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I. INTRODUCTION

The role of stochasticity in biology has been studied in many
contexts — such as creating variations required to survive in
hostile environments [1], regulating circadian clocks [2], and
differentiation in developing organisms [3]. If we systematically
characterize the stochasticity in each context, we get closer
to the ability to control these biological functions. The ability
to control the development of multicellular systems, for one,
holds fantastic futures like replacement organs grown in vitro or
smarter drugs for cancer [4]. With such potentials, then, which
feature of stochasticity in development should we focus on?

In the development phase of multicellular organisms, an
isogenic group of cells differentiates into multiple groups with
different epigenetics. This behavior can be likened to a group
of people performing a leader election. To fairly elect a leader,
the group can repeatedly and separately perform a task that has
probabilistic outcomes (e.g. coin-toss), where one of the out-
comes is the victory outcome (e.g. a head). When an individual
is the first one who lands a head among the group, he or she
becomes a leader — effectively differentiating him or her from
the group. The leader can then send signals to the rest of the
group, telling them to stop flipping coins and become followers.
These individuals also differentiate from their initial state and
from the new leader. Thus, it is not far-fetched to imagine that a
similar mechanism takes place in developmental differentiation
processes.

Let us assume that an individual lands a head for the first time
after & tries. Because coin-tosses have probabilistic outcomes, h
is a random variable characterized by its probability distribution.
Let us assume that the probability distribution of 4 can be
manipulated somehow — with a biased coin, for example — then,
the variance of & has an interesting interpretation in the leader
election example. If the variance of % is set small, the probability
of multiple individuals each ending up with the victory outcome
in a short amount of time near the mean is large — in other
words, the victory outcomes are closely synchronized, and the
group may end up with multiple leaders. However, if the variance
is set large, the victory outcomes are asynchronous and the
group is less likely to have multiple leaders. Therefore, the
probability distribution of & affects the population distribution
of differentiated states of leaders and followers. We propose to
systematically characterize this relationship.

The following proposal is organized as follows. In Section
II, we propose a translation of the leader election with a
biased coin-toss example into a cellular context, specifically
in the development phase. Then we identify the objectives to
characterize the probability distribution of / (or some equivalent
random variable in the proper context), both with theoretical
analysis by posing the scenario in mathematical language and
with experiments by synthesizing the biological biased-coin

equivalent. In Section III, the prerequisite backgrounds for the
characterization methods, both in theory and experiments are
introduced, followed by related works in the field that serve as
helpful starting points for the proposed research. In Section IV,
some preliminary results, conclusions and recommendations are
presented. In Section V, we discuss the plan of work and the
tentative schedule for the next year.

II. APPROACH AND OBJECTIVES

One can suggest several intracellular analogs to the coin-
flip example so long as the mechanism is probabilistic, such as
protein dimerization, folding, or saturation. Let us consider the
protein saturation example, where there is no protein of interest,
X, is present initially and the gene for X gets activated. As the
gene begins to express, the count number of X, ny, increases as
long as the gene remains activated and the rate of X degradation
is less than the rate of X synthesis. If the gene is deactivated
before ny reaches the saturation value, N, then ny begins to
decrease until the gene is activated again. This process of gene
activation and deactivation occurs repeatedly until at some time
t =T, ny reaches N. This time (7;) is analogous to 4 in the
coin-flip example, and we call 7, the completion time of the
protein synthesis process. And if we further assume that X
saturation determines the state of the cell, then the differentiated
distribution of the cell population is affected by the probability
distribution of T.

There can be a number of ways to manipulate the probability
distribution of the 7. in this example. One way is to vary
the frequencies of gene activation and deactivation. Another
way is to vary the mechanism that activates the gene — an
open-loop activation from external inputs or a feedback activa-
tion/deactivation by X. Frequency variations change the quan-
titative features (system parameter) of the gene regulation, and
feedback or open-loop variations change the qualitative features
(structure) of the gene regulation. The relationship between these
features of gene regulations and the probability distribution of
completion times will help us understand the fundamental design
principles employed by nature that uses feedback mechanisms
to perform development and differentiation in multicellular
organisms. Therefore, we propose the following objectives to
characterize this relationship.

