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February 6, 2008

Recap. Last lecture, we talked about two types of Markov processes: the Poisson process and the Brownian motion

process. Both of these processes are lacking another property that can be useful in analyzing stochastic processes, that

of stationarity, that we defined some time ago.

Stationarity and some notation. Recall from III.1: A stochastic process Y is stationary if the moments are not

affected by a time shift, i.e.,

〈Y (t1 + τ)Y (t2 + τ) . . . Y (tn + τ)〉 = 〈Y (t1)Y (t2) . . . Y (tn)〉,

for all n, τ , and t1, t2, . . . , tn.

A theorem that applies only for Markov processes: A Markov process is stationary if and only if i) P1(y, t) does

not depend on t; and ii) P1|1(y2, t2 | y1, t1) depends only on the difference t2 − t1. Condition ii) implies that

P1|1(y2, t2 | y1, t1) = P1|1(y2, t2 + τ | y1, t1 + τ).
Proof: First suppose that conditions i) and ii) are satisfied. Then

〈Y (t1)Y (t2) . . . Y (tn)〉 =

∫

y1 . . . ynPn(y1, t1; . . . ; yn, tn)dy1 . . . dyn

=

∫

y1 . . . ynP1|1(yn, tn | yn−1, tn−1) . . . P1|1(y2, t2 | y1, t1)P1(y1, t1)dy1 . . . dyn

=

∫

y1 . . . ynP1|1(yn, tn + τ | yn−1, tn−1 + τ) . . . P1|1(y2, t2 + τ | y1, t1 + τ)P1(y1, t1 + τ)dy1 . . . dyn

= 〈Y (t1 + τ)Y (t2 + τ) . . . Y (tn + τ)〉

Thus all moments are invariant under a time shift τ .

Now suppose that the stationarity condition is satisfied. Specifically, this implies that 〈Y n(t)〉 = 〈Y n(t + τ)〉 for

all n and τ . Since all the moments of Y (t) and Y (t + τ) are equal, they must have the same probability distribution.

Thus P1(y, t) = P1(y, t + τ) for all τ , and thus it must not depend on τ .

Consider the second moments of the process. If they are invariant under a time shift, it follows that

〈Y (t1)Y (t2)〉 = 〈Y (t1 + τ)Y (t2 + τ)〉
∫ ∫

y1y2P2(y1, t1, y2, t2)dy1dy2 =

∫ ∫

y1y2P2(y1, t1 + τ, y2, t2 + τ)dy1dy2

∫ ∫

y1y2P1|1(y2, t2 | y1, t1)P1(y1, t)dy1dy2 =

∫ ∫

y1y2P1|1(y2, t2 + τ | y1, t1 + τ)P1(y1, t)dy1dy2.

These two integrals can only be equal if P1|1(y2, t2 | y1, t1) = P1|1(y2, t2 + τ | y1, t1 + τ), which can only be

guaranteed for all τ if P1|1(y2, t2 | y1, t1) is a function of t2 − t1. This completes the proof.

Therefore, we can define a more compact notation for stationary Markov processes:

Tτ (y2 | y1) := P1|1(y2, t2 | y1, t1).

This allows us to rewrite the Chapman-Kolmogorov Equation

P1|1(y3, t3 | y1, t1) =

∫

P1|1(y3, t3 | y2, t2)P1|1(y2, t2 | y1, t1)dy2
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Figure 1: Sample trajectory from a random telegraph process.

as

Tτ+τ ′(y3 | y1) =

∫

Tτ (y3 | y2)Tτ ′(y2 | y1)dy2

where τ ′ := t3 − t2. The Chapman-Kolmogorov Equation only applies when τ, τ ′ > 0.

Example. Suppose yi takes only integer values in the set {1, 2, 3, . . . , n}. Then we can replace the integral with a

sum to get

Tτ+τ ′(y3 | y1) =

n∑

y2=1

Tτ (y3 | y2)Tτ ′(y2 | y1).

This is just the formula for finding each element of a matrix multiplication. So you can think of the Chapman-

Kolmogorov equation as being a matrix identity:

Tτ+τ ′ = TτTτ ′ .

If the state space is not finite, we can extend this idea from matrices to “integral kernels” in a similar fashion, resulting

in the same equation.

Example: Random Telegraph Process. The random telegraph process is defined as a Markov process that takes

on only two values: 1 and -1, which it switches between with the rate γ. It can be defined by the equation

∂

∂t
P1(y, t) = −γP1(y, t) + γP1(−y, t).

When the process starts at t = 0, it is equally likely that the process takes either value, that is

P1(y, 0) =
1

2
δ(y − 1) +

1

2
δ(y + 1).

