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Executive Summary 
Quad rotor UAV Project: final report is the final milestone report for EE 449: Controls System Design. A 
quad rotor test bed has been built that utilizes an infrared vision system to track the position of the 
vehicle. In order to have a stable system, the quad rotor dynamics are quantified and a controller 
designed to meet the performance specification of a 10 second step response.  

While the system simulation shows results that meet the above requirement, the system 
implementation has proven unsuccessful. An error analysis of the problem reveals a non-linear mapping 
between the motor control input and the angular velocity of the rotor blades. This fact combined with 
an to small of a resolution for pulse-width modulation results in a range of velocities that cannot 
respond to the perturbation of hovering conditions.  

Further research is has been conducted on the problem and is linked specifically to the opto-isolator 
being driven with too high of a voltage giving a fall time that is far too slow. Given additional time and 
patience, the problem could be fixed by replacing the opto-isolator with a faster device and using a 
micro controller capable of higher PWM resolution.  
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Project Description 
The quad rotor UAV project is was originally selected because of the complexity and wow factor. There 
have been a few other colleges in the world who are dedicating enormous resources to similar projects. 
Being part of a team that establishes a working test bed for the University of Washington has been a 
great experience. The project itself is straightforward: using a hobby quad rotor frame, design, build, 
and test hardware and software control structure that uses feedback to achieve autonomous flight. 
Actual implementation has proved to be not quite as straightforward. The quad rotor project is a very 
ambitious task to complete in ten weeks. The trade off in the complexity of the project is enormous 
intellectual gains.   

Customer 
Our customer for this project is Professor Mehran Mesbahi who heads up the DSSL lab here at the 
University of Washington. His lab focuses on numerous areas of controls in engineering such as 
guidance, navigation and control of both single and multi-platform aerial (and space) systems. Our 
customer requested that we design a control system able to autonomously fly a quad rotor to a specific 
location, or waypoint, in 3D space utilizing the overhead Vicon positioning system.  

Project Plan 
The project plan was divided into five major milestones each spaced approximately two weeks apart.  

1) Project Description and Plan of Work 
2) System Model 
3) Controller Design 
4) Controller Implementation / Hardware / Software 
5) Project Demonstrations 

 The sequence that we met these milestones was out of sequence with the required milestones. 
Experience told us to get the hardware done as soon as possible as this is often requires a lot of 
debugging time. By doing so, and because of unforeseen difficulties, we fell behind slightly with the 
System Modeling and Controller design. After working closely with our customer and other professionals 
we were able to complete the milestones only slightly behind schedule. The final implementation was 
time stressed toward the end of the quarter and we failed to achieve autonomous hover. In lieu of this, 
we have done extensive failure analysis and is included later in the report under sections Experimental 
Data and Further Development.  

Literature review and related work 
The quad rotor project required extensive research into similar systems. By reviewing others work, we 
used this insight to develop our system. To this end, research papers from various quadrotor groups 
were used as guides in the early development of the dynamics and control theory.  

Quad rotor platforms used in research remain somewhat the same, having four electric motors pointed 
vertically upwards and equally spaced in a square fashion. However, there were some groups whom 
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designed their own platforms, where as commercial models available to the consumer were the 
DraganFlyer, the X-UFO and the MD4-200. 

One such platform is the Stanford Test-bed of Autonomous Rotorcraft for Multi-Agent Control 
(STARMAC) uses a modified DraganFlyer IV quad rotor (the same frame as we are using). Their system 
uses LQR techniques as well as Integral Sliding Mode (ISM) control. The STARMAC also incorporated an 
onboard micro controller/IMU.  

The single most valuable resource to us during this project was the work that Brain Hemstra did while 
working with the DSSL lab last year. Brian’s master thesis entitled Linear Quadratic Methods Applied to 
Quad rotor Control provides a working simulation that we used to gain insight and understanding while 
working through the complicated dynamics of the quad rotor system.  Another big advantage of having 
this resource is that many of the parameters of interest (thrust, inertia, etc) were already well 
quantified. 

System model 
In this section, the quad rotor system’s multiple inputs and outputs will be identified and the equations 
of motion governing the dynamics of the system will be derived. The first step is to identify the plant and 
the inputs and outputs of the plant itself and then to establish the framework to derive the equations of 
motion using Newton’s Laws.  

