in Fig. 1. The
origin in body coordinates is located at the center of massnAhe horizontal peg-leg
model, the body is equipped with a slot running along thettdgixis of symmetry.
In Cartesian body coordinaté®3,, B, ), this slot begins at0, lyc4:), and ends at
(0,1ena)- As in the horizontal peg-leg model, movement is effectedubh a massless
peg-leg that can be fixed to the running surface and movetivela the body along
the slot. We assume the sled is frictionless with respedtagtound and peg, and the
point of contact between the peg and ground acts as a friesmpin joint. Control is
exerted only during stance through the position of the pegglative to the center of
mass along thés, body frame axis.

3.1.1 Flight

During flight the climber slides without friction along thiénasbing surface subject only
to gravity. Although in our analysis we consider the dunatd the flight phase to be
zero, we include the equations of motion here for completendhe peg is instan-
taneously repositioned &, /.4 ) in body coordinates when the climber transitions



from flight to stance. This change in configuration resulia discrete jump in angular
velocity due to the conservation of angular momentum.

6=0 1)
hg (x,t) =0 (2)
. mlbe inlend +1
Tf = diag(1, —2"—— 3
f Zag( ’ mlgegm +7 ) ( )

3.1.2 Stance

During stance the climber slides without friction along thienbing surface, subject to
gravity and the prescribed position of the peg. In our modehasume the peg position
as a function of timé(¢) to be periodic and strictly monotonic during stance. Stance
ends when the peg reaches the opposite end of the slot.

o gsinysinf — 210

6 =ml 4
m ( T+ mi2 ()
hE (x,t) = lena — | (5)

3.2 Stability in the Peg-Leg Climber

As with the horizontal peg-leg runner, an easy way to vigedhe climbing stride is to
imagine an ice-pick driven sled without runners on a frozepes. Schmitt and Holmes
showed that on level ground for certain body geometries am-éqop controller can
force the sled to converge on some headir{§, 14]. We would like to determine if
there is a similar stability property for the peg-leg climbe

In the horizontal running case, angular momentum aboutélgagoconserved dur-
ing stride. At the beginning of each new stride the insta@dais change in peg position
causes an angular impulse and a discrete jump in angularityelhich can be mod-
eled as a linear transformation. In Schmitt and Holmes’ axgot [9], this transforma-
tion is expressed in terms of angular momentum. The integrstince dynamics also
reduces to a linear function of angular momentum, meaniegtdbility of a particular
runner is determined simply from the eigenvalues of thedlimeturn map.

In the vertical running case the discrete jump in angulaocigt between strides
(3) is the same as in the horizontal case. Introducing a yréieid explicitly breaks
the assumption that angular momentum is constant aboutepelgring stance, and
leads to a nonlinear stride map. Taking a closer look atestlighamics, we see the
effect of stride on angular momentum.

90 m (I — mlg) (g sinysin 6 — 216‘)

ol (I +mi2)? ©)
o6 —2mlf
o~ TtmP )
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Without loss of generalization, lét> 0. Combining (4) and (6) we see that

sign (Ab‘) = sign (9 (I — le) Al) (8)
There are three cases to consider:

1. If I = mi?, then change ihhas no effect on angular acceleration.

2. If I < ml2, then the magnitude df increases wheh> 0 and decreases when
l<0.

3. If I > mi2, then the magnitude df decreases wheh> 0 and increases when
[>0.

From (7) we see that
sign (AH) = sign (—HAZ) 9
Again there are three cases to consider:

1. If [ = 0, there is no effect on angular acceleration.

2. If [ < 0, then the leg is accelerating toward the center of mass, lweré is a
change in angular acceleration in the direction of rotation

3. If [ > 0, then the leg is decelerating in the direction of the centenass, and
there is a change in angular acceleration against the idinect rotation.

Essentially we have just shown the “figure skater” result gravity field. Like
a horizontally rotating object with adjustable mass poati pulling mass toward the
pivot point increases angular acceleration, while pusiirags away from the pivot
point decreases angular acceleration. Since we are one, sfapdirection of angular
acceleration depends on gravity.

For a large class of foot trajectories, such as constantifglduring stride, as
illustrated in Fig. 3, we can construct a bound on angulaelacation for a stride as
a function of angular momentum at the beginning of the strittés bound leads to a
familiar bound on angular momentum, subject to the samélisggiiroperties seen in
the horizontal runner.

Unlike the horizontal runner, the stance dynamics leadsty fur fixed points
unique up to isomorphism. Three of these points are maigistdble and one is
asymptotically stable. When pulling the sled there are tvargimally stable fixed
points:

1. Pulling withd = 0 and a heading which climbs the surface gradient is marginall
stable.

2. Pullingwithd = 0 and a heading which descends the surface gradient is mbygina
stable.

When pushing the sled there is one marginally stable fixeotjpoid one asymptotically
stable fixed point:
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Figure 3: Trajectory of a stable peg-leg climber. Systenapesters are defined as
lvegin = 3, lena = 5,1 = 2,00 = &, 6y = 0.1. Note there is an isometry between this
climber and one wherk. g, = —3, leng = —5, and/ = —2. Points on the trajectory
denote the beginning of the run and the end of stance phasds.tie discrete jumps
in angular velocity following the end of each stance. (a)deh@lane plot of the stable
climber. (b) Leg trajectory for this climber. (c) The andlas a function of time. (dj

as a function of time.