Goal: To show that the random telegraph process is stationary. We’ll need to show that P1(y, t) does not depend on t

and that P1|1(y2, y1 | t2, t1) is a function of t2 − t1.

How is the number of times that a given trajectory of the process switches between 1 and -1 in a given interval

(t1, t2]? Recall from Monday’s lecture, the Poisson process. The process is like a Poisson process except that instead

of increasing by 1 each time a new arrival occurs, it switches. We can prove by induction that the distribution of

arrivals in any intervals (t1, t2] is Poisson.

Base step: The probability there are no switches in an interval (t′, t′+dt′] is 1−γdt′ for small dt′. The probability

that there are no switches in (t1, t2] is then

Pr(0 switches in (t1, t2]) = lim
dt′→0

(1 − γdt′)
t2−t1

dt′ = e−γ(t2−t1) = e−γ(t2−t1)
(−γ(t2 − t1))

0

0!
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Induction Step: Assume that the probability of n switches in the interval (t1, t2] is pn = e−γ(t2−t1) (γ(t2−t1))
n

n! for

n = 0 . . . N . Then to find the probability that there are N + 1 switches in the interval, condition on the time of the

1st switch in the interval, which occurs at time t′ with probability γdt′. Then there must be 0 switches in the interval

(t1, t
′] and N switches in the interval (t′, t2]. The probability of this is

Pr(N+1 switches in (t1, t2]) =

∫ t2

t1

e−γ(t2−t′) (γ(t2 − t′))n

n!
e−γ(t′−t1)γdt′

=
e−γ(t2−t1)

n!
γn+1

∫ t2

t1

(t2 − t′)ndt′

=
e−γ(t2−t1)

n!
γn+1 (t2 − t1)

n+1

n + 1

=
e−γ(t2−t1)

(n + 1)!
[γ(t2 − t1)]

n+1

Now let’s find P1|1(y2, y1 | t2, t1). If the trajectory generated by the process switches an even number of times,

then y1 = y2. If it switches an odd number of times, then y1 = −y2. Therefore

P1|1(y2, t2 | y1, t1) =
∑

n=0,2,4,...

e−γ(t2−t1)
(γ(t2 − t1))

n

n!
δ(y1 − y2) +

∑

n=1,3,5,...

e−γ(t2−t1)
(γ(t2 − t1))

n

n!
δ(y1 + y2).

The power series in the two terms are those of hyperbolic cosine and hyperbolic sine, respectively, so

P1|1(y2, t2 | y1, t1) = e−γ(t2−t1) cosh(γ(t2 − t1))δ(y1 − y2) + e−γ(t2−t1) sinh(γ(t2 − t1))δ(y1 + y2)

= e−γ(t2−t1)

(
eγ(t2−t1) + e−γ(t2−t1)

2

)

δ(y1 − y2) + e−γ(t2−t1)

(
eγ(t2−t1) − e−γ(t2−t1)

2

)

δ(y1 + y2)

=
1

2

(

1 + e−2γ(t2−t1)
)

δ(y2 − y1) +
1

2

(

1 − e−2γ(t2−t1)
)

δ(y2 + y1).

The probability distribution for any time t can be found as follows:

P1(y2, t) = P1|1(y2, t | y1, 0)P1(y1, 0)

=

(
1

2

(
1 + e−2γt2

)
δ(y2 − y1) +

1

2

(
1 − e−2γt2

)
δ(y2 + y1)

) (
1

2
δ(y1 − 1) +

1

2
δ(y1 + 1)

)

=
1

4

(
1 + e−2γt2

)
δ(y2 − 1) +

1

4

(
1 − e−2γt2

)
δ(y2 − 1) +

1

4

(
1 + e−2γt2

)
δ(y2 + 1) +

1

4

(
1 − e−2γt2

)
δ(y2 + 1)

=
1

2
δ(y2 − 1) +

1

2
δ(y2 + 1)

Is the random telegraph process stationary? Yes, because, i) P1(y, t) does not depend on t, and ii) P1|1(y2, y1 | t2, t1)
is a function of τ = t2 − t1. Therefore we can write

Tτ (y2 | y1) =
1

2

(
1 + e−2γτ

)
δ(y2 − y1) +

1

2

(
1 − e−2γτ

)
δ(y2 + y1).

Autocorrelation of a stationary process. Since a stationary process has the same probability distribution for all

time t, we can always shift the values of the y’s by a constant to make the process a zero-mean process. So let’s just

assume 〈Y (t)〉 = 0. The autocorrelation function is thus:

κ(t1, t1 + τ) = 〈Y (t1)Y (t1 + τ)〉

Since the process is stationary, this doesn’t depend on t1, so we’ll denote it by κ(τ). If we know expressions of the

transition probability function and the unconditional probability function, we can calculate the autocorrelation function
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Figure 2: Sample trajectory of the Ornstein-Uhlenbeck process. The dashed line is the integral of the trajectory, which

should behave similarly to Brownian motion.

using the formula derived as follows.