Plant Identification 
 

 

Figure 1: Plant Identification 

Figure 1 shows the inputs and outputs of the plant. The inputs are angular velocities in  radians per 
second and the output is a 12x1 vector which is discussed below. The angular velocity is converted 
through an airfoil blade. The Dynamics of the airfoil blade is included in the dynamics of the plant. In 
order to control the angular velocity of the blades, we must control the voltage applied to the motors in 
the quad rotor.  Figure 2 below shows how the motors can be controlled through pulse-width 
modulation (PWM) the axel of the motor is geared with a five to one reduction gear. The result of 
varying duty cycles of the motor drive stage results in varying angular velocities. 
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Figure 2: Controlling angular velocity via PWM 

 

Reference Frame 
 The quad rotor system operates in two coordinate frames: inertial and body. The inertial frame (also 
referred to as the earth frame) is the coordinate axis where Newton’s Laws apply. To complicate 
matters, the countering forces to achieve hover are applied to the body frame which is fixed to the quad 
rotor itself and is allowed to rotate and translate. This dual-frame coordinate system is shown below 
along with a free body diagram of the quad rotor system.  
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Figure 3: Coordinate Axis and Free-body Diagram 

Now that the coordinate reference frame is identified we can begin to represent the system 
mathematically. The Mechanism through which the quad rotor can be controlled is thrust provided by 



9 
 

airfoil blades attached to four independently controllable motors attached at a fixed distance (l) from 
the center of the quad rotor (P). By varying the relative magnitudes of the thrusts, we can control the 
attitude (yaw, pitch, roll) and position (X,Y,Z) of the system in  inertial coordinates. As mentioned 
previously, the thrust forces are applied in the body frame; therefore, transformations must be made. 

Model States 
In the previous subsection, we showed how the quad rotor system can be described using body 
coordinates and inertial coordinates. Now we define the states of the system that include a mixture of 
body and inertial components comprised of translational and rotational positions and velocities. 
Referring to Figure 1, we define the following vectors: 

𝑣𝑏 = �
𝑢
𝑣
𝑤
� 

translational velocity in the body frame 

𝜔𝑏 = �
𝑝
𝑞
𝑟
� 

rotational  velocity in the body frame 

Φ𝑖 = �
𝜙
𝜃
𝜓
� 

attitude (yaw,pitch,roll) in the inertial frame 

𝑟𝑖 = �
𝑥
𝑦
𝑧
� 

position in inertial frame 

 

Combining the four vectors defined above yields the state vector 𝑥 = �𝑣𝑏 𝜔𝑏 Φ𝑖 𝑟𝑖 �𝑇which is used in 
the derivation of the quad rotor dynamics shown in the appendix  

State-Space Representation 
The basic form of the state space equations are as follows: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

Where u is a vector of system inputs and x is the state vector.  Because the quad rotor is an unstable 
system, we must linearize the system about an operating point. To achieve a hovering condition, we 
effectively want all the states to be zero. Stated differently, if we think of the initial starting condition at 
some position in space (X,Y,Z) and call that point zero, all the allowed states should also be zero. This is 
the easiest point to linearize about since many of the elements after the linearization process go to 
either zero or one.  

In order to expedite the linearization process, Matlab is used by creating a model of the system that 
includes the non-linearized equations of motion. This model is shown below as well as the inner block 
below. Equations of motion written in code are included in the appendix.  
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Figure 4: Plant input/output 

 

Figure 5: Matlab model used to linearize the quad rotor system via the function linmod() 

Figure 2 above represents the plant with angular velocity in radians per second (rad/s) and outputs as 
the state vector described earlier (mixed units).  The Matlab function linmod() requires a set point for 
the system. In order to achieve hover, the motors must be spinning at a particular speed. To find the set 
point one simply must set the sum of the forces acting on the system to zero.  

𝐹𝐺 = 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 

𝑚𝑔 =
1
4
𝑏𝜔2 
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𝜔 = �
𝑚𝑔
16𝑏

= 82.4981 𝑟𝑎𝑑/𝑠 

Substituting the calculated value into the linearized input equation 𝜔2 = 2𝜔Δ𝜔 = 164.98Δ𝜔 where Δ𝜔 
is the input perturbation angular velocity. This result shows the motors must spin at 164.98 rad/s for the 
given system mass in order to achieve hover. To verify that this is correct, the non linearized model is 
tested with a constant 164.94 (rad/s) applied at the input. The resulting plot is shown below.  

 

Figure 6: Open loop test for linearization set point 

One can see that the value being (164.98 [rad/s]) used is fairly accurate as the altitude only drops by 
6cm in 100 seconds without any feedback. Some clarification here is necessary: There is no floor on the 
simulation executed; that is, the quad rotor is being allowed to travel ‘through the ground’ just to 
demonstrate the correct linearized angular velocity was chosen. The plot of the linearized model is 
omitted here as it is simply zero throughout the 100 second simulation. 

Included in  are the model parameters identified in the hand derivation included in the appendix. The 
values shown are taken from Brian Heemstra’s work last year using the same quad rotor.  

