Quad-Rotor UAYV project

Final Report

Prepared for:
Professor Eric Klavins
Charlie Matlack

DSSL Lab

Prepared By:
Justin Palm
Andrew Nelson

Andy Bradford

June 11, 2010

Executive Summary

Quad rotor UAV Project: final report is the final milestone report for EE 449: Controls System Design. A
guad rotor test bed has been built that utilizes an infrared vision system to track the position of the
vehicle. In order to have a stable system, the quad rotor dynamics are quantified and a controller
designed to meet the performance specification of a 10 second step response.

While the system simulation shows results that meet the above requirement, the system
implementation has proven unsuccessful. An error analysis of the problem reveals a non-linear mapping
between the motor control input and the angular velocity of the rotor blades. This fact combined with
an to small of a resolution for pulse-width modulation results in a range of velocities that cannot
respond to the perturbation of hovering conditions.

Further research is has been conducted on the problem and is linked specifically to the opto-isolator
being driven with too high of a voltage giving a fall time that is far too slow. Given additional time and
patience, the problem could be fixed by replacing the opto-isolator with a faster device and using a
micro controller capable of higher PWM resolution.

Table of Contents

EXECUTIVE SUMIMIAIY cciiiiiiiiiiiiitieitietete ettt ee e et e et ae et eeeeeeeaeeeeeeeeeeeeeeeesaeeeeseeeeeeeeesaeaeeeasseaeaeseesesnsnsnsnnns 2
1] o] Lo T SR UR R 4
[o) A I o L= PSP U PO VOROPRTOP 5
(e Co]1<To aD =T ol o] o] o FRUR OO PP PP UP PP UPPTPPPPP 6
LO1T L3 (0] 4 T =T PP PP OPPPTPPPR 6
oY [=Tot 4l 21 - T o ISP 6
Literature review and relat@d WOTKcoouiiiiiiiieee et s e e 6
YA =T a2 T 4T Yo 1] PSPPI 7
Plant Id@NtifiCAtION. ... et ettt e et e s e e re e e s beeesneeesareeeas 7
RETEIENCE FIram@. .. ci i ittt ettt st e st e e st e s bt e e s ab e e s bt e e sabeesabeeeneeesabeesanteesareenas 8
IMOAEI SEALES ...ttt ettt s bt sttt et e bt e bt e s bt e sae e s m et et e e bt e beenbeesbeesaeesaresareeane 9
Y LR ok ol 2] o] g=RT =] g1 -1 4[] o H 9
Performance Specifications, Controller Design & SIMulations........cccccuveiieciiieeiciiiie e 13
(0o ol d o] 1T gl BTy T o LSRR 13
SIMUIGTION 1ttt e et e st e s be e e sabe e s bt e e st e e s beeeanbeesabeesabeeesabeesabeeennne 14
SIMUIATION RESUIES. c...eieieieie ettt ettt e b e s bt s at e st e bt e b e e b e e s beesaeesaeesaneeneenne 15
Hardware, Electronics, and SOftWare deSiSNeiiicuiiiiiciiiee et e ree e et e e e e areeas 17
HAFAWAIE ...ttt b e s bt sht e s at e et e et e e beesheesaeesabesab e et e e beenbeenbeesreesaeeenrean 18
VICON VISION SYSTEIM .ottt e ettt e e e e s s st tb e e e e e e e s e s bbb aaeeesesesasbsbaaaeesssnsannrenes 18
QUAA rOtOr HarAWare......cooiiieiieeeiee ettt ettt st e e s bt e e sab e e sabe e sbeeesabeesabeesneeesabeeenees 18

SO AN ettt ettt ettt e s e et e st e s bt e bt e e e b e e e e b et e e abe e e beeeeabee e bae e hbe e e beeeanbeenabeeebeeesareenane 21
Previous SOftWare attemMPLcicciiie et e e e et e e e et e e e e e bte e e e ebteeeeebseeeeesreeeeannes 21
Software requirements and iMPIEMENTAtIONcccuiiiiiiiiii e e e 21
Yo) in VY L=l oo g aYoToT a 1=y o1 (PP 22
GUI e aaaaaaaeaaaaaaaaaaaaaens 23

|V A1] o R O ST P OO P PP PPPPOPIN 24
(6o 010 0] | =T TSRO P PR PR PRURON 24
SIMIUIAEON ettt ettt et e e s bt e she e sht e s ab e st e e bt e beesbeeehe e eateeateebeenbeesheesanenas 24

QUM FOTOT SOTEWAIE ...t e ettt e e e e e e e et taa e e e eeesasbba s sessesassaaaasesesesesssananssesannes 25

oL g =T ol =l D) - SRS 26
Motor Validation and PWM to Angular Velocity Mapping....c.ccccceeeeeiieieieiieee et eeeree e evree e 26
Conclusions and FUrther DEVEIOPMENTccccuiiiiiiiiiee ettt e e e e e ete e e s ebae e e e e bae e e e snbaeeeennnees 28
o Yo T OO 28
2] = =T o 1ol TSRS 33
FAN oY T=] oo [PP UPPPPPPPNt 34
Table of Figures
Figure 1: Plant Identification............uuiiiiiiec et e e e e e e et re e e e e e e e s e snnnraaeeeaee s 7
Figure 2: Controlling angular velocCity Via PWMcuuiiiiiiiie ittt et e s estae e e seta e e e sentaea e 8
Figure 3: Coordinate Axis and Free-body Diagramc..uuieeiiii it e et e e e e e s e ree e e e e e 8
FIgUre 4: Plant iNPUL/OULPUL ..occveieeeee ettt ettt ettt ete e et e e eate e e teeeeateeebeseeseeeentesensreesnreeennes 10
Figure 5: Matlab model used to linearize the quad rotor system via the function linmod() 10
Figure 6: Open loop test for linearization Set POINT........ccccciiiiiiiiiii e e aaaee s 11
Figure 7: Matlab simulation with non-idealities includedcceeieeiiiiicce e, 14
Figure 8: State space representation used in SiMUulationcccccveiiiiiii e 14
Figure 9: Simulating Vicon data and python script and estimating statescccccceeveeciiieeeee e, 15
Figure 10: 0.5m SteP ChANGE IN Z...oci ittt et e et e s et e e e e e ta e e e ssbaeeesssaeeeennrees 15
Figure 11: 0.5 M StEP ChaNZE INY woeiiiiiiie ettt e et e e e et e e e et e e e e s abaeeesntaeeeessaeeeannaeens 16
Figure 12: 0.5m SteP ChANZE iN X.....euiiiiieei et e e e e e e e st e e e e e e e e e snnreeeeeeeeeessnnntenneeaenns 16
Figure 13: 30 degree Step ChaNG@ iN YAWuiiiiiiiiieieiiie et ee ettt e e et e e st e e e e aer e e e e ata e e e snraeeeessaeeesnnneeas 17
Figure 14: Overview of Hardware level Feedback 00Dcccviiiiiiiiiiciee e 17
Figure 15: PC Board showing component l0CatioN............uuveiieiiiiciiiiiiiee e e e e e e e nnaree e e e 19
FIBUrE 16: MOTOr DIIVEr STA@...cciiiiiiiiiiiiiiiiiiiiitititittteeeereeeaeeeeeee e e e ae e aeeaeesasasesaseaesasesesasssssesssanssssssssnrnnes 20
Figure 17: Python GUI used in quad rotor implementationcccecviieieciiee e 23
Figure 18: Python Simulator STEP FESPONSES........uuiiiieiiie ettt e ectee e e et e e et e e e eete e e e e bae e e eeasaeeeesasaeeesnnnaeeas 25
Figure 19: Apparatus for measuring angular VElOCITYcccuviiiiciiiiiciiiee e 26
Figure 20: Plot of the 4 different motors speed vs. PWMcoccuiiiiiiiiieiciiie e 27
Figure 21: Average Angular VEIOCITY VS. PWIM........ooouiiiiiiiee ettt ettt e et e e e e tra e e e e saraeeeennaea s 27
Figure 22: Statistical Fit for the average angular velocity vs. PWMcoccviiiiiiiiiiiceee e 28
FISUIE 231 PWIM = 101 it iiiieiiee ettt sttt ettt te e ste e sttt e sabe e s ataeesabeesabaeesabeesabaeenasaesabeeensteesabaesnnseesaseesnses 29
FIGUIE 24: PWIM = 50......cciiiieiiieiiiiieieieieeeeeeeeeeeeseeeeeeeseeeseseeeeeeaeeeesessssssssssesesssssssssnsssssssssssnsssssnsssnsnsnsnsnsnsnnnnnnns 29
FISUIE 25: PWIM = 100.......tiiiiitiiiiteniee ettt esteesite e sttt e ssteessateesabeesbaeesabaesssteesabeesssaeesssaesnseeesssessnsassnasessseeenses 29
FISUIE 26: PWIM = 150......uiiiiiiiiiieeiiee ettt e sttt ettt e sttt e stteesabeesabaesbteesabaeesabeesabeessbaeesabaesnbseesssaessaeenasessnseesnses 29
FIBUIE 27 oeieeeeeiiieeteeeeeeee ettt et e eeeeeeee e et e eee e e e e e e eeeeseeeeeaeesesesessessasaessesessssnsssesesesesssnsnsnsssssnsssnsesssnsnsnsesnsnnnsnnnnnnnnnnns 30
FISUIE 28 ..eieiitititttitttetttertrerereeeeerere et ee et ee et se e et et eeee e e et ae s e et e e ee s e e e s e e e s e e e s s e e s 444444444444 e et 4 e s e et et bt bt et nn et et benannnns 30
FIGUIE 29 ..oiiiiiiiiiiiiieieeeee ettt et ettt eeee e eeeee e e e eeeaeeeeeeeaeeeeeeeeeeeesasaeseesessssnessesesesnsssnsnsnsssnsnsnsnsesnsnsnsnsnsnsnnnsnnnsnnnnnnns 31