1. Pushing witl¥ = 0 and a heading which climbs the surface gradientis marginall
stable.

2. Pushing witl) = 0 and a heading which descends the surface gradient is asymp-
totically stable.

Regardless of the gravity field, we see that heading is agytinplly stable only
when the slot is entirely behind the center of mass and the'peshes” away from
the center of mass during stance. However, because our rexplaitly accounts for
the effect of gravity, we see that only descending is asytigatly stable—ascending
is only marginally stable. This result shows the importaoténcluding gravity in
models of legged locomotion. The simple peg-leg model wiidaquately models
transverse plane dynamics over flat-ground is missing itapbcomplexities neces-
sary for climbing. In fact, a brief exploration of a more cdeypopen-loop leg-spring
model confirms that it is possible to ascend a slope or védigdace with asymptotic
stability on heading.

3.3 Initial Experimental Results

In our experiments we focus on two distinct methods of leggedmotion derived
from experimentally designed robots RHex and RiSE, andttesteffectiveness of

10



these climbing methods through simulation in the contexhefpeg-leg climber. Both
RHex and RISE are symmetric hexapods with compliant legs,aae capable of lo-
comotion through alternating tripod gaits, meaning thét dad right legs work in
conjunction to form alternating and symmetric tripods. tiglb RHex and RiSE share
some similarities, their motivated design goals are veifgint.

RHex was designed for flat-ground running. RHex bounces trignd to tripod
with heading stability of a LLS model. Abstracting away distéike duty cycle and
precise model parameters, we view this style of bouncingdddocomotion of as a
possible method for climbing inclined planes. AlternalydRiSE was designed to
climb extreme slopes, and remaining firmly attached to thik iwémportant for this
method of legged locomotion. In an alternating tripod gRISE firmly attaches itself
to the substrate with each tripod, releasing only once tip®sipe tripod has attached.

Using a relatively high-fidelity dynamic hexapod model deped by Seipel, Full,
and Holmes [10] which has been shown to exhibit LLS stabfbitycertain open-loop
controllers on flat ground, we will make sleight modificaspmtroducing a gravity
field and changing the stride switching function, in ordeinplement and test the
effectiveness of both RHex and RIiSE climbing methods in seofnheading stability
as a function of model parameterization and climbing slope.

3.3.1 Dynamics

The level-ground hexapod body geometry and coordinatesysstare illustrated in
Fig. 4 [10]. The basic idea is that tripods formed by hip-fegt sets 1,2,3 and 4,5,6
alternate and symmetrically drive the body through effecsipring-resting length and
hip position during stance with a nominal frequencyfof Though the model shares
some simplifying assumptions with the peg-leg runner,mas extremely complex
and difficult to treat analytically. The body is assumed tarigéd with massm and
moment of inertial. In the Fig. 4,60 measures the orientation of the body (heading)
relative to they inertial axis, whilel measures the direction of the velocity of the center
of mass relative to thg inertial axis. The body consists of 6 slots which constrh t
movements of six hips. Drawn individually for clarity in tlfigure, the hips and slots
are actually collinear, located along the longitudinakafisymmetry, passing through
the center of mass. Hip, leg, and foot configurations ared@daccording to the figure.
The location of each hip along tle body axis relative to the center of mass is denoted
d;. Each hip is attached to a linear spring-leg with spring tamm#; and resting length

l;. The vector from the foot to the hip is denotgd The position of each foot relative
to the center of mass in body coordinates, ¢2) at the beginning of stance is given
by b;. The position of the center of mass in the inertial frame isadedr.

Control is open-loop, and exerted during stance throughsphrng-leg resting
lengthl, and position of the higl;, which are computed ahead of time to match an
idealized sinusoidal foot force profile and desired forevalocity V. In their pa-
per, Seipel, Full, and Holmes parameterized their modelatcmidealized sinusoidal
foot forces measured from running cockroaches, and wewWdheir parameterization,
illustrated in Fig. 5 [10].

In our model, we explicitly account for the force of gravigy which acts along
the —y inertial axis, and a climbing surface with slope We denote the force on the
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el, e2
(body coordinates)

3 y
S
(inertial coordinales)

®

Figure 4: Seipel, Full, and Holmes’ hexapod body geometf}.[1Position in the
inertial (world) frame and body frame are given in Cartestaordinateqz,y) and
(el, e2) respectively. In this figuré denotes the velocity of the center of mass. The
angle betweemw and they-axis of the world frame is expressed @&s Similarly, the
angle between thg-axis of the world frame and the2-axis of the body frame is
measured by. Hip, spring-leg, and foot configurations are indexed assitiated in
the figure. In this way 1,2,3 and 4,5,6 denote alternatimgpttistances. For clarity, all

6 slots constraining hip movement are illustrated seplyratehis figure; however, in

actuality the constraining slots are all collinear.

