
1. Introduction

The critical role of stochasticity in biology has been studied
in many contexts - such as creating variations required to survive
in hostile environments [1], regulating circadian clocks [2], and
probabilistic differentiation in developing cells [3]. If we system-
atically characterize the stochasticity in each context, we gain the
ability to control these biological functions. The ability to control
the development of multicellular systems, for one, holds fantastic
futures like replacement organs grown in vitro or smarter drugs
that only target tumors. With such potentials, then, which feature
of stochasticity in development should we focus on?

In the development phase of multicellular organisms, an iso-
genic group of cells differentiates into multiple groups of het-
erogeneous cells with different epigenetics. This behavior can
be likened to a group of people performing a leader election.
To fairly elect a leader, the group can repeatedly and separately
perform a task that has probabilistic outcomes, where one of the
outcomes is the victory outcome. For example, a coin-toss with a
head. After some number of tries, if an individual is the first one
who ends up with a head among the group, he or she becomes a
leader - effectively differentiating him or her from the group. The
leader can then send signals to the rest of the group, telling them
to stop flipping coins and become followers - again differentiating
them from their undecided state, as well as from the new leader.
Thus, it is not farfetched to imagine that a similar mechanism
takes place inside a developing organism.

Let us assume that an individual ends up with a head for the
first time after h tries. Because coin-tosses have probabilistic
outcomes, h is also a random variable. And as such, h is char-
acterized by its probability distribution. Let us assume that this
probability distribution can be manipulated somehow - by biasing
the coin, for example - then, the variance of h has an interesting
interpretation in the leader election example. If the variance of h
was set small, the probability of multiple undecided individuals
each ending up with the victory outcome in a short amount of
time is large - in other words, the victory outcomes are closely
synchronized, and the group may end up with multiple leaders.
However, if the variance is set large, the victory outcomes are
asynchronous and the group is less likely to have multiple leaders.
Therefore, the probability distribution of h affects the population
distribution of differentiated states of leaders and followers.

In the following sections, we discuss the translation of the
leader election example into a cellular context, specifically in the
development phase, and propose a possible biological equivalent
to the biased coin. Then we discuss the ways to characterize the
probability distribution of h (or some equivalent random variable
in the proper context), both with theoretical analysis by posing the
scenario in mathematical language, and with experiments by syn-
thesizing the biological biased-coin equivalent. This discussion of
characterization methods is followed by required backgrounds in
both theory and experiments, as well as related works in the field
that serves as helpful starting points for the proposed research.
Some preliminary results are discussed in the last section, along
with recommendations and proposed future works.
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2. Approach and Objectives

As long as the proposed mechanism is probabilistic, one can
suggest several intracellular environment analogs to the coin-flip
example, such as protein dimerization, folding, or saturation. Let
us consider the protein saturation example, where at t = 0, the
gene coding for the protein of interest, X, gets activated and there
is no X present. The gene begins to express X and the count
number of X (NX ) increases as long as the gene remains activated
and the rate of X degradation is less than the rate of X synthe-
sis. If the gene is deactivated before NX reaches the saturation
value, then NX begins to decrease until the gene is activated again.
This process of gene activation and deactivation occurs repeatedly
until at some time t = Tc, the count number of X reaches the
saturation value. This time Tc is analogous to h in the coin-
flip example, and we call Tc the completion time of the protein
synthesis process. And as mentioned earlier, the distribution of
the differentiated states of the cell population with the gene X is
affected by the probability distribution of Tc.

There can be a number of ways to manipulate the proba-
bility distribution of the completion time in this example. One
way is varying the frequencies of gene activation and deactiva-
tion. Another way is varying the mechanism that activates the
gene - an open-loop activation from external inputs or a feed-
back activation/deactivation by X. Frequency variations change
the quantitative features of the gene regulation, and feedback or
open-loop variations change the qualitative features of the gene
regulation. The relationship between the quantitative and quali-
tative features of gene regulation and the probability distribution
of the completion time will help us understand the fundamental
design principles employed by nature to perform development
and differentiation in multicellular organisms. Therefore, we pro-
pose the following objectives to guide the investigation of such
relationship.

− Synthesize single-gene networks in E. coli. Three different
mechanisms of gene regulation will be studied in this research
- open-loop, positive feedback and negative feedback. The syn-
thetic gene network corresponding to an open-loop mechanism
will have a single gene that is activated by some external inputs.
For the two feedback mechanisms, a single gene network that
expresses either its own repressor or activator will be synthe-
sized, to correspond to a negative or positive feedback mecha-
nism, respectively. All of the gene networks will be synthesized
with inducible promoters and fluorescence protein gene. The
inducible promoters allow us to measure the completion time by
setting the initial time to when the promoter is induced, and the
level of fluorescence emitted by the fluorescence protein is used
to monitor the gene activity.

− Mathematically model the three gene networks. Using the
Chemical Reaction Network theory, we will model the interac-
tions among the gene network species. We apply a variety of
stochastic analysis tools to the models in order to characterize
the completion time, its probability distribution, and sensitivity
to parameter variations and structural variations. Such analysis
tools include the Chemical Master Equation (CME), the Sto-
chastic Simulation Algorithm (SSA), and cumulant and moment
dynamics. We will identify the qualitative differences of the
gene networks arising from the difference in structure, and dis-
cuss how they can make each structure a better or worse suited
mechanism used in development processes. In addition to the
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qualitative features, quantitative features regarding the change in
parameters will be investigated. The limitations on the probabil-
ity distribution of completion time placed by physically feasible
parameter values may also explain why a certain structure is
more frequently observed in development than others.