=8I0 O RS 31

T =(0] I i PP PPPPPPPPPPPPPRPPPRE 31
T =(0 | LI 3PP P PP PPPPPPPPPPPPPPRPPPRE 31
(0TI 1 RS 31
T =(0] I PP PRSP PP P PP PPPPPPPPPPPPPRPPPRS 31
T =(0] LI 1 SRR PP P P PP PPPPPPPPPPPPPPPPPRS 32
T8I S 32
List of Tables

Table 1: Parameters USed in MOE]coiiiuiiiiiiiii e s e e s e e s seae e e s s naeee s 11
Table 2: Linearized State space repreSeNtationscccvveccieeeiiciiee et s e e e e e sare e e s e aaaee s 12
Table 3: Eigenvalues of the closed-100P SYSTEMcciciiiii it e e aaeee s 13
Table 4: Identifying the problem with the 0pto iSOIatorccocciiiiieeeee e 29

Project Description

The quad rotor UAV project is was originally selected because of the complexity and wow factor. There
have been a few other colleges in the world who are dedicating enormous resources to similar projects.
Being part of a team that establishes a working test bed for the University of Washington has been a
great experience. The project itself is straightforward: using a hobby quad rotor frame, design, build,
and test hardware and software control structure that uses feedback to achieve autonomous flight.
Actual implementation has proved to be not quite as straightforward. The quad rotor project is a very
ambitious task to complete in ten weeks. The trade off in the complexity of the project is enormous

intellectual gains.

Customer

Our customer for this project is Professor Mehran Mesbahi who heads up the DSSL lab here at the
University of Washington. His lab focuses on numerous areas of controls in engineering such as
guidance, navigation and control of both single and multi-platform aerial (and space) systems. Our
customer requested that we design a control system able to autonomously fly a quad rotor to a specific
location, or waypoint, in 3D space utilizing the overhead Vicon positioning system.

Project Plan
The project plan was divided into five major milestones each spaced approximately two weeks apart.

1) Project Description and Plan of Work

2) System Model

3) Controller Design

4) Controller Implementation / Hardware / Software
5) Project Demonstrations

The sequence that we met these milestones was out of sequence with the required milestones.
Experience told us to get the hardware done as soon as possible as this is often requires a lot of
debugging time. By doing so, and because of unforeseen difficulties, we fell behind slightly with the
System Modeling and Controller design. After working closely with our customer and other professionals
we were able to complete the milestones only slightly behind schedule. The final implementation was
time stressed toward the end of the quarter and we failed to achieve autonomous hover. In lieu of this,
we have done extensive failure analysis and is included later in the report under sections Experimental
Data and Further Development.

Literature review and related work

The quad rotor project required extensive research into similar systems. By reviewing others work, we
used this insight to develop our system. To this end, research papers from various quadrotor groups
were used as guides in the early development of the dynamics and control theory.

Quad rotor platforms used in research remain somewhat the same, having four electric motors pointed
vertically upwards and equally spaced in a square fashion. However, there were some groups whom

designed their own platforms, where as commercial models available to the consumer were the
DraganFlyer, the X-UFO and the MD4-200.

One such platform is the Stanford Test-bed of Autonomous Rotorcraft for Multi-Agent Control
(STARMAC) uses a modified DraganFlyer IV quad rotor (the same frame as we are using). Their system
uses LQR techniques as well as Integral Sliding Mode (ISM) control. The STARMAC also incorporated an
onboard micro controller/IMU.

The single most valuable resource to us during this project was the work that Brain Hemstra did while
working with the DSSL lab last year. Brian’s master thesis entitled Linear Quadratic Methods Applied to
Quad rotor Control provides a working simulation that we used to gain insight and understanding while
working through the complicated dynamics of the quad rotor system. Another big advantage of having
this resource is that many of the parameters of interest (thrust, inertia, etc) were already well
quantified.

System model

In this section, the quad rotor system’s multiple inputs and outputs will be identified and the equations
of motion governing the dynamics of the system will be derived. The first step is to identify the plant and
the inputs and outputs of the plant itself and then to establish the framework to derive the equations of
motion using Newton’s Laws.

Plant Identification

u, v,

u, @,

, ®
_u4 _ _ﬁ i

Figure 1: Plant Identification

Figure 1 shows the inputs and outputs of the plant. The inputs are angular velocities in radians per
second and the output is a 12x1 vector which is discussed below. The angular velocity is converted
through an airfoil blade. The Dynamics of the airfoil blade is included in the dynamics of the plant. In
order to control the angular velocity of the blades, we must control the voltage applied to the motors in
the quad rotor. Figure 2 below shows how the motors can be controlled through pulse-width
modulation (PWM) the axel of the motor is geared with a five to one reduction gear. The result of
varying duty cycles of the motor drive stage results in varying angular velocities.