Perscribed Foot and Hip Trajectories For Tripod {1,2,3}

@
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Figure 5: Prescribed foot and hip trajectories as presdnt&eipel, Full, and Holmes,
computed for the 1,2,3 tripod [10]. Note that the traje@sror the 4,5,6 tripod are

identical except for the stride-frequency phase shift.
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center of mas¥, the total moment about the center of md4sand the inertial frame
2 or y component of any vector value with a subscuripar y. With this notation, the
equations of motion become:

mir=F (20)
F, = Z ki (i — | Z| | (11)
= ki (I; — ai)) sino 12
; d; F,
16 = Z (qm cos 8 + ¢y sin 6) (13)

= Jail
7

The stance threshold function has two forms, one for eachbitig method. For
the RHex climbing method switching is dependent on footdaminus the effect of
gravity:

h (x,t) = min {&; (la:| — 1)} (14)
For the RIiSE climbing method, switching is dependent oncstdime only.

he (x,t) = mod (t, %) (15)

3.3.2 RHex Configuration

This model is robust to perturbations to heading and vsjaxitflat ground, and shown
by SFH to have a large basin of attraction for parametednatin the neighborhood
of measured values. On level ground, the model convergesh@ading rapidly, as
illustrated in Fig. 6 and Fig. 10.

In our experiments we run simulations of a particular hexbw@h some initial
conditions in the neighborhood of a stable flat-ground rogniarameterization over
a range of slopes. Simulations are run in Matlab using degattings for the ode45
solver. Each run consists of 400 left-right strides to eastability. We compute the
mean and variance of the heading for stabilized climbeisgumly the last half of the
time-ordered data set.

Data presented here is from a series of runs, each with the gatial conditions.
Effectively plots conveying asymptotic heading are onlgwimg half of the picture.
In most cases, a small change, for example reversing thalitmipod stance (starting
on the right side instead of the left), would result in a hagdiign change.

We found that for a particular model parameterization, ithné heading is not arbi-
trary, and depends on the climbing slope. Data from a reptatee trial are illustrated
in Fig. 8, which shows the mean and variance of the heading fabilized gait as a
function of climbing slope. For the smallest slopes, hegdimverges on the climibng
surface gradient—directly ascending the fall-line. Thifollowed by a range ia where
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Flat—-Ground RHex Configuration Hexapod Trajectory, k; =1
(@ 2 . . . . . .
-
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Figure 6: Trajectory of the flat-groung & 0) RHex Configuration hexapod; = 1
fori € 1,2,3,4,5,6. (a) Trajectory of the center of mass in the y) inertial frame.
(b) Oscillatory trajectory of headinfjas a function of time. Note the rapid convergence
about) = —0.4.

Flat—Ground RHex Configuration Hexapod Trajectory, k; = 2
(a) 2
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Figure 7: Trajectory of the flat-groung & 0) RHex Configuration hexapod; = 2
fori € 1,2,3,4,5,6. (a) Trajectory of the center of mass in the y) inertial frame.
(b) Oscillatory trajectory of headingjas a function of time. Note the extremely rapid
convergence abodt= 0.
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Heading and Stride Frequency as a Function of Climbing Slope

var(0)

Figure 8: Heading beyond the range of stable climbing slégresRHex Configuration

climber,k = 2, g = 9.8. (a) Heading is computed as the averdgaver a series of

strides for a stabilized climber. Note that this map repnesa bifurcation diagram

symmetric about = 0. (b) The variance obfl correlates with stable bifurcations
througho = 4.5 - 1074

as slope increases the asymptotic heading skews fromalehii¢ never reaches an an-
gle perpendicular to the climbing gradient. After this theading abruptly returns to
vertical before falling into a stable bifurcation at the ilisnof its skew climbing. Fi-
nally the climber reaches its maximum climbable slope, belyawhich the trajectory
falls into chaos, as shown by the heading variance.

3.3.3 RISE Configuration

We reproduce similar experiments now with the RiSE Configona\e use the same
initial conditions as we did for the RHex Configuration in 8&c 3.3.2. In the analysis
that follows, note that plots depicting heading or headatg of change should be seen
as half of a bifurcation which is symmetric abdut= 0 or § = 0.

For the RIiSE configuration we experimented both on flat grasdell as an in-
clined slope. In our flat ground experiments RiSE Configaratiimbers were allowed
to run for 200 left-right strides each over a rangé/gfvalues. Initial conditions we
chosen in the neighborhood of stable flat-ground RHex Cordtgan parameteriza-
tions. This time, the mean angular velocity was computethftoe last half of the
time-ordered data set to ensure the data represented izstbiinner.

We did not find a stable heading; however, despite being dibyea symmetric
alternating tripod gait, we did find stable rates of headingngye. In other words, al-
though the climber did not run in a straight line, it did corgesto stable circular paths,
as illustrated in Fig. 9. Although this is not the same as mepstability as observed
in LLS runners, we consider the similarity stability in ateyuelocity warrants further
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Flat—Ground RiSE Configuration Hexapod Trajectory

0.7

ool Va=025
0.5F

0.4

0.3
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0.1

Figure 9: Trajectories of the center of mass of RISE Configmmadynamic runners
in Cartesian(z,y) world coordinates. The climber is parameterized with= 1,
Vy = 0.25,0.225, 0.2. Note the stable circular trajectories of different cuwas. Ini-
tial conditions were a heading and forward velocity alongtaxis with no angular
velocity component. In this case, starting with the “oppo$&bot” would lead to tra-
jectories symmetric about theaxis.

study. The curvature of these paths could be controlled bygimg the parameter for
desired velocity}, in the open-loop controller. Plotting the mean angulabeiy

of stabilized gaits againsdt; we found a characteristic unimodal function with clear
minimum and maximum curvatures as shown in Fig. 10.

