EE449- MS4-TEAM 4

Factory Floor Testbed

Hardware / Software Details

Stefan Kristjansson, Andrew Lawrence, Richard Wood
5/21/2010

Table of Contents

INEFOAUCTION.........eoeiiiet et s et st bt s st ebe st e et eaese st eaese st e e ees 3
PrOJECE UPAte........ooveie ittt ettt ettt sbesbesbeebeetesaeeaesasesesaessesbesbessenseaes shesbesbesbeetesnssrsansens 3
Hardware IMpPlemENntation............c.oooiiiiiiie ettt ettt e saesbesbeetestessessaesaesaesaessensennnans 3
SOftWare IMPlEMENEAtION... ...ttt et et et se e e eb ettt et esbesbesbesbe st snis 4
TeChnical OBSTACIES..........coooiii ettt e st ea et bt st e e e et essneens 7
Team IMANAZEMENT......... .o ettt et et e st r e e st e s et e eae e e e sreenreenn 7
BiBIIOSIaPRY......co ot ettt st et s st et et e he b st ne et n ettt e e eneene 8

Page | 2

Introduction

In Milestone 3 (MS3) we discussed our focus shdtrf low level robotic arm control to high

level resource management and structure assengdyitaims. With Milestone 4 (MS4) we look
to continue this discussion by describing the teetf#ithe hardware and software
implementation. Most notably, we present the Coraprt and Control Language (CCL) being
used for the multi-tile control and interactiondasescribe how it is being implemented in our
project and why CCL is advantageous for use iribistied systems. To realize CCL, a C library
interface to Python must be developed and its dasidiscussed. In addition, we present an
update to our project and present our plans foragemd discuss current technical obstacles and
team management.

Project Update

Project goals have not changed since the previmjeqgh update. High level resource
management and structure assembly algorithmsifirdastmain priority. To support this effort,

a C language library interface between CCL anddaiwdevel Python is being developed to

allow communication from CCL to the CKBots. For M&8 presented a simulation written in C
to demonstrate the controller design, including $lates and roles, and assembly and passing
techniques. This simulation has since been writtgdCL and was presented in our MS4
presentation. After discussion with our customeryéver, modifications to the algorithm
structure and to the physical hardware have betmrdmed to be necessary and will be pursued.
A framework of the revised CCL implementation ahd three programs established to govern
the behavior of a tile are presented in the Sofwanplementation section of this report.

Hardware Implementation

With respect to hardware, little design decisiors \ht to our team. In general, the CKBot
modules were fully developed by the MODLAB at theikérsity of Pennsylvania, as were the
layout and design of the Factory Floor Testbed (R0 use of the Phidget I/O board for sensor
data. It is important to consider, however, tharethough the hardware was provided and our
development for the project is devoted almost elytito software, there have been many
challenges presented by the hardware.

One of these challenges is the inability to plateiss without the previous placement of a
corresponding node. This problem arises becausentiheffecter of the robot has magnets,
which attach to the truss and hold it in place. frbes cradle, however, does not. Consequently,
the only way to remove a truss from the end effastéo have a magnetic node in place at one or
both ends of the truss placement location thatpegirthe truss away from the end effecter.

Page | 3

This constraint severely limits the assembly pabktés in our high level algorithms since we
have to ensure this situation never occurs. A gmiub this problem is to enable truss removal
without the help of a node. This can be realizetth wie attachment of properly placed magnets
on the truss cradles, and is an addition which lp@lcompleted in the coming week.

Software Implementation
High Level

The high level software and control of the FFTnpiemented using CCL. The implementation
of which is discussed in the following section ffex algorithms detailed in the MS3 Report.

CCL is a guarded command language and is desigmeldd control of distributed systems.
Some of the advantages of using CCL include ithtylbd run multiple programs in parallel.
That is, if one program were to be written thatadiees all the algorithms and behaviors of a
single tile, this program can be extended and implged for each tile in the FFT. Another
advantage of CCL is its keen use of guarded commarte guarded commands are composed
of simple Boolean expressions that when evalugtexdect the resources used in the Boolean
expression. This prevents programs from performivggconflicting tasks on the same resource,
such as two tiles commanded to move a node to tifereht locations.