— Synthesize genetic regulatory networks with feedback in
E. coli. Three different mechanisms of gene regulation will
be studied in this research - open-loop, positive feedback and
negative feedback. The synthetic gene network corresponding
to an open-loop mechanism will have a single promoter that is
activated by external inputs. For the two feedback mechanisms,
a single promoter network that expresses either its own repres-
sor or activator will be synthesized. These synthetic networks
will have inducible promoters and a fluorescent protein gene.



The inducible promoters allow us to measure the completion
time from the time of induction, and the level of fluorescence
emitted by the fluorescent protein is measured to monitor the
gene expression activity.

— Model the three gene networks and analyze the com-
pletion time distributions. Using the Chemical Reaction
Network theory, we will propose several models of the gene
networks in varying levels of detail. We will apply a variety
of stochastic analysis tools to the models in order to char-
acterize the completion time, its probability distribution, and
sensitivity to parameter variations and structural variations.
Such analysis tools include the Chemical Master Equation
(CME), the Stochastic Simulation Algorithm (SSA), and cu-
mulant and moment dynamics. We will identify the qualitative
differences of the gene networks arising from the structures,
and discuss how they make each structure a better or worse
suited mechanism for differentiation. Because in addition to
structural differences, parametric sensitivity differences will
also determine the capacity of each network in differentiation,
we propose to investigate the quantitative differences of the
networks as well.

— Iteratively verify predictions made in the models with ex-
periments and modify the models based on the experimental
results. The probability distribution of the completion time
in the synthetic networks will be approximated using cellular
assays, such as time-lapse microscopy or flow cytometry. Time-
lapse microscopy allows us to monitor the individual trajectory
of fluorescence level in a single cell and the time at which
the level reaches an arbitrary saturation value. On the other
hand, flow cytometry reveals the population distribution of
fluorescence level at each measurement. We will measure the
time-series of the distribution and compute the fraction of
population that reached the saturation value, which is equivalent
to the cumulant distribution distribution of completion time.
The experimental results will be used to invalidate and identify
the features of candidate models that require modification
to attain better fidelity to the system. The modified models,
in turn, will be used to design experiments that will better
highlight the key features of the systems. The mathematical
model predictions obtained from this iterative process will
identify the salient features of differentiation mechanisms.

The following section will provide a broad overview of the
fundamentals in both theory and experiments to accomplish our
objectives. Two specific related works are discussed afterwards,
each with a focus on theory and experiments. These works were
chosen based on their close proximity to the objectives of the
proposed research, and served as a foundation for obtaining the
preliminary results.

III. BACKGROUND AND LITERATURE REVIEW

Synthetic gene networks are built from borrowed parts, such
as natural promoters and transcription factors, and the precision
of synthesis is improving with the advance of biotechnology.
Though manipulating genetic materials is not a new technol-
ogy, synthetic biology is different from the traditional genetic
engineering in its intention to engineer novel behaviors, such as
oscillation or bistability [5], [6]. One of the underlying objectives
of these synthesis-based approach to biology is to identify
and isolate the salient features of complex gene networks and
discover the nature’s design principles. And synthetic biology is

strengthened by two complementary approaches of mathematical
theory and biological experiments. A well-established study of
differential equations is used to analyze the dynamics of the sys-
tems [7], linear systems theory the stability, controllability, and
observability [8], and probability theory the stochastic behaviors
in the mesoscopic level of biological molecules [9]. At the same
time, increasing efficiency of cloning techniques [10], decreasing
cost of DNA synthesis and sequencing [11], and the advance of
experimental equipment all contribute to engineering biological
test beds for verifying hypotheses obtained from mathematical
theories. As the objectives of the proposed research spans both
theory and experiments, the remainder of this section is divided
into two parts to address the fundamentals of each aspect
separately.