In our climbing experiments, we again ran the hexapod sitimugor 500 left-
right strides over a range of slopes using parameterizgiiorthe neighborhood of
those which produced stable gaits on level ground. Agampntiean and variance of
heading are computed from only the last half of the time-mrdelata for each run.

Curiously, we found that despite our flat-ground resultsdiraber tended to di-
rectly ascend the slope gradient, except for a relativelgllsrange of slopes near the
edge of its stable region where the climber stabilized onuteily skew headings, as
shown in Fig. 11. As with the RHex configuration, there is aitlito the range of
climbable slopes for any particular model parameterimatimwever it is interesting
to note that for identical parameterizations, the RiSE rhagpears to cover a greater
range of slopes than the RHex Configuration.

4 Inclined-SLIP: 2-DOF Hopping Climber

While Section 3 focused on lateral dynamics, we now focuseatiBn 4 on the lon-
gitudinal. The extended SLIP model presented in this sedtiglds upon previous
flat-ground models of sagittal-plane dynamics, but digeicttorporates the effects of
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Figure 10: Mean heading as a functionigfover level-groundi = 1. Note the nearly

unimodal behavior of this mapping with limits atean(f) = 0 for large and small
values ofV/;.

Heading as a Function of Climbing Slope
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Figure 11: Mean and variance of heading as a function of dgtigblope for the RISE
Configuration climberk = 1, ¢ = 9.8. (@) Note that the mean heading remains
zero except for a small decreasenirean(6) just before the climber falls into chaotic
instability. (b) The approximate limit of stable climbintgppes is clearly illustrated
with the spike invar(6) neare = 1.56 - 1073.
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gravity on a legged climber. For now, following the Raibessamption of decoupled
transverse and sagittal plane dynamics [1] we assume @& dtabting and propose a
model of the sagittal plane dynamics of a legged climberdasehe successful SLIP
template [2].

The standard flat-ground SLIP template is a pogo stick. Atpmiass is mounted
to the top of a massless spring leg, and control is exertedhbgsing the angle of the
leg relative to the level ground at touchdown. The leg angle @nly be controlled
during flight, when the pogo stick is airborne and ballisiind no control is exerted
during stance. The SLIP template has been used to modegiiald6, 7] and robotic
[13, 18, 16] systems on level ground, and has been showndrs¢iing to exhibit sta-
bility properties enabling the decoupled control of hopieight and forward velocity
through leg touch-down angle [1, 12, 2, 4, 15, 19, 3].

In order to extend the existing SLIP model to vertical ancstb domains, we
model the addition or removal of energy through a “thrustdgdduring stance.

4.1 Dynamics

The body geometry and coordinate system of the 2-DOF clirizbgnown in Fig. 12,
while the complete dynamical mode, with five phases of opmrais show in Fig. 13.
The climber is assumed have a rigid body of massThe body acts as a point-mass
mounted directly on top of the leg, eliminating pitching ithgr stance. The leg is a
massless spring of lengghwith resting lengttp,;. Leg angle relative to gravity is de-
noted¢, and the leg angle at touchdowris . The distance from the climbing slope
to center of mass of the climber along world frame dkisis denoted:. The position
of the climber center of mass in the world frame alonglitigaxis is denoteq. The
climber operates in a gravity field of magnitugend climbs a surface with constant
slopeo relative to gravity. We assume no energy loss in spring cesgion or decom-
pression, and no friction due to drag in stance or flight. &meé we assume perfect
ground attachment, meaning that the foot-ground contanbideled as a frictionless
revolute joint. Climber configuration is specified as theléug, z, ¢). No control is
exerted during stance, and the only control consists otseteprp.

For our extended SLIP models we consider linear springsniimd&e and instan-
taneous thrust duration as well as two models of an “air’rgptinder instantaneous
thrust duration. For linear springs, spring force is goeerby F' = —k,p, wherek;
is the spring constant. Instantaneous thrust is exerteddigcaete change in spring
constant fromk; to k». Finite duration thrust is exerted by stretching or comgires
the spring at a constant ratdor a timed,. For the two models of “air” springs, spring
force is governed by = *T’” [4]andF = - [15, 16]. Instantaneous thrust is again
exerted by a discrete change in spring constant fkgrnto k.. For ease of notation,
we will denote the spring potential generated with springstantk, leg lengthp, and
resting leg lengthv,; by V' (k, p, pr1).

In the following, we formulate the equations of motion and $iwitching surfaces
for the extended SLIP model corresponding to each of the $pting cases: Flight,
Compression, Thrust, and Decompression.
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Figure 12: 2-DOF hopping climber body geometry. Positiothaworld frame is given
in Cartesian coordinatgdV,, . ). The gravity vector points in the- W, direction.
The scalar measures the height of the center of mass above the groungl thieil’,.
axis. p measures the length of the spring-leg. The angle betweespitireg-leg and
W, is mesaured by.