Table 1: Parameters used in model 

Parameter Symbol Value Units 
Mass m .589 Kg 

Thrust Parameter b 4.3248e-5 Kg m 
Torque Constant k 5.96927e-8 N m s2 

Inertial Matrix I 
�
6.532𝑒 − 3 0 0

0 6.6944𝑒 − 3 0
0 0 1.2742𝑒 − 2

� 
Kg m2 

Distance to motor 
1 

r1 [0.2319 0  0]𝑇 M 

Distance to motor 
2 

r2 [0 0.2319 0]𝑇 M 
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Distance to motor 
3 

r3 [−0.2319 0 0]𝑇 M 

Distance to motor 
4 

r4 [0 − 0.2319 0]𝑇 M 

 

Now that we have a means to linearize the system through Matlab, well defined input trim conditions 
along with a reasonable estimate of the true model parameters, the linear model can be generated. The 
resulting A,B,C and D matrices below are seen to be Observable and Controllable.  

Table 2: Linearized State space representations 












































−

=

000000000100
000000000010
000000000001
000000100000
000000010000
000000001000
000000000000
000000000000
000000000000
000000000000
0000081.9000000
000081.90000000

A
 

 













































−−−−
−

−−

=

0000
0000
0000
0000
0000
0000
0000

2470.2470.2470.2470.
5066.05066.0
0297.0297.0297.0297.
0000
0000

B
 

 
 













































=

100000000000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001

C  0=D  

 

 

  



13 
 

Performance Specifications, Controller Design & Simulations 
The performance specifications that were designated at the outset of the project versus what has been 
achieved are quite different. Through iterating through different control designs, we were able to 
simulate step responses that gave reasonable performance- though still far from our initial 
specifications. The over-estimated response problem comes from not really knowing what the quad 
rotor was/is capable of. The current performance specification is 10 second step response with no 
steady state error.  The following sections will describe the Controller design and show the simulation 
results. 

 Controller Design  
The first iteration through the controller design process used only inertial coordinates and heading 
(yaw). While altitude and yaw stability were stable, any horizontal command led to oscillatory behavior. 
This method was quickly thrown out as it does not use full state feedback, the commands could not be 
decoupled, and tuning the PID controllers was quite a tedious task. For these reasons, a Linear Quadratic 
Regulator (LQR) is used to find a gain matrix K. 

 The LQR method works by minimizing a cost function that allows the user to set weights on different 
degrees of freedom. The effect of this is creating a gain matrix that sets the closed loop eigenvalues 
further from the imaginary axis to increase the aggressiveness of the response. Often the tradeoff for 
this is overshoot and perhaps some steady-state error.  

 The Q and R matricies used in the controller that is in place on the quad rotor is shown in the appendix. 
The effect of the Q and R matrices is to assign a heavier weight to altitude and yaw control efforts. One 
can see the entries Q(9,9) corresponding to yaw control and Q(12,12) have different weights compared 
to the rest of the entries. This shoves the poles for those degrees of freedom further to the left. The 
eigenvalues for the closed loop system are shown below.  

Table 3: Eigenvalues of the closed-loop system 

  -3.3801           
  -1.6174 + 2.3011i 
  -1.6174 - 2.3011i 
  -3.4233           
  -1.6315 + 2.3073i 
  -1.6315 - 2.3073i 
  -0.5667 + 0.5493i 
  -0.5667 - 0.5493i 
  -1.0010           
  -1.0009           
  -0.2327 + 0.2326i 
  -0.2327 - 0.2326i 

 
One can see that the simulated system should be stable as all the eigenvalues are in the left-half plane. 
The gain matrix that gives those eigenvalues is also listed in the appendix. In the next section, the 
simulation of the system is described and results discussed. 
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Simulation 

 

Figure 7: Matlab simulation with non-idealities included 

Figure 7 shows a screen-shot of the simulation built to demonstrate the control law design. The 
Command box on the left includes a set point of a hovering condition and step changes in the X,Y,Z and 
yaw positions.  The error between the setpoint and the actual postion is sent into the gain matrix 
described in the last section. This gain matrix calculates the necessary angular velocities that are then 
sent into the motors. The motor saturation and the effect of slightly different responses of the different 
motors are included in the loop as well to simulate as closely as possible the true nature of the system.  
The quad rotor dynamics block is shown below.  

 

Figure 8: State space representation used in simulation 

The simulation includes the A,B,C, and D linearized matrices. The output of the block is the state vector. 
This vector is then parsed to simulate the effect of vicon data and python script that actually calculates 
the position, attitude, translational, and angular rates (the latter two in body coordinates). The 
Vicon/Python block is shown below.  
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Figure 9: Simulating Vicon data and python script and estimating states 

 Since the data that is coming in from the Vicon system is in inertial coordinates, the data must be 
transformed into body coordinates through a direction cosine matrix transformation. The result is 
differentiated to get a rate and place in the appropriate spot in the state vector. The Euler Angles 
(yaw,pitch, roll) are also differentiated to give angular rates. The position and Euler angles are passed 
through the loop and placed in the state vector. Included in the feedback loop is a 10 ms delay to 
simulate latency of the network communication and the entire simulation is run in discrete steps of 
1/120 seconds which corresponds to the maximum frame rate of the Vicon vision system.   