A. Mathematical Theory

The Chemical Reaction Network theory provides a stan-
dardized foundation from which a mathematical description of
chemically interacting species inside a fixed volume can be
derived [12]. A CRN consists of chemical species (X;) that
interact according to some reactions (R;), the stoichiometric
coefficients of reactants (u;;) and products (v;;) of the reactions,
and the rates of these interactions (7Lj). Using the Law of Mass
Action, the dynamically changing concentrations of the chemical
species of the CRN are modeled by a set of ordinary differential
equations. This method translates smoothly into the context of
biological interactions inside a cell. Cellular environments are
no different from the environments inside a chemical processing
plant, in they have biochemical interactions, reactant and product
species of these interactions, and numerical values for the rates
of the interactions. However, the key difference is that whereas
chemical systems tend to have a large quantity of each species
modeled with continuous concentration unit, biological species
tend to be present in much smaller quantities. Additionally,
the stochasticity of the biochemical interactions become more
pronounced in systems with species in small quantities changing
in discrete amounts. Therefore, biochemical systems, such as
gene regulatory networks, require mathematical descriptions that
properly address the discrete copy number of species and the
stochasticity of interactions.

Using discrete-state continuous-time Markov processes, the
stochastic and discrete nature of gene regulatory networks can
be modeled [13]. Let the species of a gene regulatory network
be denoted by a vector S =[S, ,S,], and the number of each
species denoted by N;. Then, each discrete state of the system is
denoted by the vector N =[Ny, ---,N,]. Because the stochasticity
of gene networks forces the description of the system from a
deterministic value to a probability distribution over the states,
we denote the probability of the system in state N at time 7 by
p(N,7). The vector of the probabilities of all the states is p(t)
and the probability vector, given some initial distribution po,
evolves according to the following Chemical Master Equation
(CME).

p(t) = Qp(1), (D

where the matrix Q = [¢;;], and g;; is the transition rate from
state j to state i [14]. The analytical solution of (1) is

p(t) = ¥po. )

The matrix exponential, ¢, makes the computational cost of



the solution (2) prohibitively expensive. Therefore, instead of
solving for the probability distribution dynamics analytically, it
can be solved numerically to provide exact realizations of CRN
with a fixed set of parameters.

The Stochastic Simulation Algorithm (SSA) numerically sim-
ulates individual trajectories of the species of a stochastic CRN
[15]. The method employs the fact that 1) each rate of a chemical
reaction is the inverse of the mean waiting time for the reaction,
and 2) the probability of a reaction is equal to the ratio of the
reaction propensity to the sum of all reaction propensities. By
generating a large number of simulations, the time evolution
of a stochastic system can be approximated and the dynamics
of each species is obtained. It should be clarified that the
probability distribution dealt with in the CME corresponds to
the joint probability distribution of each specific state, P(N,?),
whereas the approximated probability distributions obtained
using the SSA are the marginal probability distribution of each
species, P(Nj,t). Though more straightforward for portrayal of
probability distribution dynamics of individual species, the SSA
algorithm requires that the initial condition and the rate constants
be specified a priori. Thus, if an analysis requires a different set
of parameters or initial conditions, a whole new set of large
number of simulations is required.

Another approach to characterizing the evolution of the
probability distribution for stochastic biochemical systems is to
compute the cumulant dynamic of each species of the system
[16]. The cumulants of a random variable is a set of values
that characterizes the corresponding probability distribution. For
example, the second order cumulant of a random variable is its
variance and is representative of the width of the probability
distribution. The cumulants are computed using the cumulant
generator function,

Gy(s) = log(e™), 3)

where Y is a random variable and (-) denotes the expected
value. The nth order cumulant of Y is computed by taking
the nth derivative of (3) with respect to s and setting s = 0.
Usually, no more than the first four cumulants are computed
for a given species, because cumulants of order five or higher
have no straightforward interpretation related to the probability
distribution characteristics. To compute the time evolution of
cumulants, the extended generator is used. Let y(Y (¢)) be some
test function of state Y (¢), then the expected value of the test
function evolves according to the following equation.
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where the Y/(¢) is the state after the reaction R : Y (¢) — Y/ (r)
has occurred, and A; is the reaction rate constant. The cumulant
dynamics is then obtained by letting (Y (¢)) = Gy(s), and
solving the resulting set of ordinary differential equations. In
some cases, depending on the reaction order of a CRN, the
cumulants of order i depends on the cumulants of order i+ 1,
requiring calculation of infinitely many orders of cumulants. In
order to obtain a closed-form solution, the cumulants can be
truncated or approximated using various methods [17].