48 ey
|l L

PWM "2 Motors 5:1 Gear | 1| QuadRoter
A L Dynamics
V l L L

Figure 2: Controlling angular velocity via PWM

Reference Frame

The quad rotor system operates in two coordinate frames: inertial and body. The inertial frame (also
referred to as the earth frame) is the coordinate axis where Newton’s Laws apply. To complicate
matters, the countering forces to achieve hover are applied to the body frame which is fixed to the quad
rotor itself and is allowed to rotate and translate. This dual-frame coordinate system is shown below
along with a free body diagram of the quad rotor system.

Figure 3: Coordinate Axis and Free-body Diagram

Now that the coordinate reference frame is identified we can begin to represent the system
mathematically. The Mechanism through which the quad rotor can be controlled is thrust provided by

8

airfoil blades attached to four independently controllable motors attached at a fixed distance (£) from
the center of the quad rotor (P). By varying the relative magnitudes of the thrusts, we can control the
attitude (yaw, pitch, roll) and position (X,Y,Z) of the system in inertial coordinates. As mentioned

previously, the thrust forces are applied in the body frame; therefore, transformations must be made.

Model States

In the previous subsection, we showed how the quad rotor system can be described using body
coordinates and inertial coordinates. Now we define the states of the system that include a mixture of
body and inertial components comprised of translational and rotational positions and velocities.
Referring to Figure 1, we define the following vectors:

b [u translational velocity in the body frame
b =
[p- rotational velocity in the body frame

(o} attitude (yaw,pitch,roll) in the inertial frame

[x] position in inertial frame

Z

Combining the four vectors defined above yields the state vector x = [vb wP dirt]Twhich is used in
the derivation of the quad rotor dynamics shown in the appendix

State-Space Representation
The basic form of the state space equations are as follows:

x =Ax + Bu
y=Cx+Du

Where u is a vector of system inputs and x is the state vector. Because the quad rotor is an unstable
system, we must linearize the system about an operating point. To achieve a hovering condition, we
effectively want all the states to be zero. Stated differently, if we think of the initial starting condition at
some position in space (X,Y,Z) and call that point zero, all the allowed states should also be zero. This is
the easiest point to linearize about since many of the elements after the linearization process go to
either zero or one.

In order to expedite the linearization process, Matlab is used by creating a model of the system that
includes the non-linearized equations of motion. This model is shown below as well as the inner block
below. Equations of motion written in code are included in the appendix.

Quadrotor Dynamics

Figure 4: Plant input/output

¥dot X
MATLAB » -

Function 5

U quaddynamics.m Integrator X

Figure 5: Matlab model used to linearize the quad rotor system via the function linmod()

Figure 2 above represents the plant with angular velocity in radians per second (rad/s) and outputs as
the state vector described earlier (mixed units). The Matlab function linmod() requires a set point for
the system. In order to achieve hover, the motors must be spinning at a particular speed. To find the set
point one simply must set the sum of the forces acting on the system to zero.

Fg = Frpruste

1,
mg=wa

10

= |9 = 82.4981 rad
W= Tep — 8% rad/s

Substituting the calculated value into the linearized input equation w? = 2wAw = 164.98Aw where Aw
is the input perturbation angular velocity. This result shows the motors must spin at 164.98 rad/s for the
given system mass in order to achieve hover. To verify that this is correct, the non linearized model is
tested with a constant 164.94 (rad/s) applied at the input. The resulting plot is shown below.

Figure 6: Open loop test for linearization set point

One can see that the value being (164.98 [rad/s]) used is fairly accurate as the altitude only drops by
6cm in 100 seconds without any feedback. Some clarification here is necessary: There is no floor on the
simulation executed; that is, the quad rotor is being allowed to travel ‘through the ground’ just to
demonstrate the correct linearized angular velocity was chosen. The plot of the linearized model is
omitted here as it is simply zero throughout the 100 second simulation.

Included in are the model parameters identified in the hand derivation included in the appendix. The
values shown are taken from Brian Heemstra’s work last year using the same quad rotor.

Table 1: Parameters used in model

Parameter Symbol Value Units
Mass m .589 Kg
Thrust Parameter b 4.3248e-5 Kg m
Torque Constant k 5.96927e-8 N m s’
Inertial Matrix | 6.532e — 3 0 0 Kg m’
0 6.6944e — 3 0
0 0 1.2742e — 2
Distance to motor rl [0.2319 0 0] M
1
Distance to motor r2 [00.2319 0]7 M
2

11

Distance to motor r3 [—0.2319 0 0]7 M
3

Distance to motor r4 [0 —0.2319 0]7 M
4

Now that we have a means to linearize the system through Matlab, well defined input trim conditions
along with a reasonable estimate of the true model parameters, the linear model can be generated. The
resulting A,B,C and D matrices below are seen to be Observable and Controllable.

Table 2: Linearized State space representations

000000 0 980000 0 0 0 0
000000 -98 0 00 00 0 0 0 0
000000 O O 00O0O0O 0297 —.0297 0297 -.0297
000000 O O 0O0O0O 0 -5066 0 .5066
000000 O O 0O0O0O — 2470 — 2470 —.2470 —.2470
A_|[000000 0 0 0000 s | O 0 0 0
000100 0 O 0000 0 0 0 0
000010 0 0 0000 0 0 0 0
000001 0 0 0000 0 0 0 0
100000 O 0 0000 0 0 0 0
010000 0 0 0000 0 0 0 0
001000 0 0 00O O | 0 0 0 0 |
1 000000O0O0GO0O0 0]

010000000O0O00O

0010000000O00O

0001000000O00D

000010000000
c_[000001000000 D=0
000000100000

000000010000

000000001000

000000000100

000000000010

00000O0O0O0O0GO0GO0 1]

12

Performance Specifications, Controller Design & Simulations

The performance specifications that were designated at the outset of the project versus what has been
achieved are quite different. Through iterating through different control designs, we were able to
simulate step responses that gave reasonable performance- though still far from our initial
specifications. The over-estimated response problem comes from not really knowing what the quad
rotor was/is capable of. The current performance specification is 10 second step response with no
steady state error. The following sections will describe the Controller design and show the simulation
results.

Controller Design

The first iteration through the controller design process used only inertial coordinates and heading
(yaw). While altitude and yaw stability were stable, any horizontal command led to oscillatory behavior.
This method was quickly thrown out as it does not use full state feedback, the commands could not be
decoupled, and tuning the PID controllers was quite a tedious task. For these reasons, a Linear Quadratic
Regulator (LQR) is used to find a gain matrix K.

The LQR method works by minimizing a cost function that allows the user to set weights on different
degrees of freedom. The effect of this is creating a gain matrix that sets the closed loop eigenvalues
further from the imaginary axis to increase the aggressiveness of the response. Often the tradeoff for
this is overshoot and perhaps some steady-state error.

The Q and R matricies used in the controller that is in place on the quad rotor is shown in the appendix.
The effect of the Q and R matrices is to assign a heavier weight to altitude and yaw control efforts. One
can see the entries Q(9,9) corresponding to yaw control and Q(12,12) have different weights compared
to the rest of the entries. This shoves the poles for those degrees of freedom further to the left. The
eigenvalues for the closed loop system are shown below.