Simulation Results 
The following four plots show a simultaneous step response in X,Y,Z, and yaw. Each of the translational 
step changes are 0.5 meters and the yaw step change is 30 degrees.  The simulations show a rise time of 
under five seconds and settles by 13 seconds. These meet the performance specification of a 10 second 
step response in altitude.  

 

Figure 10: 0.5m step change in Z 
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Figure 11: 0.5 m step change in Y 

 

 

Figure 12: 0.5m step change in X 
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Figure 13: 30 degree step change in yaw 

It should be noted here that the simulation does not take into account a necessary mapping from 
angular velocity to pulse-width modulation counts.  The simulation results and how the actual system 
performs are quite different unfortunately. It is said sometimes that simulations are doomed to succeed.   

Hardware, Electronics, and Software design 
In this section, we will discuss the hardware implementation of the quad rotor system. Figure 8 shows a 
system level diagram of the hardware software and feedback.   

 

Figure 14: Overview of Hardware level Feedback loop 
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Hardware 
There are three pieces of electronics hardware used in the control setup, the Vicon vision system, a 
laptop running Simulink with the control loop and the electronics hardware on the quad rotor. Since the 
laptop is mostly software, discussion of that will be put off until the software section of this report. We 
will be discussing the other two components here.  

Vicon Vision System 
The Vicon vision system is comprised of 3 components. The Vicon cameras, the Vicon hardware 
processor, and the Vicon host computer. There are six Vicon cameras placed on the ceiling in the DSSL 
lab. Each camera is 2 megapixels and runs at 120fps. The system tracks an area that is about 8'x6'x5'. 
These cameras are infrared black and white cameras. By using special reflective balls on the subject, the 
Vicon cameras use IR LEDs to reflect off of the balls producing an image that once filtered is all black 
except for the balls which reflect the IR light. By figuring out which pixels in each of the six images 
received back the balls cover, the system is able to accurately place the balls in the area to about .1mm 
accuracy. This data is processed on the Vicon hardware processor and sent to the Vicon host computer 
over a dedicated network link. This data is read in real time by the proprietary Vicon Nexus software. 
This software has a server running that the Simulink laptop can pull the data from the system through 
and will be discussed further in the software section. We are using this system because it was a 
requirement from the DSSL lab and gives about the best possible accuracy of any position tracking 
setup. 

Quad rotor Hardware 
The electronics hardware on the quad rotor is shown below in Figure 12. There are four sections, the 
motor drive stage, the motor controller, the power stage which provides 3.3v and 5v power to the board 
and the wireless receiver. The PCB was assembled using protoboard since putting a breadboard on a 
flying object didn't seem like a good idea and manufacturing a PCB would have been about $100 for a 
prototype run. This board attaches directly to the motors and the battery. The only other electronics on 
the quad rotor are filtering capacitors on the motors. The total cost for the hardware for the quad rotor 
is $215.51 the price breakdown is shown in the appendix. 
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Figure 15: PC Board showing component location 

Power Stage 
The power stage consists of a pair of linear voltage regulators. A 5 volt TLE7805 regulator is used for the 
microcontroller and a LM317 for the Xbee transmitter running at 3.3 volts. These parts were chosen due 
to having them on hand when we went to assemble the PCB.  

Motor Drive Stage 
In order to control the thrust of the rotors, we must control the speed of the motors. Arguably the most 
used method to accomplish this is through pulse width modulation.  A circuit was designed to take a 0-
5V pulsed signal and boost this to a 0-11V signal to use to switch a MOSFET on and off as a DC chopper 
configuration. The circuit used is shown in Figure 9.  
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Figure 16:  Motor Driver Stage 

 

The components were chosen to handle the current draw requirements of the motors which is around 4 
amps max and to provide isolation between the power stage and the micro controller. The MOSFETs 
(MTP3055) were selected for their performance, reliability, price and due to familiarity having used 
them on another EE related project. The MTP3055 are rated at 12A max current load, 0.15Ω on 
resistance, and are also ideal for switching applications. Next is the Opto-Isolator (LTV-847) which comes 
as a quad package perfectly suited for our four drive stages, 4µs rise-time which is 25 times our base 
frequency of 10KHz and were very cheap at $0.75. Switching protection diodes are installed across the 
Motor to allow for freewheeling- current flow due to back EMF as the motor spin during the off cycle. 1 
KΩ pull-up resistors are used to bias up the gate of the MOSFET in its linear region. Lastly is the Li-
Polymer 3 Cell Battery which is rated at 2100mAhr, giving us a empirically determined flight endurance 
of approximately 40 minutes. However, we expect a typical flight on the order of 20 minutes. This 
battery gives us almost twice the capacity as the one that came with the original quad rotor. 