B. Biology Background

Within a single cell resides a genome, a chain of DNA
molecules, containing all the genetic information the cell needs
to harvest energy, reproduce and survive. Though mighty in its
information content, the genome alone cannot make a living
organism. It requires molecular machinery that actualizes the
information in a useful form. Thus, DNA is transcribed into
RNA, RNA is translated into protein, and proteins perform the
necessary biological functions [18]. The gene regulatory function
of proteins are crucial, such that without the proper regulation
of transcription and translation, the entire genome would be
uniformly transcribed and translated all the time and mean a
disaster for the cell. The intricately connected networks of gene
regulation exists to ensure that each cell is viable and functional.

The two major components of gene regulatory mechanisms
are promoters and transcription factors (TF). TFs are protein
complexes that binds to the promoter of a gene to regulate the
expression. Promoters are sequences of DNA that are found at
the 5’- end of genes and serve as the recognition sites for RNA
polymerase to initiate RNA synthesis. The promoter sequences
contain operators that serve as binding sites for specific TFs.
A large number of TF and promoter pairs have been identified,
and synthetic gene networks are designed and built by arranging
them in specific configurations [19], [20]. For example, the
critical structure of stress response in B. subtilis were identified
by synthesizing a gene network with identical promoters and
TFs, but with one of the two feedback loops (coupled positive
and negative feedbacks) removed [21]. This synthetic version,
when transformed inside cells, prohibited the cells from leaving
their competence state, showing that the removed feedback is
critical to the overall mechanism of B. subtilis stress response.

There are other examples where feedback mechanisms are
observed. A class of gene networks that give rise to stochastic
state switching (e.g. cancer and developmental differentiation)
has been consistently shown to contain positive feedback loops
[22], [23], [24], [25]. Another type of behavior that arises from
gene networks with positive feedback loops is procrastinating
differentiation [26]. It refers to the phenomenon observed in
isogenic cells, that when triggered for specific response (e.g.
sporulation, apoptosis), the response times of the cells widely
vary within the microcolony. This phenomenon is closely re-
lated to the leader election example — however, the lack of
communication between the individuals presents itself in the
form of unimodal steady-state after some transient multimodal
distribution.

C. Biological Experiments

Gene network synthesis procedure can be broken into two ma-
jor steps. The first step is acquiring the desired DNA sequences
(e.g. promoters, transcription factor genes), and the second step
is joining these pieces together in the right order. Natural
promoters and genes are obtained from the host organism’s
genome through Polymerase Chain Reaction (PCR). In this
process, the desired sequence is isolated and amplified by using
two short pieces of single-stranded DNA that are complementary
to the 3’- and 5°- ends of the desired sequences. Through
cyclical temperature manipulation of the reaction chamber, the
copy number of the desired sequence amplifies exponentially.
Then the amplified pieces are digested using restriction enzyme
to introduce recognizable ends to each piece, and assembled



together using DNA ligase. The restriction enzymes were chosen
strategically to ensure that when the DNA ligase assembles the
pieces together, the right order and direction are maintained. The
product is transformed into a host organism by electroporation
before it is ready for assays.

Modern cellular assay tools such as the flow cytometry,
time-lapse fluorescence microscopy, and plate readers are made
possible by the Green Fluorescent Protein (GFP) [27]. GFP
can be fused to or co-expressed with a protein of interest, and
by measuring the level of fluorescence emitted when excited
at the appropriate wavelength the gene activity is monitored.
For example, in a flow cytometer, cells suspended in liquid
culture are passed through a cylindrical passage where they are
subject to excitation. The intensity and amount of scattered light
is used to compute the relative size, internal complexity and
fluorescence intensity of cells.

D. Related Work

Using the Laplace transform, the CME of 1-dimensional
complex biochemical processes can be solved [28]. In this
work, a kinetic proofreading (KPR) process was modeled by
a Markov chain with an absorbing state that corresponds to
the completion of the proofreading process. The time derivative
of the absorbing state probability is equal to the probability
distribution of completion time [29], and the exact solution
can be computed by using the Laplace transform. The solution
showed that the distribution approaches to I'- or exponential
distribution depending on the direction of the bias imposed by
the transition rates. However, the solution and the conclusion
are limited to an open-loop system where the transition rates
are independent of the states. The Laplace transform approach
discussed in this work, after significant modification, may prove
to be helpful in analyzing systems with feedback — those with
state-dependent transition rates.