For the FFT, the behavior of each individual tdeeomposed of the following set of programs:

1. Check Tile
2. Determine Job
3. Resource Control

The “Check Tile” program deals with determining ttempletion of a tile, that is, it compares
the resources (nodes and trusses) currently pktcadile with the global reference of the
structure. A series of flags for unlocking the glsaon various commands in “Determine Job”
and “Resource Control” are set within the prograsda on the location of the resources. For
instance, this program may set the flags for pgsBinlder rights to the next tile in its given
column if all resources have been appropriatelgedaon the tile per the reference structure.
Further, this program is critical for the detectafrdisturbances or faults in the system. For
instance, if a resource previously placed is mgsaflag is triggered, setting the tile to Repair
mode so that a set of actions may be taken togeplee missing resource. In regards to the
hardware, the “Check Tile” program will use thedback from the contact switches on the
cradles by pinging the Phidget I/0O board.

The “Determine Job” program observes the flagsGifé’ck Tile”, and coordinates the jobs and
completion states of the tiles. The jobs desigedtthe CCL implementation are the
following:

Page | 4

Builder

Passer

Repairer

Emergency Repairer

PwnhE

The completion states are as follows:

1. Floor Complete
2. Structure Complete

For more information on the jobs of a tile, orstates, refer to the MS3 Report.

The “Resource Control” program controls the behiagfa tile in its interaction with resources.
It coordinates how nodes and trusses are placéxdhwéttile, or coordinates the passing of a
resource between neighboring tiles. The Resourcdér@grogram interfaces with the Python
CKBot control for the actuation of the arms.

Smulation

The CCL framework is used in a simulator writterGi#+. The simulator emulates the hardware
by providing definitions of the resources, andilitties of the tile to the CCL Testbed
framework. The simulator does not strictly definedies and the arm as entities to interact with
resources; these components are instead absteagtgcby providing additional resource
definitions. For instance, there is a definitioradNode” and a “Node_G”. The “Node”
definition represents a node in a cradle, while"Made_G” definition represents a node in a
robot arm gripper. In this way, the passing of tgses between positions can be captured. The
simulator defines the following resources:

Node — node in cradle

Node_G — node in an arm's gripper

Truss_X — truss placed along the x-axis of a tile
Truss_Y — truss placed along the y-axis of a tile
Truss_Z —truss placed vertically on top of theeoda tile
Truss_G —truss in an arm's gripper

ogkrwnE

The definition of a tile has been modified slightitybetter suit the simulation. A tile is composed
of an arm, two truss cradles (one for x-axis plaeetnand one for y-axis placement), and a node
cradle. Figure 1 below depicts a single filled tilgh a node in the gripper of the arm. Figure 2
shows how the tiles fit together to form a piecéhaf Testbed.

Page | 5

(2, 1)

NG TG NG
"""""""""""""" Z Z Z
N N N
NG |
N z | NG TG NG
____________________ | z z 4
N N N
Figure 1: Simulation of
Single Tile I'r"j; E” ”y E”

Figure 2: Grid of Simulated Tiles

Due to the separation of the CCL framework fromdimeulator, a simulated tile and a physically
realized tile are entirely interchangeable, allayfoth to operate concurrently. Thus, in the final
simulation, one of the tiles in the outputs showifrigure 2 above may be selected and used for a
Hardware-in-the-Loop (HIL) simulation. The HIL witle the single physical Factory Floor Tile

in our possession. The goal is to then show tleaHtlh can perform the tasks of building a
physical structure (determined by its representadi®a physical tile) and that it appropriately
interacts with the surrounding tiles to do so (deteed by its representation as a simulated tile

in the terminal).

Low Level

The following section discusses the low-level saftvthat is used to issue position and
movement commands to the CKBots.

The CKBots receive position commands via the Rabdiius, an interface developed by the
MODLAB at the University of Pennsylvania that exdsrthe CANOpen protocol for CAN bus.
In order for the project to be successful and et demonstration, the Robotics Bus
interface needs to be in a form that can be usedQly. There is currently no such
implementation; the only implementation of the Rind®Bus interface available to us is within
the CKBot software library provided by the MODLARaGwritten in Python. In order to use this
preexisting software library, CCL and Python neebté coupled together through a C-interface.
CCL is able to call C-functions and C is able ti Pgthon functions through the Python
Development Tools. Implementing the C to Pythoerifsice should take less time than writing
our own implementation of Robotics Bus in C, andilt allow use of all of the software and
commands developed by the MODLAB.