(a) Apex | | (b) Touchdown (c) Bottom—of-stance

20

(d) End—of-thrust
P{

Figure 13: 2-DOF hopping climber model executing a singlelst (a) At apex in
flight. (b) Touchdown. The angle of the leg relative to gravet o7 . (c) The rate
of leg compression has gone to zero. At this moment the clirbbgins exerting a
thrust force. (d) After a specified thrust duration the lepdees again like a simple
unactuated spring. (e) The leg has extended to its origisalength. At this point the
hopper loses contact with the ground. (f) Apex of flight.

(e) Liftoff )

21
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4.1.1 Flight

During flight the hopping climber is not in contact with theognd and the leg is at
its rest length. Because of our simplifying assumptiondligit the climber behaves
as a ballistic point mass in a gravity field without drag. Rtipegins at liftoff, when

the hopper loses contact with the ground, and ends at touechdehen the hopper
contacts the ground with downward velocity and leg at anglg.

HEE s
h‘?(x, t) =2 — pPrl COS(d)TD) — (y + pri Sin(gf)TD))CT a7

4.1.2 Compression

During compression the hopper is in contact with the grourdithe leg length is de-
creasing. Compression begins with touchdown and ends witbn-of-stance, when
the rate of leg compression goes to zero. It should be noé¢ditb equations of motion
are different for each type of spring.

R i P B,
ht(x,t) = p (19)

4.1.3 Thrust

In the instantaneous thrust cases, this phase has duratard@ve move directly to
the decompression phase. In the finite thrust durationtdigpang case, we imagine
the leg spring being stretched or compressed independéme @ictual leg length and
“resting” leg length, at a rate for a timed;. We denote the elapsed time since the
beginning of thruss;.

H R e e P
Rd(x,t) = 8 — s (21)

4.1.4 Decompression

Decompression is very similar to compression. Decompoagsgins at end-of-thrust
and ends at liftoff, when the leg has extended to its origieating lengthp,;. The
equations of motion are different for each type of spring #mdst model. For the
linear spring finite duration thrust model,

[g}__avwnwggq+r&)$;[zzﬁgiﬁ)}__[o] (22)
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For instantaneous thrust models,

1] - 2srea ) [ e | [0]
ha(x,t) = pr—p (24)

4.2 Intractability of the 2-DOF Hopping Climber

Attempts to analytically solve for stability conditions thfis model quickly reveal the
intractability of the climbing SLIP model. Unfortunatelys with flat-ground 2-DOF
SLIP models, we are unable to integrate exact stance dysavittoout elliptic integrals
[15].

Previous efforts to circumvent the elliptic integrals iwvdeéground SLIP models
were based on nonlinear stance approximations [15, 16]edsawexploited symme-
tries to asses stability of periodic orbits through retuaps[12].

While in level-ground models, researchers have neglectedty during the stance
phase to aid in these approximations, we believe the gréigltymust be incorporated
during all phases for the extended SLIP model to accuratdlgat actual physical
phenomena. Further difficulties arise in our analysis bseavith gravity, the periodic
orbits are now asymmetric —this is due simply to the facttiatobot climbs with each
period. Some sort of approximation is inevitable, as we li@maonstrated here that the
2-DOF model is intractable. However, we insist on an appnation which does not
neglect gravity and which can accommodate the inherentemtng in climbing. Inthe
next section, we propose a 1-DOF model for which tractabigyars is still possible
— this model provides a novel simplification of the 2-DOF exted SLIP climber yet
allows tractable analysis and provides insight into thgingl 2-DOF model.

5 Inclined-SLIP: 1-DOF Approximation to the 2-DOF
Hopping Climber

We desire an approximation to the nonlinear 2-DOF hoppiimgh#r that allows a

closed-form return map without analytically opaque eiliphtegrals. Our explicit

consideration of a gravity field prevents us from using leyelund approximation

techniques which assume zero-gravity during stance [15pt6equire a time reversal
symmetry [12]. Surprisingly, when the climbing slope of &¥®OF hopping climber

becomes vertical, the resulting return map is closed-fordteas a tractable integral. In
this section we introduce this model as a 1-DOF hopping aimt/e define a Poincaré
section for hopping climbers, derive the 1-DOF hopping bémreturn map for our

spring and thrust models, and explore significant stalfditures. Finally we present
experimental evidence suggesting our analysis of the 1-B0éel is indicative of the

more general 2-DOF model.
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(a) Apex (b) Touchdown (c) Bottom—of-stance

"ew"
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Figure 14: 1-DOF hopping climber model executing a singteet All events are
analogous to events in the 2-DOF hopping climber model. (@dxfof flight. The
ground is rising at the rate. (b) The hopper contacts the ground. At this moment
the ground instantaneously stops rising. (c) Beginninghafidt phase. (d) End of
thrust phase. (e) Beginning of flight phase. At this momeatitound instantaneously
resumes rising at velocity. (f) Apex of flight.