A type of feedback loops in gene regulatory networks involves
a promoter that are regulated by the protein that acts as the
regulator for the promoter (transcriptional regulation). Naturally
occurring feedback loops are interesting in themselves, but a
synthetic class of hybrid promoters developed to exhibit the
programmability of promoters expands the possible design space
[30]. Hybrid promoters are synthesized by combining multiple
operator sites corresponding to different TFs, and often have
tighter regulation of uninduced leaky expression and larger range
of expression. The range of expression is controlled by varying
the inducer concentrations and owing to this feature, a fine-tune
control over synthetic gene networks is possible.

IV. PRELIMINARY RESULTS
A. Approximation of the probability distribution of completion
time
Using the basic understanding of the gene expression mech-

anism, we expressed the feedback gene regulatory network with
the following Chemical Reaction Network.

ka Brex
Gu +X —= Gb Gu Gu +X
a ka
dx ﬁlex
X—¢ G, — Gp+X

where X is the transcription factor, G, is an X gene not bound
with X, and Gy, is an X gene bound with X. The rate constants of

reactions are: rate of transcription factor binding (ka), unbinding-
to-binding ratio (&), ratio of unbound gene expression to basal
expression (f), ratio of bound gene expression to basal expres-
sion (f32), and degradation/dilution rate of X (dx). We simulated
1000 SSA realizations of the CRN to visualize the dynamics of X
and approximate the probability distribution of the completion
(Figure 1). We denote the number of X with nx, and set the
completion of protein saturation to be when ny reaches the half
steady-state value, N, because it was observed that after ny is
sufficiently higher than N, the probability of the ny dropping
below N is small. It can be said with some confidence that the
cell is committed to its fate after ny exceeds N.
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Fig. 1: (a) Thousand trajectories of the CRN obtained from the Stochas-
tic Simulation Algorithm. (b) the approximated probability distribution
of completion time (completion is when ny > N, the horizontal black
line in (a)). The parametric values used are [ka,a, P, B, ex,dx] =
[10~310g(2), 0.1, 10, 1, 10log(2), log(2)] and the initial condition is
[Gu, Gp,X] =[5, 0, 0]. The green curve is the approximated completion
time distribution using the cumulant truncation method.

We applied the extended generator method to compute the
cumulant dynamics of the system. Because the reaction order
of the CRN is 2 (because of the bimolecular reaction), each ith
order cumulant is a function of i+ 1th order cumulants, requiring
infinitely many orders of cumulants. Therefore, the cumulants
with order 3 and higher were truncated to obtain a closed-form
solution. This is equivalent to assuming that the population of
each species has a Gaussian distribution at all times. And since
a Gaussian random variable is distributed by,
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the fraction of X above N as a function of time is given by
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where K, and K, are the first and the second order cumulants
of ny. This function is an approximation of the cumulative
distribution of the completion time. By taking the derivative
of (6) with respect to time, the probability distribution of
completion time is approximated as follows.
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where k denotes the time derivative. The method requires numer-
ical solution to the nonlinear ODE of cumulants and numerical
differentiation of the cumulative distribution of completion time.
Also, depending on the choice of the threshold, the integral
of f(N,t) does not approach 1 as # — . But in such cases,
we are able to compute the exact error. Using this cumulant
truncation method, completion time probability distributions of
two different sets of parameters and initial conditions were
approximated (Figure 2). For the first set, the curve (cumulant
truncation) agrees well with the histogram (SSA), but in the
second set, the curve shows a bimodal distribution where the
first mode is a fair approximation of the histogram, whereas the
second mode is unseen in the histogram.
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Fig. 2: Completion time probability distribution approximated using
the SSA and the cumulant truncation method. (a) [ka, a, 1, B2, ex,dx] =
[10~21og(2), 0.1, 1, 0.001, 10" log(2), log(2)] and the initial condition
is [Gunbouds Goound,X] = [9, 1, 1]. (b) Identical to the condition used in
Figure 1.