Table 3: Eigenvalues of the closed-loop system

-3.3801
-1.6174 + 2.3011i
-1.6174 - 2.3011i
-3.4233
-1.6315 + 2.3073i
-1.6315 - 2.3073i
-0.5667 + 0.5493i
-0.5667 - 0.5493i
-1.0010
-1.0009
-0.2327 + 0.2326i
-0.2327 - 0.2326i

One can see that the simulated system should be stable as all the eigenvalues are in the left-half plane.
The gain matrix that gives those eigenvalues is also listed in the appendix. In the next section, the
simulation of the system is described and results discussed.

13

Simulation

Lineraized Quadrotor Simulation with Full State Feedback - non-idealities included
linearized about a hovering position requiring 164.98 (rad/s)"2

PWM Mator signals

- angVel duty > Mz
M

Fes vy :{} » 7~C In? modsl states
Saturation -
Command 180.591 radisec Vicon/Python
Includes linearized setpoint
8
Quad Rotor
Statespace M7
Representstion
Transport
Delay-10ms
el ME

Figure 7: Matlab simulation with non-idealities included

Figure 7 shows a screen-shot of the simulation built to demonstrate the control law design. The
Command box on the left includes a set point of a hovering condition and step changes in the X,Y,Z and
yaw positions. The error between the setpoint and the actual postion is sent into the gain matrix
described in the last section. This gain matrix calculates the necessary angular velocities that are then
sent into the motors. The motor saturation and the effect of slightly different responses of the different
motors are included in the loop as well to simulate as closely as possible the true nature of the system.

The quad rotor dynamics block is shown below.

Integrator

Figure 8: State space representation used in simulation

The simulation includes the A,B,C, and D linearized matrices. The output of the block is the state vector.
This vector is then parsed to simulate the effect of vicon data and python script that actually calculates
the position, attitude, translational, and angular rates (the latter two in body coordinates). The

Vicon/Python block is shown below.

14

—P.EI
. Postion in Body Corrdinates

Terminator Translational Velocity
in Body Corrdinates

In1
MATLAB
Function

inert2body

Selector Discrete Derivative

model state:

Angular Velocity
in Body Corrdinates

h 4

Discrete Derivative1

Figure 9: Simulating Vicon data and python script and estimating states

Since the data that is coming in from the Vicon system is in inertial coordinates, the data must be
transformed into body coordinates through a direction cosine matrix transformation. The result is
differentiated to get a rate and place in the appropriate spot in the state vector. The Euler Angles
(yaw,pitch, roll) are also differentiated to give angular rates. The position and Euler angles are passed
through the loop and placed in the state vector. Included in the feedback loop is a 10 ms delay to
simulate latency of the network communication and the entire simulation is run in discrete steps of
1/120 seconds which corresponds to the maximum frame rate of the Vicon vision system.

Simulation Results

The following four plots show a simultaneous step response in X,Y,Z, and yaw. Each of the translational
step changes are 0.5 meters and the yaw step change is 30 degrees. The simulations show a rise time of
under five seconds and settles by 13 seconds. These meet the performance specification of a 10 second
step response in altitude.

s - i~
s Pepr ABE BAS .

Figure 10: 0.5m step change in Z

15

B
alPer ARE B &%

]

s oawy oM

Ed C}

Mensches * - [4 d) MM

Figure 12: 0.5m step change in X

16

85 DAL ABE BA %

Figure 13: 30 degree step change in yaw

It should be noted here that the simulation does not take into account a necessary mapping from
angular velocity to pulse-width modulation counts. The simulation results and how the actual system
performs are quite different unfortunately. It is said sometimes that simulations are doomed to succeed.

Hardware, Electronics, and Software design
In this section, we will discuss the hardware implementation of the quad rotor system. Figure 8 shows a
system level diagram of the hardware software and feedback.

VICON
Computer

SIMULI

ZigBee
Wireless Link

VICON %
CAMERA .

S

Motor Controller

=D

Wireless Reclever

Figure 14: Overview of Hardware level Feedback loop

17

Hardware

There are three pieces of electronics hardware used in the control setup, the Vicon vision system, a
laptop running Simulink with the control loop and the electronics hardware on the quad rotor. Since the
laptop is mostly software, discussion of that will be put off until the software section of this report. We
will be discussing the other two components here.

Vicon Vision System

The Vicon vision system is comprised of 3 components. The Vicon cameras, the Vicon hardware
processor, and the Vicon host computer. There are six Vicon cameras placed on the ceiling in the DSSL
lab. Each camera is 2 megapixels and runs at 120fps. The system tracks an area that is about 8'x6'x5'.
These cameras are infrared black and white cameras. By using special reflective balls on the subject, the
Vicon cameras use IR LEDs to reflect off of the balls producing an image that once filtered is all black
except for the balls which reflect the IR light. By figuring out which pixels in each of the six images
received back the balls cover, the system is able to accurately place the balls in the area to about .1mm
accuracy. This data is processed on the Vicon hardware processor and sent to the Vicon host computer
over a dedicated network link. This data is read in real time by the proprietary Vicon Nexus software.
This software has a server running that the Simulink laptop can pull the data from the system through
and will be discussed further in the software section. We are using this system because it was a
requirement from the DSSL lab and gives about the best possible accuracy of any position tracking
setup.

Quad rotor Hardware

The electronics hardware on the quad rotor is shown below in Figure 12. There are four sections, the
motor drive stage, the motor controller, the power stage which provides 3.3v and 5v power to the board
and the wireless receiver. The PCB was assembled using protoboard since putting a breadboard on a
flying object didn't seem like a good idea and manufacturing a PCB would have been about $100 for a
prototype run. This board attaches directly to the motors and the battery. The only other electronics on
the quad rotor are filtering capacitors on the motors. The total cost for the hardware for the quad rotor
is $215.51 the price breakdown is shown in the appendix.

18

L o o s - R

Motor Controller

Wireless Reciever

Figure 15: PC Board showing component location

Power Stage

The power stage consists of a pair of linear voltage regulators. A 5 volt TLE7805 regulator is used for the
microcontroller and a LM317 for the Xbee transmitter running at 3.3 volts. These parts were chosen due
to having them on hand when we went to assemble the PCB.

Motor Drive Stage

In order to control the thrust of the rotors, we must control the speed of the motors. Arguably the most
used method to accomplish this is through pulse width modulation. A circuit was designed to take a O-
5V pulsed signal and boost this to a 0-11V signal to use to switch a MOSFET on and off as a DC chopper
configuration. The circuit used is shown in Figure 9.

19

+11.1V

PWM M1 ZX M2 PWM
0-5v 0-5v

— ﬁ’i

PWM
0-5v

+11.1V

Figure 16: Motor Driver Stage

The components were chosen to handle the current draw requirements of the motors which is around 4
amps max and to provide isolation between the power stage and the micro controller. The MOSFETs
(MTP3055) were selected for their performance, reliability, price and due to familiarity having used
them on another EE related project. The MTP3055 are rated at 12A max current loéd,00.15
resistance, and are also ideal for switching applications. Next is the Opto-Isolator (LTV-847) which comes
as a quad package perfectly suited for our four drive stages, 4us rise-time which is 25 times our base
frequency of 10KHz and were very cheap at $0.75. Switching protection diodes are installed across the
Motor to allow for freewheeling- current flow due to back EMF as the motor spin during the off cycle. 1
KQ pull-up resistors are used to bias up the gate of the MOSFET in its linear region. Lastly is the Li-
Polymer 3 Cell Battery which is rated at 2100mAhr, giving us a empirically determined flight endurance
of approximately 40 minutes. However, we expect a typical flight on the order of 20 minutes. This
battery gives us almost twice the capacity as the one that came with the original quad rotor.