Motor Controller 
In order to control the motor, we decided on the Atmel ATMega328p microcontroller. This 
microcontroller was chosen due to having the PWM outputs we needed, the serial link to the Xbee we 
need, and already having familiarity with the microcontroller and owning the programmer. The motor 
controller is currently running off an external crystal at 20MHz. This was chosen so we could achieve a 
reasonable PWM speed of 10KHz and allow a high serial data rate to the XBee of 115200 Kbps. 
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Wireless Receiver 
In order to communicate with the quadrotor we decided to go with a pair of 900MHz XBee radios. These 
radios offer two way communication with the quadrotor over a standard UART serial link. They provide 
156 Kbps data rate and a line of sight range of 6 miles. These were chosen so the quadrotor could 
eventually be flown outside without having to worry about the signal fading out. The 900MHz radios 
were chosen due to having compact antennas while providing low link losses and not have issues with 
interference on the 2.4GHz band. While the current setup only sends 9600 bit/s, the high data rate was 
chosen due to it's lower latency and having extra bandwith for sending retries creating a more robust 
wireless link. 

Software 
Software implementation for the quad rotor project went through numerous iterations during the 
design process and was paramount to the success that were made. This section discusses the software 
in detatil.  

Previous software attempt 
The original plan was to use Realtime Workshop in Simulink to implement our controller. This was 
chosen since it would be easy to transition from simulation to implementation and would allow for 
plenty of time to test and troubleshoot the controller. This idea worked well and was implemented up to 
the point of interfacing the Vicon into Simulink. Since the Vicon isn't supported by default in Simulink, it 
required writing a custom S-Function to retrieve data. After spending a week working on this, the 
interface worked in the regular Simulink, but would not compile for Realtime Workshop. The other 
issues was in trying to get the Simulink model to be timed and trigger when data is received from the 
Vicon. Since the timing between the model and the Vicon was separate, this could introduce up to an 
additional 8ms of latency in the system. Due to these issues and not being confident the simulation was 
calculating time steps properly, we decided to abandon using Realtime Workshop. 

Software requirements and implementation 
Since using Realtime Workshop in Simulink was not able properly interface with the Vicon, a 
replacement was required. From the testing of the quadrotor up to this point and looking at what would 
be required to implement the controller, the following requirements were set: 

• Fast and easy to implement and make changes 
• Ability to verify implementation 
• Realtime diagnostics and data logging capabilities 
• Safe way to start and stop the quad rotor 

In order to meet these requirements, it was quickly decided that programming the controller to the 
ATmega was not a good idea since it wouldn't give us any way to verify the implementation or any type 
of diagnostics on what is happening. Since it was required to use a computer to interface with the Vicon 
and send the data to the quad rotor, it made sense to run the feedback on the same system. In order to 
keep the implementation easy, it was decided a language with powerful vector numerical computation 
capabilities was required. In order to get realtime diagnostics and start and stop the quad rotor, it was 
decided a GUI was also needed. In order to meet these requirements and use something that was 
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familiar, we selected to use Python. By itself, Python is a powerful language that is fast and easy to read 
and write and has a large selection of libraries to use.  In order to get the functionally that was required, 
the following libraries were used: 

• Scipy – Scientific computing toolbox for Python. Gives most of the functionality of Matlab to 
Python. 

• Numpy – Provides fast N-dimensional array manipulation to Scipy 
• Matplotlib – Plotting library. Used to generate Matlab like plots from Python. 
• PyQT4 – Application framework that gives Python bindings to Qt4, which is the framework KDE4 

is built off of. Used for it's ability to create GUIs, implement network communication, and 
support creating and managing multiple threads. 

• PySerial – Serial communication for Python. Used to send serial commands to the quad rotor 
over the Xbee link 

• PyGame – Game development framework for Python. Used for it's ability to interface with 
Joysticks. 

Software components 
All in total, there was about 1500 lines of python written for our final implementation and about 75 lines 
of C that ran on the quad rotor. Most of this code ended up going into framework for supporting the 
controller. In total the controller itself takes up about 200 lines of code. While a lot of code wouldn't 
have been needed to be written to get the quad rotor working, by creating the framework around the 
controller and having the ability to save and plot data and see real time output to the motors allowed 
for easy debugging and troubleshooting of issues when testing. By not having this robust framework, 
figuring out where the problems were would have been much more difficult and it would have taken 
more time to test and run than it did to program the extra code. 
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GUI 
Of the 1500 lines of Python were written to control the quad rotor, Over half the code ended up being 
to dedicated to creating the GUI, which is shown in Figure 17. The GUI is divided into four sections, the 
Vicon interface, the serial interface, the joystick interface, and the control and plotting interface. The 
Vicon interface allows the user to connect to the Vicon and shows real time position of the quad rotor 

both in absolute position and also position relative to a point. This point can be set with the zero button. 
The serial interface is used for connecting to the serial output that the Xbee is connected to. This section 

also has four sliders that show the current output to the motors. The sliders change from blue to red 
when the output is enabled indicating that it is really sending data to the quad rotor. The joystick 

module is for open loop testing. It allows connecting a joystick and shows four sliders for the axis of the 
joystick. The control and plotting interface allows the user to control what the program should do. There 
are three modes of operation, open loop with a joystick, closed loop, and simulation. The user can give a 
waypoint and a time the quad rotor should start moving to it or load a set of waypoints from a .mat file.  