5.1 Dynamics

The 1-DOF sagittal plane hopping climber is shown in Fig.a#d should appear very
similar to the 2-DOF hopping climber, since it is essenjifile 2-DOF climber on a
vertical climbing surface. Many of the assumptions aboet2#DOF hopping climber
hold for the 1-DOF hopping climber. The rigid body acts likpant mass of mass:.
The leg is a massless spring of lengtnd resting length,.;. The climber operates in

a gravity field of magnitude. To approximate the coupling between horizontal and
vertical progress we change the ground heiglaturing flight by moving the ground
relative to the world frame at constant velocity At the moment stance begins the
ground instantaneously achieves zero velocity relatitbeonorld frame. The config-
uration space becomés, n). Again, we assume no friction, no drag, and no energy
loss in compression or decompression. The climber runs-tqg®y and other than
choosing an initial “dropping height?, there is no control in flight or stance. We
consider the same spring and thrust models proposed for-B@F2 climber model.
Phases and events in the 1-DOF model are analogous to thtise 22DOF model,
and purposefully named to reflect their similarity.

5.1.1 Flight

The 1-DOF flight phase differs from the 2-DOF flight phase dnlthat the the ground
moves relative to the world frame with velocity Since the ground stops instanta-
neously on touchdown, the discrete transformation betvikgmt and compression
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charts is no longer the identity.

n=uv (25)

N I
-7
hi(x,t)=z—1ly—n (27)
T¢ = diag(1,1,1,0) (28)

5.1.2 Compression

Compression again begins with touchdown and ends with imetibstance. The ground
velocity is zero, and the phase transition transformagdhé identity.

; VULl 1 _
1)-[ e

hE(x,t) = 2 (30)

5.1.3 Thrust

Just as in the 2-DOF climber model, in the instantaneoustitases we skip directly
to decompression. Finite thrust duration for the lineaimgpworks just as it did in the

2-DOF model.
3 Wi —gq

hid(x,t) = 8 — s¢ (32)

5.1.4 Decompression

Since the ground instantaneously starts moving with vtacon liftoff, the discrete
phase transition transformation is no longer the identitgr the linear spring finite
thrust model,

: AV (ki Lla+rde) 1
EIR e
For the instantaneous thrust models,
- OV (ka,l,l) 1
1]-[ =]
The threshold function and chart transformation is the sanheth cases.
Ri(x,t) =1y — (2 — n) (35)
T8 = diag(1,1,1,v) (36)
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5.2 Poinca Section for the 1-DOF and 2-DOF Hopping Climbers

The Poincaré section is a surface in the phase space ofa@lmesystem that (within
certain bounds) is crossed only once per period. The ralstip between the point
that a trajectory leaves the Poincaré section and the gmhtrajectory intercepts the
Poincaré section at the end of the period is referred to atiarmap. Solutions to the
return map of the fornx = f(x) represent “fixed” points of periodic orbits.

We define the Poincaré section of our hopping climbers aglgh the hyperplane
%2 = 0. To guarantee the Poincaré section is crossed only oncgrjule, we restrict the
surface ta > n+l,; inthe 1-DOF model, and > (y+p.; sin(¢rp))o+pr cos(dprp)
in the 2-DOF model. The section covers points where the hogps apex of flight
and excludes points where the hopper is at bottom-of-stance

Using apex of flight as our Poincaré section, a natural mahjperiodic represen-
tation of our phase space is the space of height of the cehteass of the hopper
above the ground and velocity of the center of mass in thedifeaime. Let the phase
space of our 1-DOF hopper e, n, #,7)” and the phase space of our 2-DOF hopper
be (v, z,7, 2)T. Then projections into reduced periodic space are explesséinear
transformations,

[1 -1 0 0]

Tipor = 8 8 é 8 (37)
0 0 0 0]
[ —c 1 0 0]

Topor = 8 8 (1) (1) (38)
0 00 0

This Poincaré section allows us to study the stability ofquk1 strides. In other
words, it enables us to quantify the tendency of the climberanverge to or diverge
from some configuration at apex. For the 1-DOF hopping climiesare interested in
strides where the height of the climber above the groundeagitidl of stride is equal to
the dropping height at the beginning of stride. For the 2-DOpping climber we are
interested in strides where the height above the ground basvihe forward velocity
of the climber at apex is equal to the height above the grondd@ward velocity at
the beginning of the stride.

5.3 1-DOF Hopping Climber Return Map

We found that for all spring and thrust models we investidatee 1-DOF hopping
climber admitted a closed-form return map. This means ti@tinamics of the pe-
riodic orbit can be reduced from piecewise integration @veollection of differential
equations to a single difference equation.

Let 2o be the initial height above ground at apex withthe time from apex to
touchdown.

%gtg:zo—l—vtc , te>0 (39)
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Using the spring potential functidr, height of the hopper above ground at bottom of
stance can be computed fram

im(gte)> + mg(l — ze) = V(k1, 2e, 1), 2e < ln (40)

For the linear hopper with finite thrust, the heighbf the hopper above ground during
thrust, has a closed-from solution as a function of time.

s =l t =y T 2
£(0) = 0 (41)
z¢(0) = 2,

1
2 (t) = o <kll7«l —gm + kyrt

+ (gm + k1(zc — 1;1)) cos (t@) (42)
—r+/kimsin <t\/g>>

Knowing the position and velocity of the climber at end-bfttst, we can compute,,
the apex height relative to the ground height at liftoff.