Motor Controller

In order to control the motor, we decided on the Atmel ATMega328p microcontroller. This
microcontroller was chosen due to having the PWM outputs we needed, the serial link to the Xbee we
need, and already having familiarity with the microcontroller and owning the programmer. The motor
controller is currently running off an external crystal at 20MHz. This was chosen so we could achieve a
reasonable PWM speed of 10KHz and allow a high serial data rate to the XBee of 115200 Kbps.

20

Wireless Receiver

In order to communicate with the quadrotor we decided to go with a pair of 900MHz XBee radios. These
radios offer two way communication with the quadrotor over a standard UART serial link. They provide
156 Kbps data rate and a line of sight range of 6 miles. These were chosen so the quadrotor could
eventually be flown outside without having to worry about the signal fading out. The 900MHz radios
were chosen due to having compact antennas while providing low link losses and not have issues with
interference on the 2.4GHz band. While the current setup only sends 9600 bit/s, the high data rate was
chosen due to it's lower latency and having extra bandwith for sending retries creating a more robust
wireless link.

Software

Software implementation for the quad rotor project went through numerous iterations during the
design process and was paramount to the success that were made. This section discusses the software
in detatil.

Previous software attempt

The original plan was to use Realtime Workshop in Simulink to implement our controller. This was
chosen since it would be easy to transition from simulation to implementation and would allow for
plenty of time to test and troubleshoot the controller. This idea worked well and was implemented up to
the point of interfacing the Vicon into Simulink. Since the Vicon isn't supported by default in Simulink, it
required writing a custom S-Function to retrieve data. After spending a week working on this, the
interface worked in the regular Simulink, but would not compile for Realtime Workshop. The other
issues was in trying to get the Simulink model to be timed and trigger when data is received from the
Vicon. Since the timing between the model and the Vicon was separate, this could introduce up to an
additional 8ms of latency in the system. Due to these issues and not being confident the simulation was
calculating time steps properly, we decided to abandon using Realtime Workshop.

Software requirements and implementation

Since using Realtime Workshop in Simulink was not able properly interface with the Vicon, a
replacement was required. From the testing of the quadrotor up to this point and looking at what would
be required to implement the controller, the following requirements were set:

e Fast and easy to implement and make changes
e Ability to verify implementation
e Realtime diagnostics and data logging capabilities
e Safe way to start and stop the quad rotor
In order to meet these requirements, it was quickly decided that programming the controller to the

ATmega was not a good idea since it wouldn't give us any way to verify the implementation or any type
of diagnostics on what is happening. Since it was required to use a computer to interface with the Vicon
and send the data to the quad rotor, it made sense to run the feedback on the same system. In order to
keep the implementation easy, it was decided a language with powerful vector numerical computation
capabilities was required. In order to get realtime diagnostics and start and stop the quad rotor, it was
decided a GUI was also needed. In order to meet these requirements and use something that was

21

familiar, we selected to use Python. By itself, Python is a powerful language that is fast and easy to read
and write and has a large selection of libraries to use. In order to get the functionally that was required,
the following libraries were used:

e Scipy — Scientific computing toolbox for Python. Gives most of the functionality of Matlab to
Python.

e Numpy — Provides fast N-dimensional array manipulation to Scipy

e Matplotlib — Plotting library. Used to generate Matlab like plots from Python.

e PyQT4 — Application framework that gives Python bindings to Qt4, which is the framework KDE4
is built off of. Used for it's ability to create GUIs, implement network communication, and
support creating and managing multiple threads.

e PySerial — Serial communication for Python. Used to send serial commands to the quad rotor
over the Xbee link

e PyGame — Game development framework for Python. Used for it's ability to interface with
Joysticks.

Software components

Allin total, there was about 1500 lines of python written for our final implementation and about 75 lines
of C that ran on the quad rotor. Most of this code ended up going into framework for supporting the
controller. In total the controller itself takes up about 200 lines of code. While a lot of code wouldn't
have been needed to be written to get the quad rotor working, by creating the framework around the
controller and having the ability to save and plot data and see real time output to the motors allowed
for easy debugging and troubleshooting of issues when testing. By not having this robust framework,
figuring out where the problems were would have been much more difficult and it would have taken
more time to test and run than it did to program the extra code.

22

GUI
Of the 1500 lines of Python were written to control the quad rotor, Over half the code ended up being
to dedicated to creating the GUI, which is shown in Figure 17. The GUI is divided into four sections, the
Vicon interface, the serial interface, the joystick interface, and the control and plotting interface. The
Vicon interface allows the user to connect to the Vicon and shows real time position of the quad rotor
both in absolute position and also position relative to a point. This point can be set with the zero button.
The serial interface is used for connecting to the serial output that the Xbee is connected to. This section
also has four sliders that show the current output to the motors. The sliders change from blue to red
when the output is enabled indicating that it is really sending data to the quad rotor. The joystick
module is for open loop testing. It allows connecting a joystick and shows four sliders for the axis of the
joystick. The control and plotting interface allows the user to control what the program should do. There
are three modes of operation, open loop with a joystick, closed loop, and simulation. The user can give a
waypoint and a time the quad rotor should start moving to it or load a set of waypoints from a .mat file.

A & main.py <2> vl () (X
Hostname: 192.168.0.84 Port: | 800 Joystick Setup:
Joystick Port: | O
Connect
Absolute Position: Connect
i ¥ Z y: 8 e Xaxis
Relative Position: Yaxis
= ¥ z W g [F Yaw
Zero Position Thrust
HAme Saes Serial Setup:
Open Loop Contral SerialPort: levittyUSBO
Closed Loop Control Connect

* Simulation Time: 20.0

Requested Position:

b A ¥ Z e time:
From File

Plot Options:
" o | = o 8: : o j all: v
M: ! E: | Si ! W all: v

Plot - Save
Run Contral: M S W
Start Stop Kill Blimp Enable

Figure 17: Python GUI used in quad rotor implementation

The output position and demand data can then be plotted or saved into a .mat file. The two buttons, run
and stop control when the program executes. The stop button is also setup to stop the motors on the
quad rotor when pushed in the event that it flys off to somewhere it shouldn't.

23

Vicon

The Vicon interface was written in PyQT4's QNetwork module. This module makes writing network
servers and clients easy. The module defines TCP on the level of sockets and handles all low level
communication leaving the code to just read and write to the socket. By reimplementing the Vicon
interface and running under Linux, we were able to drop packet loss to under .5%. Unfortunately
running the code under Windows still shows over 50% packet loss. The Vicon was configured to stream
the data instead of polling the Vicon for it's data. This also helps reduce latency since the Vicon doesn't
have to process the request before sending the data and sends it once it is generated. Since the data
being sent is just x,y,z position data of each individual marker, the data needs to be converted into the
position and angles of the quad rotor. To do this, there are four balls on the quad rotor, one on each
blade. There is another ball to give one rotor a known indicator so the Vicon can tell which rotor is
which. By defining two vectors between adjacent pairs of markers, the code finds the center of the quad
rotor's position by least mean squares. Once it has the center position, it creates four normalized
vectors from this position to the four rotor markers. It then creates a discrete cosine matrix for each set
of adjacent rotors and then uses these to find Phi, Theta, and Psi. These angles are then averaged for the
four marker pair sets to help improve the accuracy.

