IV.3. Stationary Markov Processes

February 6, 2008

Recap. Last lecture, we talked about two types of Markov processes: the Poisson process and the Brownian motion
process. Both of these processes are lacking another property that can be useful in analyzing stochastic processes, that
of stationarity, that we defined some time ago.

Stationarity and some notation. Recall from III.1: A stochastic process Y is stationary if the moments are not
affected by a time shift, i.e.,

Yt 4+7)Y(ta+7)...Y(tn+7)) =Y (t1)Y(t2)...Y(tn)),

for all n, 7, and t1,to, ..., t,.

A theorem that applies only for Markov processes: A Markov process is stationary if and only if i) P; (y, t) does
not depend on #; and ii) Py|1(y2,t2 | y1,t1) depends only on the difference ¢, — ¢;. Condition ii) implies that
Piji(y2,t2 | y1,t1) = Prji(ya, ta + 7 [ g1, 1 + 7).

Proof: First suppose that conditions i) and ii) are satisfied. Then

(Y(t1)Y (t2)... Y (t,)) = /y1...ynPn(yl,tl;...;yn,tn)dyl...dyn
= /y1 e Un P Wnotn | Yn—1,ta1) - Prp (v, to | 1, t) Pr(yr, t1)dys - . dyn
= /y1 e Un P Wnotn T | Yn—1y b +7) o P (Y2, te + 7 |y, bty +7)Pr(yn, tr + T)dys - dyy

=Yt +n)Y({2+71)... Yty + 7))

Thus all moments are invariant under a time shift 7.

Now suppose that the stationarity condition is satisfied. Specifically, this implies that (Y™ (¢)) = (Y™ (¢ + 7)) for
all n and 7. Since all the moments of Y (¢) and Y (¢ 4 7) are equal, they must have the same probability distribution.
Thus P (y,t) = Pi(y,t + 7) for all 7, and thus it must not depend on 7.

Consider the second moments of the process. If they are invariant under a time shift, it follows that

(Y(t1)Y (t2)) = (Y (t1 + 7)Y (t2 + 7))
//y1y2P2(y1»t1,y27t2)dy1dy2 = //yﬂl/sz(yhtl + 7, Y2, t2 + T)dy1dyo

//y1y2P1\1(y2,t2 | y1,t1) Pi(y1,t)dyidys = //yw/sz(yz,tz + 7 y1,t1 + 7)Pi(y1, t)dy1dys.

These two integrals can only be equal if Pyji(y2,t2 | y1,t1) = Pij1(y2,t2 + 7 | y1,t1 + 7), which can only be
guaranteed for all 7 if Py (y2,t2 | y1,%1) is a function of ¢ — ¢;. This completes the proof.
Therefore, we can define a more compact notation for stationary Markov processes:

Tr(y2 | y1) = Prja(y2, t2 [ y1,t1)-

This allows us to rewrite the Chapman-Kolmogorov Equation

Pii(ys,t3 | y1,t1) = /P1\1(y37t3 | y2,t2) Prj1(y2, to | y1,t1)dyo
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Figure 1: Sample trajectory from a random telegraph process.

as
Trir(ys | y1) = / T-(ys | y2)Tr (y2 | y1)dy2

where 7/ := t3 — t5. The Chapman-Kolmogorov Equation only applies when 7,7’ > 0.
Example. Suppose y; takes only integer values in the set {1,2,3,...,n}. Then we can replace the integral with a
sum to get

T (ys | yn) = > Trlys | y2)Tr (2 | 11)-
y2=1
This is just the formula for finding each element of a matrix multiplication. So you can think of the Chapman-
Kolmogorov equation as being a matrix identity:

TT+T’ - TTTT’-

If the state space is not finite, we can extend this idea from matrices to “integral kernels” in a similar fashion, resulting
in the same equation.

Example: Random Telegraph Process. The random telegraph process is defined as a Markov process that takes
on only two values: 1 and -1, which it switches between with the rate +. It can be defined by the equation

0
gpl(y,t) = —vPi(y,t) +vPi(~y,t).