1
mg(zq — 2¢) = gmzf + V(k1, zt, bog + 10) — V(k1, L, Lo + 16) (43)
For instantaneous thrust modeis,can be computed directly from.
mg(za — zc) = V(ka, z¢, lr1) (44)

Now that we know the apex height, finding the time from liftaffapex,, is similar
to finding the time to touchdown.

1
ty, = §gti = Zaq — lrl (45)
Finally, we can solve for the resulting hopping height, on the Poincaré section in
our projected space.
21 = Zq — LV (46)

Although the resulting return map is still generally difficto analyze, numerical
study shows unimodal behavior for all of our spring and thraedels. Removing
gravity from our model during stance removed the unimodhbbr, resulting in en-
tirely unstable or entirely stable fixed points for ascegdind descending respectively.
Contrary to studies of dynamic legged climbing in a leveltgrd domain, this result
underscores the importance of gravity during stance inghyoalimbing. Fig. 15 illus-
trates return maps over a range of values for the lineargpuith finite thrust duration.
Note that return maps may have 0, 1, or 2 fixed points, depgratirthe stiffness of
the linear spring. The implications for this will be discadsext.
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1-DOF Climber Return Maps
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Figure 15: Return maps for a 1-DOF finite thrust linear spatigpber. The climber

is parameterized as = 4500, r = 8,6, = .01, g = 9.8, m = 8.5, 1,y = .1702.

The difference between hopping height and dropping heilght= z; — 2 is plotted
against dropping heighty. Solid lines are return maps. Intersections with the dashed
line atAz = 0 are fixed points. Note that two of the return maps have two fpadts,
while one return map has just one fixed point. Return map®spand to dashed lines

in Fig. 16(a).

5.4 Stability of the 1-DOF Hopping Climber

In addition to finding fixed points of the return maps for ouppimg climbers, we
would like to know what behavior to expect if the trajectofitiee hopper is perturbed
from its periodic orbit. Within some neighborhood of the fixgoint, a trajectory may
asymptotically approach the periodic orbit, or divergenirid. One intuitive way to
investigate the local stability of a fixed point is to evakigtie Jacobian of the return
map at that point.

Since the return map of our vertical climber has only a singgree of freedom,
the eigenvalue of the Jacobian of the return map is simplgéhnizative with respect to
hopping height. A unimodal return map would indicate thresgible configurations
of fixed points for each parameterization of spring, thrasil ground speed. Either
there are two fixed points, one asymptotically stable andumiséable, one marginally
stable fixed point, or no fixed points.

Fig. 16 provides a clear picture of the classification of ¢hésed points for an
ascending climber. In the upper plot we show fixed points féiniée thrust, linear
spring, climber with parametets = 4500, r = 8, §; = .01, g = 9.8, m = 8.5, and
l,; = .1702. In the lower plot we show the eigenvalue of the Jacobian efréturn
map evaluated at these fixed points. We see that as the valyerafreases froni,;,
the steady-state value ofdecreases quickly, then begins to increase again. Bual
solutions are expected, since each cross section corr@spma return map. It follows
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(a) 1-DOF Climber Fixed Points and Stability
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Figure 16: Fixed points and eigenvalue of the Jacobian oféhen map for a finite
thrust linear spring climberk; = 4500, r = 8, §, = .01, g = 9.8, m = 8.5,
l,; = .1702. (a) Rising ground rate is plotted against dropping heigh$. The solid
line represents fixed points. Horizontal slices corresgondturn maps. Dashed lines
represent return maps illustrated in Fig. 15. (b) Eigervalithe Jacobian of the return
map is plotted against.

that for each value of that corresponds to two steady-state values,pbne param-
eterization is stable and the other is not. Indeed, lookinte plot of eigenvalues,
we see that values of) close tol,; represent stable fixed points while larger values
of zp represent unstable fixed points. This suggests that whilenasng a slope, a
climber should have an apex height close to its height attdoxwn. Conversely, when
descending a slope, a climber should have an apex heiglettddts liftoff height. Al-
though the figure corresponds to a particular parametaizaf a specific spring and
thrust model, we found the features identified to be persisteer all spring and thrust
models described in this paper.

5.5 Comparison of the 1-DOF Hopping Climber to the 2-DOF Hop-
ping Climber

In this section we present empirical evidence supportiediffpothesis that the 1-DOF
hopping climber captures important features of the dynamfahe 2-DOF hopping
climber within some bounds.