Controller

Since Scipy allows for importing data from .mat files, we were able to import the A, B, C, D, and K
matrices directly from Matlab's saved files. The Python code then converted these matrices into the
discrete time versions by taking their exponential. The actual feedback loop's ran the following steps:

1. Grab data from Vicon

2. Convert coordinates to body coordinates

3. Find velocity and angular velocity by taking the change in position from the last position to
the current and dividing by the timestep.

4. Take the difference between the demand and feedback and multiply it by the K matrix.

5. Convert the output from rads/s to PWM counts by our fitted curve.

6. Send the PWM values to the serial object to transmit to the quad rotor

There are a few points to note here. The first is that we blocked on read until the data came in from the

Vicon which essentially made the whole loop triggered by new data from the Vicon. This was to reduce
as much latency as possible in the system. We decided to go with a pure discrete derivative since the
Vicon is more accurate than 1mm, so the quantization noise will be low. By loading Matlab's saved files,
it is very easy to change the controller without having to change any of the code. This gives one of the
main advantages that Realtime Workshop had. In order to make sure the GUI would still be responsive
and not slow down the controller, the entire controller was also implemented into it's own thread. Since
the system we ran the program on had a dual core processor, this allows one core to to run the
controller without any slowdowns.

Simulator

In order to verify the implementation of the controller, a simulator was built into the program. By
comparing the output from Simulink to to the output of the implementation, we were able to guarantee
the implementation was bug free. In order to do this, a simulated Vicon was created that ran the model

24

on the outputs that are sent to the quad rotor. By calling the controller thread with this simulated Vicon,
the simulations could be ran without touching a line of code in the controller. A plot of the output from
our Simulink model and from the Python simulator for a Z-step change are shown in Figure 18.

_ Figure 1 <3> v (2 3%
File Edit View [nsert Tools Deskiop Window Help ¥ File Edit View |nsert Tools Deskiop Window Help
D& | :RAODEL- |G 08| aD Ngde| kR0 EL- 2 08| aD
12r Zr
L 15F
1|
06+
05k
06
o |—
04+
_ns|
0zr
A
8 150
0z 2
2 4 [i} 10 12 14 16 168 20 1} 2 4 [i} 10 12 14 16 18 20
"hOO +& E@ OO+ BE
12 2.0
— phi — North
W — theta
— phi
— X
0.8 —y
z
0.6
0.4
0.2
0.0
=04 5 10 15 20 —205 5 10 15 20

4
Figure 18: Python simulator step responses

The only difference between the data from the two is the Simulink model also plots velocities where the
Python model doesn't since it is not something that is fed back from the Vicon.

Quad rotor software

Since all of the processing and control is done off board the quad rotor, the software that the quad rotor
is running is very simple. All it does is wait for data to come in on the Xbee which is attached to it's UART
port. When data is received, the Atmega checks for the hex byte OxAA, which is the start byte. It then
receives the motor PWM values twice and a stop byte 0x55. It makes sure the two copies of the PWM
values are equal and if they are sends each one to one of the PWM timers. Sending the data twice was

25

chosen since there were some issues trying to send a checksum from Matlab/Simulink and the 120hz
sample rate means the data sent to the quad rotor is only about 10% capacity on the Xbee wireless link.

Experimental Data

There is no data to present regarding the actual flight characteristics compared with the simulation
results since the quad rotor did not achieve autonomous flight. This section will describe testing that
was done on the quad rotor in order to quantify its parameters.

Motor Validation and PWM to Angular Velocity Mapping

The motors had to be tested to ensure approximately similar characteristics. In order to do this a test
apparatus was created to hold the quad rotor stationary as we ramped up the PWM counts. The angular
velocity was captured using a home built tachometer and an oscilloscope. The test apparatus is shown
below.

Tachometer

Test Stand

Quad Rotor Blade

Oscillgscope
(in background)

Figure 19: Apparatus for measuring angular velocity

As the blade passes through the tachometer, the tachometer measures two pulses per revolution. In
addition to capturing angular velocity, motor voltage, current and PWM counts were recorded and
tabulated for each of the four motors. The raw data is included in the appendix and the resulting plot is
shown below in Figure 11.

26

Mapping PYWh to Angular Welocity

240

220

200

180

160

radfs

140

120

100

1 1
o0 100 1450
YW counts

Figure 20: Plot of the 4 different motors speed vs. PWM

Mapping PYWh to Average Angular Yelocity of all 4 Motaors
240 -

20F
200
180 -

160 -

raifs

120

100 -

1]
50 100 150
Py counts

Figure 21: Average Angular Velocity vs. PWM

Figure 12 above shows the average of all the motors’ angular velocities versus PWM counts. The average
was taken because the plots of the individual motors were all very close. This greatly simplifies the
process as we can now use just one function to map the feedback. Inverting and fitting the data give the
results below.

27

Lookup Table Plot

T T T T T T T
160
1ok fix) = a%exp(b™x) + cTexp(d™x) ¢ PV vs, aveSpeed
Laokup Curve
a=0.09704
120 b =0.03012 -
c=2823e-014
g 1ok d=0.1571 i
= R-square: 0.9936
g g0 1
~ eof .
40+ .
20+ 1
OE - I ! I I ! !

100 120 140 160 180 200 220
Awerage Angular Welocity (rad/s)

Figure 22: Statistical Fit for the average angular velocity vs. PWM

The results of this test have dire consequences. While it is nice to have a mapping between the angular
velocity and PWM counts, the mapping is non-linear and shows the dynamic range that we can actually
achieve with the current hardware configuration is a very large limiting factor. The results shown in
Figure 13 are being used as a software lookup table but the small dynamic range with only an 8-bit
resolution is not adequate.

Conclusions and Further Development

Since the quad rotor is not quite in a state where it can fly, there are several areas in the hardware,
software, controller, and model that can be improved in order to get the quad rotor flying. Of all the
changes that can and need to be made, it looks like the hardware issues are currently most limiting to
achieving flight.

Hardware

There are three main issues with the quadrotor's hardware. The first is the circuit really doesn't have
enough bulk capacitance. The second is the PWM counts to voltage needs to be linearized. The third is
the resolution of the PWM device needs to be raised.

When the motor's PWM switches, there are huge transients in the circuit which effected the Xbee's
ability to communicate. Our current solution was to add capacitance on the motors. This might have not
been the best place to put it and these capacitors should have been placed on the power rails. This is
because placing the caps on the motors are not well mounted and could easily break off. The second
issue is this limits the response of the motor.

28

The second issue of non-linear PWM to voltage is what really killed our ability to fly the quad rotor. Our
testing shows that it is caused by the optio-isolator. In figures 23-26, we show the input and output from
the optio-isolator in the circuit for PWM counts 10, 50, 100, and 150. The yellow trace shows the input
and the blue trace is the output. For this test, the motors were disconnected to make sure the issue was
not caused by them. As can be seen, the blue trace takes a long time to fall on the longer pulses. We
then isolated the optio-isolator and tested it straight from a function generator. These plots are shown
in figures #i#Ht and #it##. What this is showing is that there is an issue with the drive voltage on the LED
for the optio-isolator. If the voltage is high enough to get the full 11v out, the output transistor takes a
long time to fall. If the drive voltage is low, the transistor doesn't turn on hard enough and the output
voltage is low. Adding a mosfet to the output of the optio-isolator had negligible effect on it's
performance. This means any version 2 will need to use a different optio-isolator.