When the process starts at ¢ = 0, it is equally likely that the process takes either value, that is
1 1
Pi(y,0) = 55(1/ -1+ 55(21 +1).

Goal: To show that the random telegraph process is stationary. We’ll need to show that P (y, t) does not depend on ¢
and that Py |1 (y2,y1 | t2,t1) is a function of 5 — ;.

How is the number of times that a given trajectory of the process switches between 1 and -1 in a given interval
(t1,t2]? Recall from Monday’s lecture, the Poisson process. The process is like a Poisson process except that instead
of increasing by 1 each time a new arrival occurs, it switches. We can prove by induction that the distribution of
arrivals in any intervals (¢1, t2] is Poisson.

Base step: The probability there are no switches in an interval (¢', ¢’ + d¢'] is 1 —ydt’ for small dt’. The probability
that there are no switches in (¢1, t2] is then

(ta=t1) _ g—r(ta—tn) (ZY(t2 = 11))"

Pr(0 switches in (t1, t2]) = dlimo(l — ~dt") 2t = e ol
t'— .



Induction Step: Assume that the probability of n switches in the interval (¢1, o] is p, = e~ 7(t2=%1) (“’(t"‘;i,tlw for
n = 0...N. Then to find the probability that there are N + 1 switches in the interval, condition on the time of the
1st switch in the interval, which occurs at time ¢’ with probability dt’. Then there must be 0 switches in the interval
(t1,t'] and N switches in the interval (¢', t2]. The probability of this is

t2 4 t 7t/ n ’
Pr(N+1 switches in (¢, t2]) = / et )Mefw(t gt
t1

n!
—y(t2—t1) 12
_ e ' 'Yn+1/ (t2 _ tl)ndt/
n! 4
_ e—V(ta—t1) i (tz _ tl)nJrl
n! n+1
e~ V(t2—t1) 1
BCESE [v(ta —t1)]"
Now let’s find Py (y2, 91 | t2,t1). If the trajectory generated by the process switches an even number of times,
then y; = yo. If it switches an odd number of times, then yy; = —vy>. Therefore
_ _ to —t1))" _ _ to —t1))"
Py (y2,ta | y1,th) = Z e~ (t2 tl)%g(yl — ) + Z e~ v(t2 tl)w(ﬂyl + 12).
n=0,2,4,... : n=1,3,5,... ’

The power series in the two terms are those of hyperbolic cosine and hyperbolic sine, respectively, so

Pii(yo.ta | y1,t1) = e 727 cosh(y(ta — t1))8(y1 — y2) + e Y27 sinh(y(t2 — £1))3(y1 + y2)

ey (ta—t1) (ev(tztl) 4 e v(t2—t1) eY(ta—t1) _ p—y(ta—t1)
=e

2 > Sy — o) +e 7m0 ( 2 > (y1 +v2)

1 —27(t2—t1) _ 1 _ = 2y(ta—t1)
5 <1+6 )5@2 Y1) + 5 (1 e )5(y2+y1).

The probability distribution for any time ¢ can be found as follows:

Pi(y2,t) = Piji(y2,t | y1,0)Pi(y1,0)

1 1 1 1
— (2 (T4+e"2)6(ys —y1) + 3 (1—e"2) 6(ys + yl)) (26(211 — 1)+ 500y + 1)>
1 1 1 1
= 1 (1 + e_Q’YtZ) (5(2/2 — 1) + 1 (1 — 6—2’yt2) 5(y2 - 1) + 1 (1 + e—Q’Ytz) 6(2/2 + 1) + 1 (l — 6—2’yt2) 5(y2 + 1)
1 1
= 55(112 -1+ 55(2/2 +1)

Is the random telegraph process stationary? Yes, because, i) P;(y,t) does not depend on ¢, and ii) Py |1 (y2, y1 | t2,11)
is a function of 7 = t9 — t1. Therefore we can write

1
(1 + 672’“—) 0y —vy1) + 5 (1 — 67277) 0(y2 + y1).