In Fig. 17 we show a slice of the the return map of a instantasdwust, nonlinear
> “air’springwith g = .7, orp = {5, k1 = 40, ko = 50,0 = .15, g = 9.8, m = 8.5,
pri = .1702. Since the reduced dimension phase space is really threendional,
the the return map is actually iR*. Because of this, the intersections shown in the
return map do not represent fixed points themselves, bubaomntlong which a fixed
point might be found. The slice of the return map is acquirggtojecting down to
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(z0,21) Slice of the 2-DOF Return Map
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Figure 17:(zo, z1) slice of the 2-DOF instantaneous thrust nonlin%zﬂ'pring. The
model parameters atg = .7, ¢rp = {5, k1 = 40, k2 = 50, 0 = .15, g = 9.8,

m = 8.5, pry = .1702. Az = 21 —zo. The return map actually lies R?, so the dashed
line represents a hyperplaneRt, and intersections with that dashed line correspond
to contours fixed points might lie on. The sectiane [.1702, .4] is magnified to show

similarity to the 2-DOF return map neag = p,;.

dimensions analogous to “dropping height” and “apex héighthe 1-DOF hopping
climber. In Fig. 17 thd 2, z1) slice of the return map neagp = p,; is reminiscent of
the shape of the 1-DOF return map. In other words, this figuggests that where the
dropping height is reasonably near the spring-leg restlenige 2-DOF climber has a
hopping height stability behavior similar to the 1-DOF dbier.

Fig. 18 explicitly examines fixed points of the 2-DOF hoppalignber. Let¢ be
the height of the center of mass of the hopper directly abbgegtound. In Fig. 18
érp = {5, k1 = 40, ka = 50, g = 9.8, andp,; = .1702. In the 1-DOF approximation
the coupling betweep ando (forward velocity and ground slope) is modeled as the
rising ground rate. The top plot shows shows thjecomponent of the fixed point as a
function ofzy, and the middle plot shows the ground slope that corresporitat fixed
point. Althougho increases monotonically with), the unimodal relationship between
zo and gy resembles the mapping betwegnandv in the 1-DOF hopping climber
shown in Fig. 16. In other words, for fixed points in the 2-DOéphing climber,
although climbing slope monotonically increases with giiag height, the coupling
and between forward velocity and dropping height can be tatoed as similar to the
coupling between rising ground velocity and dropping hefghthe 1-DOF hopping
climber. Finally, the lower plot shows the nonzero eigenegalof the(y, £) Jacobian.
This plot shows greater coupling betwegrandy for larger valueg, which correlates
with destabilizing effect of increasing, in the 1-DOF model. As dropping height
increases, forward velocity has a greater effect on apeghherhis also suggests that
for small values ok, i.e. the stable region predicted by the 1-DOF model, a simple
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Figure 18: Fixed points of the 2-DOF instantaneous thrustinear® spring.¢rp =
160 k1 = 40, ko = 50, g = 9.8, m = 8.5, p,; = .1702. (a) y is plotted againsty. The
coupling betweery andz is similar to the coupling betweenandz, in the 1-DOF
climber shown Fig. 16(a). (by appears monotonic igy. (c) Nonzero eigenvalues of

the(y, £) Jacobian plotted againsg.

Raibert-like controller, which assumes forward velocitg@pex height are decoupled,
may be effective [19, 3, 4].

6 Conclusion and Future Work

The analytic and experimental results in Sections 3, 4, gob%ide initial forays into

the problem of legged climbing on a slope. In particular, msults indicate that it
is not enough to merely apply flat-ground models to a robotromeline — we have
demonstrated that gravity must be explicitly included ie thodeling for the analysis
to be representative of actual physical behaviors.

The LLS and SLIP templates have been successful in modegued locomotion
on level ground; however their naive application to a slogemhain introduces many
complexities. Although the peg-leg LLS template does dfflebal heading stability,
the asymptotically stable fixed point only allows for destiag. This suggests the
need for a more complex transverse plane model, and is catfibya brief empirical
exploration of the simple planar hexapod. Approaching yreathic legged climbing
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problem from the sagittal plane, a simple modification of §iéP template yields an
intractable 2-DOF hopping climber; however constrainimg tnodel to a 1-DOF ver-
tical climber yields an analytically tractable model withiateresting unimodal return
map. Numerical study of the 2-DOF hopping climber showsiktaproperties similar
to to those resulting from 1-DOF vertical climbing. The 1-B@ertical climber can be
used as an approximation to the 2-DOF hopping climber, atitig the usefulness of
a simple Raibert controller in legged climbing

Further work may branch in a few different directions. Fa thclined-LLS mod-
els, we would like to investigate the dynamics of the simgedpod. Bifurcations with
a large basin of attraction are key to the interesting dynahtiehavior in the simple
hexapod; however we do not have a good understanding of therlymg mechanism
of these bifurcations. It would be useful to distill an evém@er model from the
hexapod for both RHex and RISE gait modifications.

For the inclined-SLIP models, the 1-DOF climbing model mayirsed both as an
approximation to the 2-DOF hopping climber and as an inddpetmodel of vertical
climbing. As an approximation, we would like to develop égjplbounds in the 2-
DOF system where the approximation is appropriate. We tsarour analysis of
the 1-DOF model suggests a Raibert controller [19, 3, 4] neayded to control a 2-
DOF hopping climber. Future work might address the effeagroiund slope on the
size of the basin of attraction for that type of controlleee8 as a model of vertical
climbing, the 1-DOF hopping climber could be the subjectusfife analytic study. It
may be useful to further develop a precise mathematicasifieestion of spring and
thrust models that produce the stability properties oatlim this paper.

Finally, we would like to pursue the coupling between trarse and sagittal plane
dynamics of full dimensional climbers as a function of gtawagnitude and climbing
slope. This may be addressed through empirical study of RHExand RIiSE [20]
using controllers developed from this paper.
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