κ(τ) =

∫ ∫

y1y2P2(y1, t1, y2, t1 + τ)dy1dy2

=

∫ ∫

y1y2P1|1(y2, t1 + τ | y1, t1)P1(y1)dy1dy2

=

∫ ∫

y1y2Tτ (y2 | y1)P1(y1)dy1dy2.

Example. Autocorrelation of the random telegraph process.

κ(τ) =
∑

y1∈{−1,1}

∑

y2∈{−1,1}

y1y2Tτ (y2 | y1)P1(y1)

= (1)(1)Tτ (1 | 1)P1(1) + (−1)(1)Tτ (−1 | 1)P1(1) + (1)(−1)Tτ (1 | −1)P1(−1) + (−1)(−1)Tτ (−1 | −1)P1(−1)

=
1

2

1

2

(
1 + e−2γτ

)
− 1

2

1

2

(
1 − e−2γτ

)
− 1

2

1

2

(
1 − e−2γτ

)
+

1

2

1

2

(
1 + e−2γτ

)

=
1

2

(
1 + e−2γτ

)
− 1

2

(
1 − e−2γτ

)

= e−2γτ

The Ornstein-Uhlenbeck Process. The Ornstein-Uhlenbeck process was constructed in order to describe the

velocity of a particle in the physical process of Brownian motion. The Ornstein-Uhlenbeck process is a mathematically

distinct entity for the Wiener-Levy process that describes the position of a particle in Brownian motion; you can’t just

integrate and differentiate between the two. It is a stationary Markov process defined by the following equations.

P1(y1) =
1√
2π

e−
1
2 y2

1 ∼ N (0, 1)

Tτ (y2 | y1) =
1

√

2π(1 − e−2τ )
e
−

(y2−y1e−τ )2

2(1−e−2τ ) ∼ N (y1e
−τ , 1 − e−2τ ).

For this process to be properly defined, the functions P1 and Tτ must satisfy 1) the Chapman-Kolmogorov equation and

2) the consistency condition
∫

Tτ (y2 | y1)P1(y1)dy1 = P1(y2). The Ornstein-Uhlenbeck process satisfies condition
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2) as shown below:

∫

Tτ (y2 | y1)P1(y1)dy1 =
1√
2π

∫
1

√

2π(1 − e−2τ )
exp

[

−1

2
y2
1 − (y2 − y1e

−τ )2

2(1 − e−2τ )

]

dy1

=
1√
2π

∫
1

√

2π(1 − e−2τ )
exp

[

− (1 − e−2τ )y2
1 + y2

2 − 2y1y2e
−τ + y2

1e−2τ

2(1 − e−2τ )

]

dy1

=
1√
2π

∫
1

√

2π(1 − e−2τ )
exp

[

−y2
1 − 2y1y2e

−τ + y2
2e−2τ

2(1 − e−2τ )

]

dy1

︸ ︷︷ ︸

=1(Gaussian pdf)

exp

[

−1

2
y2
2

]

=
1√
2π

e−
1
2 y2

2

The Ornstein-Uhlenbeck process also satisfies the Chapman-Kolmogorov equation. The book states that “the

reader will have no difficulty in verifying” that these conditions are satisfied. Conceptually, it’s not difficult, but it is

extremely tedious and skippable. Instead, let’s find the autocorrelation function of the process:

κ(τ) =

∫

y1

∫

y2

y1P1(y1)y2Tτ (y2 | y1)dy1dy2

=

∫

y1

y1
1√
2π

e−
1
2 y2

1

∫

y2

y2
1

√

2π(1 − e−2τ )
e
−

(y2−y1e−τ )2

2(1−e−2τ ) dy2

︸ ︷︷ ︸

= y1e−τ (mean of Gaussian pdf)

dy1

= e−τ

∫

y1

y2
1

1√
2π

e−
1
2 y2

1dy1

︸ ︷︷ ︸

= 1 (variance of Gaussian pdf)

= e−τ

Notice the the autocorrelation function of the Ornstein-Uhlenbeck process is the same form as that of the random

telegraph process.

The Ornstein-Uhlenbeck process is interesting because it is essentially the only process that is Gaussian, Markov,

and stationary. (Essentially means that processes that are translated in time or space are considered to be the same

process, and one pathological process is excluded.) This result is called Doob’s Theorem. The random telegraph

process has only two of these properties: it’s Markovian and stationary, but not Gaussian.
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