B. Synthetic positive feedback gene network in E. coli

Design and Construction. Because even a small amount
of output can trigger the rapid activation of a positive feed-
back mechanism, we employed promoters that have minimal
leaky expression and give maximal control over the range of
expression [31]. We selected two hybrid promoters from [30]
— Al12 and D61 — that have operator sites from the pBAD and
pLac promoters. The promoters are activated by AraC-arabinose
complex, and repressed by Lacl protein. To create a positive
feedback loop, we cloned the araC gene downstream of the
promoter so that when induced with arabinose, the promoter
is activated (Figure 3 (a)). Additionally, we used a strain of
E. coli that constitutively expresses lacl, to keep the promoter
tightly regulated when uninduced by IPTG. The recombinant
DNA was obtained using restriction enzymes and DNA ligase.
Currently, there are several variations of the positive feedback
gene network (Figure 3 (b)). Each network has the promoter A12
or D61, and placed in a plasmid with the origin of replication
pMBI1, pSCI101, or pSB3K3'.

Assays. Three different types of assay were used to charac-
terize an A12 promoter variant of the positive feedback gene
network in varying concentrations of IPTG and arabinose. The
following is a brief summary of each assay, including the
objectives, methods, results, and conclusion.

— plate spectrophotometry

- Objective. To confirm the response behavior of the hybrid
promoter predicted in the original paper [30] in changing
concentrations of two inducers.

'Each has an approximate copy number of 10°,10!, and 102, respectively

Hybrid Promoter

Inducer 1 Inducer 2 araC
IPTG L-ara
Originof
Lacl AraC Replication
o —
o%e
gfp
plac/ara araC gfp

Antibiotic
Resistance

Fig. 3: A diagram of a synthetic positive feedback gene regulatory
network. (a) The pLac/ara hybrid promoter is induced by IPTG
and arabinose. IPTG inhibits the Lacl repression of the promoter,
whereas arabinose forms a complex with AraC protein and activates
the promoter. (b) The network has a hybrid promoter, controlling the
expression of araC and gfp downstream, an origin of replication and
an antibiotic resistance marker.

- Methods. We inoculated LB media with a single colony from an

agar plate of cells transformed with an A12 gene network. The
culture was diluted 1:150 in PBS with 48 different concentra-
tions of IPTG and arabinose in a 96 well plate (duplicates were
made for each condition). Each well contained 0%, 0.01%,
0.05%, 0.1%, 0.5%, 1% or 2% arabinose and OuM, 10uM,
50uM, 100uM, 500uM, or ImM IPTG. The plate reader was
set to measure the optical density and the fluorescence level of
each well every 20 minutes over 24 hours. The plate was kept
in 37C and shaken for 10 minutes before each measurement.

- Results and Discussion. The rate of fluorescence level increase

was slower and the steady-state expression level was lower
for arabinose induction conditions relative to IPTG (Figure 4
(a)). This confirmed that the hybrid promoter response was
consistent with the prediction.

— flow cytometry

- Objective. To measure the distribution of the fluorescence level

of cells from the time they are induced until steady-state is
reached, and to observe the transient in the mean and the
variance of the fluorescence level.

- Methods. We used the same colony from the spectrophotometry

assay to inoculate LB media with varying concentrations of
IPTG and arabinose. 12 different concentrations were tested;
each culture tube contained 0%, 0.1% 1% or 10% arabinose
and OuM, 10uM or 100uM IPTG. In 15 minute intervals, for
4.5 hours, 10uL of culture from each tube was diluted 1:15 in
96 well plates with PBS in each well. 25000 events (cells) from
each well were screened using an Accuri C6 flow cytometer.
Additional measurements were made at 5 hrs, 6 hrs, 20.5 hrs
and 21.5 hrs after induction.

- Results and Discussion. At 30 minutes after induction, the

mean of the fluorescence level distribution was higher com-
pared to the initial mean value at the time of induction. From
45 min to 105 min after induction, the mean fluorescence
level decreased. At 120 min, two distinct populations of
fluorescence level — a median value at 10> and another at
10%° — were observed and again at 135 min (Figure 4 (b)).
However, the bimodal distribution disappeared abruptly in the
next measurement and no more higher fluorescence population
was observed. We hypothesize that the cell population with
activated positive feedback are suffering from AraC/GFP tox-
icity.
— time-lapse microscopy



- Objective. To confirm whether the high fluorescing cells — the
cells with activated positive feedback — have different viability
compared to the lower fluorescing cells.