 

Figure 17: Python GUI used in quad rotor implementation 

The output position and demand data can then be plotted or saved into a .mat file. The two buttons, run 
and stop control when the program executes. The stop button is also setup to stop the motors on the 
quad rotor when pushed in the event that it flys off to somewhere it shouldn't. 
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Vicon 
The Vicon interface was written in PyQT4's QNetwork module. This module makes writing network 
servers and clients easy. The module defines TCP on the level of sockets and handles all low level 
communication leaving the code to just read and write to the socket. By reimplementing the Vicon 
interface and running under Linux, we were able to drop packet loss to under .5%. Unfortunately 
running the code under Windows still shows over 50% packet loss. The Vicon was configured to stream 
the data instead of polling the Vicon for it's data. This also helps reduce latency since the Vicon doesn't 
have to process the request before sending the data and sends it once it is generated. Since the data 
being sent is just x,y,z position data of each individual marker, the data needs to be converted into the 
position and angles of the quad rotor. To do this, there are four balls on the quad rotor, one on each 
blade. There is another ball to give one rotor a known indicator so the Vicon can tell which rotor is 
which. By defining two vectors between adjacent pairs of markers, the code finds the center of the quad 
rotor's position by least mean squares. Once it has the center position, it creates four normalized 
vectors from this position to the four rotor markers. It then creates a discrete cosine matrix for each set 
of adjacent rotors and then uses these to find Phi, Theta, and Psi. These angles are then averaged for the 
four marker pair sets to help improve the accuracy. 

Controller 
Since Scipy allows for importing data from .mat files, we were able to import the A, B, C, D, and K 
matrices directly from Matlab's saved files. The Python code then converted these matrices into the 
discrete time versions by taking their exponential. The actual feedback loop's ran the following steps: 

1. Grab data from Vicon 
2. Convert coordinates to body coordinates 
3. Find velocity and angular velocity by taking the change in position from the last position to 

the current and dividing by the timestep. 
4. Take the difference between the demand and feedback and multiply it by the K matrix. 
5. Convert the output from rads/s to PWM counts by our fitted curve. 
6. Send the PWM values to the serial object to transmit to the quad rotor 

There are a few points to note here. The first is that we blocked on read until the data came in from the 
Vicon which essentially made the whole loop triggered by new data from the Vicon. This was to reduce 
as much latency as possible in the system. We decided to go with a pure discrete derivative since the 
Vicon is more accurate than 1mm, so the quantization noise will be low. By loading Matlab's saved files, 
it is very easy to change the controller without having to change any of the code. This gives one of the 
main advantages that Realtime Workshop had. In order to make sure the GUI would still be responsive 
and not slow down the controller, the entire controller was also implemented into it's own thread. Since 
the system we ran the program on had a dual core processor, this allows one core to to run the 
controller without any slowdowns. 

Simulator 
In order to verify the implementation of the controller, a simulator was built into the program. By 
comparing the output from Simulink to to the output of the implementation, we were able to guarantee 
the implementation was bug free. In order to do this, a simulated Vicon was created that ran the model 
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on the outputs that are sent to the quad rotor. By calling the controller thread with this simulated Vicon, 
the simulations could be ran without touching a line of code in the controller. A plot of the output from 
our Simulink model and from the Python simulator for a Z-step change are shown in Figure 18. 

 

Figure 18: Python simulator step responses 

The only difference between the data from the two is the Simulink model also plots velocities where the 
Python model doesn't since it is not something that is fed back from the Vicon. 

Quad rotor software 
Since all of the processing and control is done off board the quad rotor, the software that the quad rotor 
is running is very simple. All it does is wait for data to come in on the Xbee which is attached to it's UART 
port. When data is received, the Atmega checks for the hex byte 0xAA, which is the start byte. It then 
receives the motor PWM values twice and a stop byte 0x55. It makes sure the two copies of the PWM 
values are equal and if they are sends each one to one of the PWM timers. Sending the data twice was 
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chosen since there were some issues trying to send a checksum from Matlab/Simulink and the 120hz 
sample rate means the data sent to the quad rotor is only about 10% capacity on the Xbee wireless link. 

Experimental Data 
There is no data to present regarding the actual flight characteristics compared with the simulation 
results since the quad rotor did not achieve autonomous flight. This section will describe testing that 
was done on the quad rotor in order to quantify its parameters.      

Motor Validation and PWM to Angular Velocity Mapping 
The motors had to be tested to ensure approximately similar characteristics. In order to do this a test 
apparatus was created to hold the quad rotor stationary as we ramped up the PWM counts. The angular 
velocity was captured using a home built tachometer and an oscilloscope. The test apparatus is shown 
below.  