Table 4: Identifying the problem with the opto isolator

SIS

1
Ao, i prmm—— |
|
|
Ch1_500mv M20.0us A Chl S 780mV Ch1_500mv M20.0us A Chl S 780mv
11Jun 2010 - 11)un 2010
i+~ —25.20004s 14:08:01 L 2520000 IHUKISG

Chl 500mVv M20.0us A Chl & 780mv Ch1 500mv M 20.04s A Chil & 780mv
11Jun 2010
14:09:15

11 Jun 2010
14:10:01

¥ —25.2000U5 i+~ —25.2000u5
Figure 25: PWM = 100 Figure 26: PWM =150

29

Chl 5.00V M20.0us A Chl 5~ 4.30V

_ 11)Jun 2010
+v —25.2000U5 14:45:43 Flgure 28

Figure 27

The third and biggest issue is we are currently using 8-bit PWM. Even if our optio-isolator was ideal, our
simulations show this would not be enough. With limited output resolution, the quad rotor has to move
a long distance from the set point before the controller acts strong enough to change the PWM output
and the fine control gets lost in the rounding. By simulating the effect of our non-linear PWM with the
quadrotor trying to hover, our results for our aggressive LQR controller show the quad rotor drop over
25 centimeters before it finally stabilizes as shown in figures 29 and 30. By simulating an ideal linear 8-
bit PWM, we were able to get the steady state error for this set point down to 18 centimeters as shown
in figures 31 and 32. Moving to a 12-bit controller, the performance would be greatly increased with less
than 1.5 centimeters of steady state error as shown in figures 33 and 34. The ideal solution is to use 16-
bit PWM controllers which would reduce the steady state error to just 1.8 millimeters as shown in
figures 35 and36 In order to do this, it would be best to find a chip that just connects up to the existing
microcontroller over SPI and outputs 16-bit PWM. Texas Instruments looks to have a line of ICs designed
for LED applications that can do this.

30

010 — north phi
—— east 0.015 theta
— south psi
—— west x
0.05 Y
z
0.010 1
0.00
0.005
=0.05
0.000
5 10 15 0 5 10 15 20
Figure 29 Figure 30
T T T 0.0020 .
0010 —— north — phi
— east ; — theta
— south - — psi
west 0.0015 o
0.005 | — Y
z
0.0010
0.000
0.0005
~0.005
0.0000 [<
i o o 5 10
5 10 15 20
. Figure 32
Figure 31
phi
1.0 020 theta
08 el
x
06 015 ¥
z
o4
0.10 p
02
0.0
0.05 q
-0.2
04 0,00
5 10 15 20 5 1 15 20
Figure 33 Figure 34

31

— phi |
— theta
— psi

l north
3.0
east

south
west

25 |

2.0 I z
‘ -0.10

15 |
| -0.15

L0

=0.20
05
| ‘ | -0.25

0.0 Il Il

o 5 10 15 2

Figure 35 Figure 36

With these three hardware fixes, we are confident that the quad rotor will fly. There are several other
hardware options to extend the design even further. These would include adding an IMU to supplement
the Vicon data, adding feedback for the battery voltage as it drops over it's charge cycle, and putting this
on a PCB and improve mounting. However these are secondary issues that could be left to being
addressed until after the quad rotor is flying.

Currently all the software works, but there are a few bugs in various places and parts that can be
improved. Probably the biggest is in handling of the translation from Vicon markers to position and
angles. Currently, if one of the balls goes out of view, the data we get back is garbage or the position is
unsolvable. It may be possible to figure out the data that is needed if one marker disappears.
Unfortunately if more than one disappear, there isn't really a way to figure out the position. At this
point, the code could be modified to turn off the quad rotor since it may be going completely out of
range with the Vicon. The other way to solve this problem would be with an IMU. Another improvement
to software would be to add realtime plotting of the data. This would give better feedback besides just
the sliders on what is actively going on. This should be doable with the matplotlib. The last major issue
that should be fixed in the software is error handling. Right now if something happens, the known errors
are just printed to the console and the unknown ones can crash parts of the program. These issues
should be caught by an error handler and fed to the user or fixed in the code. The one place were this
issue shows up is in the network implementation. It seems that on starting the code gets a packet it
doesn't like which requires it to timeout before it starts running. Likewise there is an issue where once
the controller is stopped, the program must be restarted because it doesn't like one of the network
packets it sees when it is started back up. These bugs should be fixed just to make the software easier.

32

References

[1] B. Heemstra, “Linear quadratic methods applied to quadrotor control”. M.S. thesis, University of
Washington. 2010.

[2] C. Balas, “Modeling and linear control of a quadrotor”. M.S. thesis, Cranfield University. 2007.
https://dspace.lib.cranfield.ac.uk/bitstream/1826/2417/1/Modelling%20and%20Linear%20Control%
200f%20a%20Quadrotor.pdf

[3] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control techniques applied to
an indoor micro quadrotor”, 2004 IEEE/RSIJ International Conference on Intelligent
Robots and Systems, 2004. (IROS 2004). Proceedings, vol. 3, pp. 1-6.

[4] P. Castillo, A. Dzul, and R. Lozano, “Real-time stabilization and tracking of a four-
rotor mini rotorcraft”, IEEE Transactions on Control Systems Technology, Vol 12,
No 4, July, 2004.

[5] P. McKerrow, P., "Modelling the Draganflyer four rotor helicopter", 2004
IEEE International Conference on Robotics and Automation, April 2004, New
Orleans, pp. 3596.

[6] Observability. (2010, March 29). In Wikipedia, The Free Encyclopedia. Retrieved 00:26, April 24, 2010,
from http://en.wikipedia.org/w/index.php?title=Observability&oldid=352709914

[7] S. Waslander, G. Hoffmann, J. Jang, C. Tonlin, “Multi-agent quadrotor testbed control design: integral
sliding mode vs. reinforcement learning”, 2005 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2005.

[8] A. Kivrak, “Design of control systems for a quadrotor flight vehicle squipped with inertial sensors”,
M.S. thesis, Atilim University, 2006.