- Methods. An agar plate with 10% arabinose and 1mM IPTG
was prepared. An overnight culture was diluted in the morning
and grown for 3 hours to reach log-growth phase. 2uL of cells
were transferred onto the agar plate. Using the microscope,
10 sparsely populated areas were selected. Within each area, a
single cell was marked for tracking, and every 10 minutes for
12 hours an image processing macro tracked each cell, adjusted
the focus, and took an image of the cell.

- Results and Discussion. The cells that began to emit high level
fluorescence were shown to grow larger than its peers with low
level fluorescence (Figure 4 (c)). Eventually these cells died,
supporting the theory that over-expression of araC is toxic.
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Fig. 4: Preliminary results from three assays - (a) Plate spectrophotom-
etry, (b) flow cytometry, and (c) time-lapse microscopy. (a) Normalized
fluorescence over 24 hour in 48 different conditions of IPTG and
arabinose are shown. Each subplot has fluorescence level range (y-
axis) from 5500 to 16500 [au], and time (x-axis) from O to 24 hours.
The inducer concentrations of IPTG and arabinose are shown in the
top row and the first column. (b) Fluorescence distribution time-series
measured over 4.5 hours in 15 minute intervals. The emergence and
disappearance of high fluorescence population is indicated with a red
circle. (c) Three sample images from a time-lapse microscopy — 1 hr,
6 hr, and 12 hr (cell population shown in parenthesis).

V. PLAN OF WORK
A. Theory

We propose to model the system discussed in the previous
section as a Markov process model and rigorously determine
the probability of the system returning to its initial state after
reaching the state of ny > N to test the validity of assuming
the completion as an absorbing state. Also, the approximation
method introduced will be investigated further. Though fair, the
Gaussian assumption approach requires ny to be a continuous
random variable. Therefore, an approximation with a discrete
probability mass function equivalent to the Gaussian function
will be explored to obtain a similar solution. Furthermore, the
error shown in Figure 2 (b) needs to be corrected, possibly
through using different numerical algorithms for solving the
cumulant dynamics ODE.

An alternative way of approaching the problem is to identify
the upper and lower bounds of the mean and the variance of
the completion time. Using a variety of tools (matrix norms,
asymptotics, etc,) we will obtain the analytical solutions for
the limits and their parametric sensitivity. This analysis will

help us identify the parameters that would result in the largest
observable difference in the experiments with the synthetic
gene network. Additionally, we will study the possibility of
engineering the gene networks to obtain arbitrary shape of
completion time probability distributions, such as Gaussian or
uniform. Furthermore, we will analyze negative feedback and
open-loop systems using analogous approach. We will compare
and contrast the features of the completion time probability
distributions and discuss how each network is suited for different
differentiation steps.

B. Experiments

We plan on conducting single-cell tracking time-lapse fluores-
cence microscopy experiments in varied concentrations of the
inducers to obtain time series data of fluorescence level that
resemble Figure 1 (a), and approximate the completion time
probability distribution that resembles Figure 1 (b). Additionally,
we will tune the gene network with respect to the system
parameters used in the CRN. For example, we can change
the ex value — the rate of gene expression — by tuning the
ribosome binding site of the RNA or the operator sites of the
promoter. The tuning and estimation of parameters will help
us systematically reconcile the model and the actual system.
As with the theoretical approach, we will synthesize negative
feedback and open-loop gene network with focus on keeping the
extraneous details — the inducers, plasmids, and E. coli strain — as
equivalent as possible between the three variations to minimize
external bias affecting the analysis.

We will repeat the concentration variation assays for the
D61 hybrid promoter and other hybrid promoters with varied
expression range. To test the hypothesis of AraC/GFP toxicity
we will employ an araC-knockout strain of E. coli to eliminate as
much background effect as possible and repeat the assays [32].
Because the inducer concentration will affect the accumulation
rate of AraC, we will investigate whether an optimal concen-
tration exists in order to keep the cell viable for a reasonable
duration.

VI. SCHEDULE AND REQUIRED RESOURCES

The schedule of work is shown in Figure 5. The biological
equipments and computational software required for the research
are funded by the Molecular Programming Project, part of
the National Science Foundation’s Expedition in Computing
program.

Identify the optimal concentrations of inducers

Measure the single cell dynamics

Modify the synthetic construct and repeat assays

Identify the analytical solution for CTPD

Sensitivity and Limitation Analysis

Fig. 5: Schedule of work
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