 

Figure 19: Apparatus for measuring angular velocity 

As the blade passes through the tachometer, the tachometer measures two pulses per revolution.  In 
addition to capturing angular velocity, motor voltage, current and PWM counts were recorded and 
tabulated for each of the four motors. The raw data is included in the appendix and the resulting plot is 
shown below in Figure 11.  

Tachometer 

Oscilloscope 
(in background) 

Test Stand 
Quad Rotor Blade 



27 
 

 

Figure 20: Plot of the 4 different motors speed vs. PWM 

 

Figure 21: Average Angular Velocity vs. PWM 

Figure 12 above shows the average of all the motors’ angular velocities versus PWM counts. The average 
was taken because the plots of the individual motors were all very close. This greatly simplifies the 
process as we can now use just one function to map the feedback.  Inverting and fitting the data give the 
results below. 

 



28 
 

 

Figure 22: Statistical Fit for the average angular velocity vs. PWM 

The results of this test have dire consequences. While it is nice to have a mapping between the angular 
velocity and PWM counts, the mapping is non-linear and shows the dynamic range that we can actually 
achieve with the current hardware configuration is a very large limiting factor.  The results shown in 
Figure 13 are being used as a software lookup table but the small dynamic range with only an 8-bit 
resolution is not adequate.   

Conclusions and Further Development 
Since the quad rotor is not quite in a state where it can fly, there are several areas in the hardware, 
software, controller, and model that can be improved  in order to get the quad rotor flying. Of all the 
changes that can and need to be made, it looks like the hardware issues are currently most limiting to 
achieving flight. 

Hardware 
There are three main issues with the quadrotor's hardware. The first is the circuit really doesn't have 
enough bulk capacitance. The second is the PWM counts to voltage needs to be linearized. The third is 
the resolution of the PWM device needs to be raised. 

When the motor's PWM switches, there are huge transients in the circuit which effected the Xbee's 
ability to communicate. Our current solution was to add capacitance on the motors. This might have not 
been the best place to put it and these capacitors should have been placed on the power rails. This is 
because placing the caps on the motors are not well mounted and could easily break off. The second 
issue is this limits the response of the motor. 
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The second issue of non-linear PWM to voltage is what really killed our ability to fly the quad rotor. Our 
testing shows that it is caused by the optio-isolator. In figures 23-26, we show the input and output from 
the optio-isolator in the circuit for PWM counts 10, 50, 100, and 150. The yellow trace shows the input 
and the blue trace is the output. For this test, the motors were disconnected to make sure the issue was 
not caused by them. As can be seen, the blue trace takes a long time to fall on the longer pulses. We 
then isolated the optio-isolator and tested it straight from a function generator. These plots are shown 
in figures #### and ####. What this is showing is that there is an issue with the drive voltage on the LED 
for the optio-isolator. If the voltage is high enough to get the full 11v out, the output transistor takes a 
long time to fall. If the drive voltage is low, the transistor doesn't turn on hard enough and the output 
voltage is low. Adding a mosfet to the output of the optio-isolator had negligible effect on it's 
performance. This means any version 2 will need to use a different optio-isolator. 

Table 4: Identifying the problem with the opto isolator 

 
Figure 23: PWM = 10 

 
Figure 24: PWM = 50 

 
Figure 25: PWM = 100 

 
Figure 26: PWM = 150 
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Figure 27 

 

 
Figure 28 

 

The third and biggest issue is we are currently using 8-bit PWM. Even if our optio-isolator was ideal, our 
simulations show this would not be enough. With limited output resolution, the quad rotor has to move 
a long distance from the set point before the controller acts strong enough to change the PWM output 
and the fine control gets lost in the rounding. By simulating the effect of our non-linear PWM with the 
quadrotor trying to hover, our results for our aggressive LQR controller show the quad rotor drop over 
25 centimeters before it finally stabilizes as shown in figures 29 and 30. By simulating an ideal linear 8-
bit PWM, we were able to get the steady state error for this set point down to 18 centimeters as shown 
in figures 31 and 32. Moving to a 12-bit controller, the performance would be greatly increased with less 
than 1.5 centimeters of steady state error as shown in figures 33 and 34. The ideal solution is to use 16-
bit PWM controllers which would reduce the steady state error to just 1.8 millimeters as shown in 
figures 35 and36 In order to do this, it would be best to find a chip that just connects up to the existing 
microcontroller over SPI and outputs 16-bit PWM. Texas Instruments looks to have a line of ICs designed 
for LED applications that can do this. 
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Figure 29 

 
Figure 30 

 
Figure 31 

 
Figure 32 

 
Figure 33 

 
Figure 34 
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Figure 35 

 
Figure 36 

 

With these three hardware fixes, we are confident that the quad rotor will fly. There are several other 
hardware options to extend the design even further. These would include adding an IMU to supplement 
the Vicon data, adding feedback for the battery voltage as it drops over it's charge cycle, and putting this 
on a PCB and improve mounting. However these are secondary issues that could be left to being 
addressed until after the quad rotor is flying. 