Page | 6

Technical Obstacles

Many of the technical obstacles encountered irptegious weeks still exist at this time. As they
have been well documented in the previous repbety tare simply listed here. The previous
problems still unresolved include:

Inconsistent operation — Same command, same resource, different patdctoay
Oscillation — The robot reaches a position and will oscillatefinitely
C Interface for CCL/CKBot Comm. — Need C library for CCL to communicate with CKBo

The same problems exist for MS4 as were seen in. M&®jress has been made in correcting the
issues, however, and although inconsistent operaimherent due to underpowered servos, this
can be improved by the addition of the new, monegydoase module retrieved from the ICRA
2010 Planetary Contingency competition. In addijtiwa can help reduce the strain on the
motors by implementing our torque minimized patinpling formulated for MS2. Together,

these remedies should help improve the consistehttye robot operation.

The requirement of a C library for the high levellCto communicate with the low level Python
is a technical obstacle which came up in MS3 arsyleaito be resolved. Fortunately, a solution
to this has not been required at this point siheeGCL is not in a ready state to test. Still,
progress has been made and a working library aterbetween CCL and Python should be
completed by next week, allowing testing of the Q&agram which is being written at the same
time the library interface is being created.

Team Management

Overall, communication between the team membersbeas effective and project work has
been smoothly distributed and well regulated betwie three man team. Each member has
always had a side project to work on individuallydiscuss as a group and each member has
contributed in the project advancement since M&3géneral, Stefan Kristjansson has been
involved in the algorithm design for high level easce management and structure assembly. In
addition, at this phase of development he is warkam utilizing the torque minimized path
planning to increase placement efficiency. Rich#dod has taken the lead role in CCL
implementation and algorithm design, programming $imulation which will be used in our
final project demo. Andrew Lawrence has also help&tth determining algorithms, but has
primary focused on the development of a C librarythe CCL to Python communication.

Page | 7

Bibliography

(1) CCL: The Computation and Control Language. Retrieved April 05, 2010, from University of
Washington, Self Organizing Systems Lab website,
http://soslab.ee.washington.edu/mw/index.php/Code
Primary reference for documentation and source code for CCL.

(2) Phidgets. Retrieved April 13, 2010, from Phidgets website, http://www.phidgets.com/

Used as the source for phidget I/O documentation and source code.

(3) Mason, Matthew. (2001Mechanics of Robotic Manipulation. Massachusetts: The MIT Press.
Utilized as a supplemental reference for forward kinematic equations of the robotic arm.

(4) Modlab CKBot Graphic User Interface Manual. Retrieved April 10, 2010, from UPenn, Modular
Robotics Laboratory website, http://modlabupenriadry
Used asthe primary reference guide for interfacing with the CKBot modules in the Windows
environment.

(5) M. Yim, P. J. White, M. Park, & J. Sastra, Modugelf-Reconfigurable Robots. 2009,

pp. 5618-5631.
A pivotal paper on self-reconfigurable robots; one of the primary CKBot modular robotic design

SOUr Ces.

(6) Nurrat, Richard, & Li, Zexiang, & Sastry, S. (1994)mathematical introduction to robotic
manipulation. Florida: CRC Press.
Utilized for instruction on the derivation of torgque equations for robotic arm systems.

(7) Craig, John Jintroduction to Robotics: Mechanics and Control.(1989) Reading, Mass.: Addison-
Wesley.
Used as the primary source for kinematic equation derivation and vector egquation manipulation.

(8) IPython Documentation. Retrieved April 12, 2010, from IPython website,
http://ipython.scipy.org/moin/
Used for reference documentation on IPython documentation and for the source code for
compilation. I python is used to interface with the CKBots.

(9) D. Gomez-lbanez, E. Stump, B. Grocholsky, Vijay Kan& C. Taylor. The Robotics
Bus: a Local Communications Bus for RobotsPtonceedings of SPIE, Volume 5690.

2005.
A paper describing how RobJ otics Busis used over a CAN to communicate with robotic modules,
used as a reference for the creation of a C-interface with the CKBots over PCAN.

Page | 8