N |

Tr(y2 | y1) =

Autocorrelation of a stationary process. Since a stationary process has the same probability distribution for all
time ¢, we can always shift the values of the y’s by a constant to make the process a zero-mean process. So let’s just
assume (Y (¢)) = 0. The autocorrelation function is thus:

/i(tl,h + T) = <Y(t1)Y(t1 + T)>

Since the process is stationary, this doesn’t depend on ¢1, so we’ll denote it by k(7). If we know expressions of the
transition probability function and the unconditional probability function, we can calculate the autocorrelation function
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Figure 2: Sample trajectory of the Ornstein-Uhlenbeck process. The dashed line is the integral of the trajectory, which
should behave similarly to Brownian motion.

using the formula derived as follows.

K(T) =//y1y2p2(y1,t1ay27t1 + 7)dy1dy2
= //y1y2P1|1(y27t1 +7 | y1,t1) Pr(y)dyrdyz
://ylszT(yz | y1)P1(y1)dy1dyo.

Example. Autocorrelation of the random telegraph process.

K(T) Z Z Y1y2Tr (y2 | y1) Pr(yr)

y1€{-1,1} y2€{-1,1}

=M [ HAA) + (DT (=1 [P + (D(=DT-(1 | =) P(=1) + (D) (=DT-(=1 | =) (1)
11 —2yT 11 —2yT 11 —2yT 11 —2yT

—55(1—1—6 )—55(1—6 )—55(1—6 )+§§(1+e )

= % (14+e7) - % (1—e7)

The Ornstein-Uhlenbeck Process. The Ornstein-Uhlenbeck process was constructed in order to describe the
velocity of a particle in the physical process of Brownian motion. The Ornstein-Uhlenbeck process is a mathematically
distinct entity for the Wiener-Levy process that describes the position of a particle in Brownian motion; you can’t just
integrate and differentiate between the two. It is a stationary Markov process defined by the following equations.

1 .
Pl(yl): \/ﬂe 2Y1 NN(O,l)
1 _M -7 —27
T-,—(yg | yl) = 27((1—_6_27)6 2(1—e—27) NN(yle ’1 —e )

For this process to be properly defined, the functions P; and 7T’ must satisfy 1) the Chapman-Kolmogorov equation and
2) the consistency condition [ T (y2 | y1)Pi(y1)dyr = Pi(y2). The Ornstein-Uhlenbeck process satisfies condition



2) as shown below:

lyz _ (y2 —ype™7)?
271 (1 —e27)
(

} dy

/TT(y2 | y1)Pi(y1)dyr = \/12—%/ \/27r(11—7@—27)e$p -

1 1 1— ey + 15 — 2pnype” T +yfe ™
= ——exp |— — dyy
V2 J \/2m(l—e27) L 2(1—e=?7)

r 2 _ 2 e T + 26—27' 1
_un Y1y2 Y2 ]dy1 exp [_ng}

1 1
- \/ﬂ/ V27m(1 — eizT)exp I 2(1—e?7)

=1(Gaussian pdf)

The Ornstein-Uhlenbeck process also satisfies the Chapman-Kolmogorov equation. The book states that “the
reader will have no difficulty in verifying” that these conditions are satisfied. Conceptually, it’s not difficult, but it is
extremely tedious and skippable. Instead, let’s find the autocorrelation function of the process:

k() Z/ / Y1 Pr(y1)y2Tr (y2 | y1)dyidya
Y1 Y Y2

_ (wa—wvie” )2

¢ 2T dys dyy

_/ y 1 e 3Vi y 1
b V2 v /2r( - e )

= y1e~ " (mean of Gaussian pdf)

Notice the the autocorrelation function of the Ornstein-Uhlenbeck process is the same form as that of the random
telegraph process.

The Ornstein-Uhlenbeck process is interesting because it is essentially the only process that is Gaussian, Markov,
and stationary. (Essentially means that processes that are translated in time or space are considered to be the same
process, and one pathological process is excluded.) This result is called Doob’s Theorem. The random telegraph
process has only two of these properties: it’s Markovian and stationary, but not Gaussian.