Currently all the software works, but there are a few bugs in various places and parts that can be 
improved. Probably the biggest is in handling of the translation from Vicon markers to position and 
angles. Currently, if one of the balls goes out of view, the data we get back is garbage or the position is 
unsolvable. It may be possible to figure out the data that is needed if one marker disappears. 
Unfortunately if more than one disappear, there isn't really a way to figure out the position. At this 
point, the code could be modified to turn off the quad rotor since it may be going completely out of 
range with the Vicon. The other way to solve this problem would be with an IMU. Another improvement 
to software would be to add realtime plotting of the data. This would give better feedback besides just 
the sliders on what is actively going on. This should be doable with the matplotlib. The last major issue 
that should be fixed in the software is error handling. Right now if something happens, the known errors 
are just printed to the console and the unknown ones can crash parts of the program. These issues 
should be caught by an error handler and fed to the user or fixed in the code. The one place were this 
issue shows up is in the network implementation. It seems that on starting the code gets a packet it 
doesn't like which requires it to timeout before it starts running. Likewise there is an issue where once 
the controller is stopped, the program must be restarted because it doesn't like one of the network 
packets it sees when it  is started back up. These bugs should be fixed just to make the software easier.  
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Appendix 

Parts List 
Name Part Number Distributor Cost Qty. Ext. 

2100mAh 11.1v LiPo TP-2100-3SPL2 rctoys.com $47.99 1 $47.99 

Deans Battery Connector DE-ULTRA rctoys.com $3.55 2 $7.10 

900MHz Dipole Antenna WRL-09143 Sparkfun $7.95 1 $7.95 

Digi XBee Pro 900 WRL-08768 Sparkfun $44.95 2 $89.90 

XBee Explorer USB WRL-08687 Sparkfun $24.95 1 $24.95 

Atmel ATMega328P COM-09061 Sparkfun $4.30 2 $4.30 

3W 3.3v DC-DC Regulator 445-2474-ND Digikey $11.37 2 $22.74 

20.000 MHz Crystal 300-8507-ND Digikey $0.63 2 $1.26 

22pF Ceramic Cap BC1005CT-ND Digikey $0.08 10 $0.76 

6-pin header 609-3218-ND Digikey $0.37 1 $0.37 

Optioisolator 160-1370-5-ND Digikey $0.75 1 $0.75 

PTC Fuse F3189-ND Digikey $0.84 1 $0.84 

Protection Diodes 1N4007 UW EE Store $0.20 4 $0.80 

Resistors (carbon film 5%) N/A UW EE Store $0.10 8 $0.80 

MOSFETs (N-channel) MTP3055 UW EE Store $1.00 4 $4.00 

5v Regulator LM317T UW EE Store $0.60 1 $0.60 

3.3v Regulator LM78L05 UW EE Store $0.40 1 $0.40 

    

Total $215.51 

 

Controller Gain Matrices 
Q = 
 
     1     0     0     0     0     0     0     0     0     0     0     0 
     0     1     0     0     0     0     0     0     0     0     0     0 
     0     0     1     0     0     0     0     0     0     0     0     0 
     0     0     0     1     0     0     0     0     0     0     0     0 

R = 
 
    0.1000         0         0         0 
         0    0.1000         0         0 
         0         0    0.1000         0 
         0         0         0    0.1000 
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     0     0     0     0     1     0     0     0     0     0     0     0 
     0     0     0     0     0     1     0     0     0     0     0     0 
     0     0     0     0     0     0     1     0     0     0     0     0 
     0     0     0     0     0     0     0     1     0     0     0     0 
     0     0     0     0     0     0     0     0   100     0     0     0 
     0     0     0     0     0     0     0     0     0     1     0     0 
     0     0     0     0     0     0     0     0     0     0     1     0 
     0     0     0     0     0     0     0     0     0     0     0    10 
 

 

 
K = 
 
  Columns 1 through 7 
 
    3.6888    0.0000   -9.0550   -0.0000    6.0434   67.8528   -0.0000 
   -0.0000    3.6791   -9.0550   -5.9652    0.0000  -67.8528  -20.0579 
   -3.6888    0.0000   -9.0550   -0.0000   -6.0434   67.8528   -0.0000 
    0.0000   -3.6791   -9.0550    5.9652    0.0000  -67.8528   20.0579 
 
  Columns 8 through 12 
 
   20.2081   15.7807    2.1651   -0.0000   -4.9764 
    0.0000  -15.7807   -0.0000    2.1644   -4.9764 
  -20.2081   15.7807   -2.1651    0.0000   -4.9764 
    0.0000  -15.7807    0.0000   -2.1644   -4.9764 
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