33

Appendix

Parts List
Name Part Number Distributor Cost Qty. Ext.
2100mAh 11.1v LiPo TP-2100-3SPL2 rctoys.com $47.99 1 $47.99
Deans Battery Connector DE-ULTRA rctoys.com $3.55 2 $7.10
900MHz Dipole Antenna WRL-09143 Sparkfun $7.95 1 $7.95
Digi XBee Pro 900 WRL-08768 Sparkfun $44.95 2 $89.90
XBee Explorer USB WRL-08687 Sparkfun $24.95 1 $24.95
Atmel ATMega328P COM-09061 Sparkfun $4.30 2 $4.30
3W 3.3v DC-DC Regulator 445-2474-ND Digikey $11.37 2 $22.74
20.000 MHz Crystal 300-8507-ND Digikey $0.63 2 51.26
22pF Ceramic Cap BC1005CT-ND Digikey $0.08 10 S0.76
6-pin header 609-3218-ND Digikey $0.37 1 $0.37
Optioisolator 160-1370-5-ND Digikey S0.75 1 $0.75
PTC Fuse F3189-ND Digikey $0.84 1 50.84
Protection Diodes 1N4007 UW EE Store $0.20 4 S0.80
Resistors (carbon film 5%) N/A UW EE Store $0.10 8 $0.80
MOSFETs (N-channel) MTP3055 UW EE Store $1.00 4 $4.00
5v Regulator LM317T UW EE Store $0.60 1 S0.60
3.3v Regulator LM78L05 UW EE Store $0.40 1 S0.40
Total $215.51
Controller Gain Matrices
Q= R=
1 0 0 0O0O OO O 0O O0 O0@O 0.1000 0 0 0
0O 1. 0 0 00O O O O O0OTUWO 0 01000 o0 O
0O 01 0o 000 O O O 00O 0 0 0.1000 0
0O 0 0O1 0 OO O O O OO0 0 0 0 0.1000

34

OO OO0 O0oOOoOOo
OO OO0 O0oOOoOOo

OO OO0 O0oOOoOOo
OO OO0 O0OOoOOo

OO O O0OO0OO0OOoO K

(el elNelelololl el
OO0 oO0OO0Oo0Orr oo

O O oo
O O oo
O O oo
O O oo

100 0 0 O

Oo0ooorooOo
o oo
oor
oOr o
Soo

Columns 1 through 7

3.6888
-0.0000
-3.6888

0.0000

0.0000
3.6791
0.0000
-3.6791

-9.0550
-9.0550
-9.0550
-9.0550

Columns 8 through 12

-0.0000 6.0434 67.8528 -0.0000
-5.9652 0.0000 -67.8528 -20.0579
-0.0000 -6.0434 67.8528 -0.0000
5.9652 0.0000 -67.8528 20.0579

20.2081 15.7807 2.1651 -0.0000 -4.9764
-0.0000 2.1644 -4.9764
-20.2081 15.7807 -2.1651 0.0000 -4.9764
0.0000 -15.7807 0.0000 -2.1644 -4.9764

0.0000

-15.7807

35

e % S - l
Cusdotor Ogromme.s /
z A « K ol
G
L4 f
) _b‘r;\ :
X ZFapmx Trerkial Famg
EM=T5
Ll a\ . "
s T cwglor viedoci [L’al?/)

“ - Vdoc.’{rg in]:Uc/g. fome

V o~ N A
VT okebiond %
P velac?}% ™ ‘::w/g, fame dodt T
g X 1 . Eolr onghes s ovendetion of
L 1 13 §= e Ye bods cxis WRT Wedsl
. ¥ G
stode vecto
~ _ P Pasibie oF budy dvowe IR
X ggﬂ >'< d PK
- = X
- L

5
Zx\
= s m%}[
el

b

> newturs o B v ineds) fome, S6
d—i%?t -GL/bV 4—&\);; %

dt

SFe AT 1 e) b sh b b
"‘"(de/bvbm%xv) ;1>3%)£7v- - S = L XV

2F= Fé‘t +'Ef" F;; =10 =3 Fb:: ~Sin®
e J mg cos B s d
"4 c0s& cos @
. Y
F—; :215 < 75-' = g_&?é .szmgh/ﬂ" V(‘,/ocféav of J)%
g=

|
W

'RT. ‘I'ﬂé’f‘}m 'G'w--d.—

]

u P
‘/] (775; =[€

Fuces e call, XM
Mo boc’a ?‘Zq_,g

SM=Té =T = ad_ Ipb,. on/g i ine—tial SFame !
£]; ‘

® 4

dt

/Iw-“?’o ﬁ'/ IN[,/,_‘ + (/\);/(;X-INbA; sare- m@t— s %PW_P
b

:
=M= a%l,) Ty + Wiy X T/

< /Iub/,, = SM =ty xTn); =p olc‘ Whp = L s - I“'(Nb/., XI.!—JM)

cl i
S M= M:’ '*.M; T M. M = moment due do Lhue b §
' MF t " b rok.#o? 76 bees ‘

Mg = v gy recopre rction, ,

Yy

@Vh%:g-(r vaf) - is distorce Sam corber oF pmss o pte

/

O
S s cnly about the
?/MR-:.' k(_Q +_j2 -_Q_‘ - 02)[o] p‘-‘!«ax:.w IS only & |

!

T

| | P L 2 z =)| 0 —_| 4 b
o dfifrptrnsmsaf])>([{haff]

hrst
;Wrﬂ:ﬂ.j,,-l- ‘ Yaw mom{‘flé

j’il_ d = #(@)“&ﬁ ihre U(x) 5 o daskemation petoy |

¢ | 4omBsnd temOasd || P l
@, d =0 cos@ ~Sh@ %
d{, 0 St d __C_p_é_é. i

cose SIS I

d_i@;i = C%\/b |

. coc¥ Bs¥ - 56 TM
@9 A[pjlz ~Cfsy +sdsoc ¥ cgcy + BsOsY sPco V4

dt]|
n 545V +cdsoct -s@cv +cgsesv cPc O

x

Y

L

s

[l |

@JL[
dt

W/

<

W

S

+
.

<
e

T<¢

4]) H

cosgs @ [ty 10 ru - pw

o fo - ‘351'n9 - AR B Vel
ﬁvL 3 = g'azs&.smé “~rn + P
gcm@m@ + T - PV g

vV — g — q5n&

= pPW-vu + 495,6,5:‘n¢ N b(I 2,2, 2
T gu-pv o+ 5505436039 P WY+ H gt Ly

[reaec]]

[}

O
p= O . 5““6_3*'17 = Sinscost +wes st

=R +4AP ;
Sin O+Ax) ¥ SmAX o dx
cos (%, tAx) = cosdx » |

nwonoy

O

e

:'}‘E, +AY ’%'

b+ 41 Av) — (o ag)lin+a0) - gsnler 40)

O\ =
fﬂ;\/o + AV VA +ArAV) ~ (g.,wo + godb) +obdg +4g Ao

- glstnaces 4 + cosqsinas)

= - ~g Sn Ao 4O
LAY ~dgde =g Snde

Snall " Smad]
LA =-55:‘V\AQ = —3A@

V= ‘éLJ/A\@- Acdu + gch@swA.é WV :— g Zo;.dé’,_sm4¢
.SW\W'} sl ..-g

LD = g(_o_sA¢@5A¢ +-%(5%0‘f“‘lbf+l5‘f.?8‘mu,) ;

	Palm_Nelson_Bradford.pdf
	Executive Summary
	Table of Figures
	List of Tables
	Project Description
	Customer
	Project Plan

	Literature review and related work
	System model
	Plant Identification
	Reference Frame
	Model States
	State-Space Representation

	Performance Specifications, Controller Design & Simulations
	Controller Design
	Simulation
	Simulation Results

	Hardware, Electronics, and Software design
	Hardware
	Vicon Vision System
	Quad rotor Hardware
	Power Stage
	Motor Drive Stage
	Motor Controller
	Wireless Receiver

	Software
	Previous software attempt
	Software requirements and implementation
	Software components
	GUI
	Vicon
	Controller
	Simulator
	Quad rotor software

	Experimental Data
	Motor Validation and PWM to Angular Velocity Mapping

	Conclusions and Further Development
	Hardware

	References
	Appendix
	Parts List
	Controller Gain Matrices

	quadDyn_derivation
	pg1
	pg2.pdf
	pg3