− Iteratively verify predictions made in the models with ex-
periments and modify the models based on the experimen-
tal results. The gene activity is monitored by measuring the
level of fluorescence emitted by the synthesized fluorescence
protein. The probability distributions of the completion time
in these synthetic gene networks will be approximated using
cellular assays, such as time-lapse microscopy or flow cytom-
etry. Time-lapse microscopy allows us to monitor the individual
trajectory of fluorescence level in a single cell and the time at
which the fluorescence level reaches some saturation value. On
the other hand, flow cytometry reveals the distribution of flu-
orescence level at each measurement. Therefore, by measuring
the fluorescence distributions at multiple times, we can study the
distribution dynamics of the fluorescence level. And from the
dynamics, we will approximate the fraction of the population
that has reached the saturation value at each measurement time.
The experimental results will be used to invalidate some of the
candidate models and point out the features that require modifi-
cation to attain better fidelity to the actual systems The modified
models, in turn, are used to design experiments that will better
highlight the key features of the systems. The mathematical
model predictions obtained from this iterative process will iden-
tify the salient features of development process and allow us to
synthesize gene networks with the complexity comparable to the
naturally occurring examples.

The following section will provide a broad overview of the
fundamentals in both theory and experiments to accomplish our
objectives. Two specific related works are discussed afterwards,
each with a focus on theory and experiments respectively. These
works were chosen based on their close proximity to the objec-
tives of the proposed research, and served as a foundation for ob-
taining the preliminary results that are discussed in a later section.

3. Background and literature review

3.1. Overview. As the biotechnology steadily advances, re-
searchers are able to synthesize gene regulatory networks with
increasing precision and success. These synthetic gene networks
are built from borrowed biological components of natural ge-
netic regulatory parts, such as promoters and transcription factors.
Though manipulating genetic materials is not a new technology,
synthetic biology is different from traditional genetic engineering
in its intention to engineer novel behaviors, such as oscillation or
bistability [4, 5]. The underlying objectives of these synthesis-
based approach to biology is to identify and isolate the salient
features of complex gene networks and discover the nature’s de-
sign principles. And synthetic biology is strenghthened by two
complementary approaches of mathematical theory and biologi-
cal experiments. A well-established study of differential equa-
tions is used to analyze the dynamics of the systems [6], linear
systems theory the stability and controllability [7], and probabil-
ity theory the stochastic behaviors in the mesoscopic level of bi-
ological molecules [8], to name a few. At the same time, increas-
ing efficiency of cloning techniques [9], decreasing cost of DNA
synthesis and sequencing [10], and the advance of experimental

equipments all contribute to engineering biological test beds for
verifying hypotheses obtained from mathematical theories. As
the objectives of the proposed research spans both theory and
experiments, the rest of the background section is divided into two
sections to address the fundamentals of each aspect separately.

3.2. Theory. The theory of Chemical Reaction Network was
originally developed to provide a standardized foundation from
which a mathematical description of chemically interacting species
inside a fixed volume can be derived [11]. The CRN of a given
system contains chemical species (Xi) that interact with respect
to some reaction (R j), the stoichiometric coefficients of reactants
(ui j) and products (vi j) of the chemical reactions, and the rates
of these interactions (λ j). From this description, using the Law
of Mass Action, the dynamically changing concentrations of the
chemical species are modeled by a set of ordinary differential
equations. This method translates smoothly into the context of
biological interactions inside a cell. Cellular environments are
no different from the environments inside a chemical processing
plant, such that they have biochemically interactions, reactant and
product species of these interactions, and numerical values that
describe the rates of the interactions. However, the key difference
is that whereas chemical systems tend to have a large quantity
of each species, the quantity of biological molecules tend to be
present in much smaller quantities. Thus, chemical species can be
expressed as continuous variables, whereas biological molecules
must be expressed as discrete variables. Additionally, the stochas-
ticity of the biochemical interactions become more pronounced in
a system with species in small quantities. Therefore, biochemical
systems, such as gene regulatory networks require mathematical
description that properly addresses the discrete copy number of
species and the stochasticity of interactions.

The discrete values of biochemical molecules inside gene
regulatory networks allow us to model the systems as discrete-
state continuous-time Markov processes [12]. Let the species
of an arbitrary gene regulatory networks be denoted by a vector
S = [S1, · · · ,Sn], and the number of each species are denoted by
Xi. Each discrete state of the system is then denoted by the vector
X = [X1, · · · ,Xn]. And because the stochasticity of gene networks
forces the description of the system from a deterministic value to
a probability distribution over the states, we define the probability
of the system in state X at time t to be p(X, t). The vector of the
probabilities of all the states is p(t) and the probability vector,
given some initial distribution p0, evolves according to the fol-
lowing master equation.

ṗ(t) = Qp(t).(1)

The above equation is the Chemical Master Equation, and the
matrix Q= [qi j] contains the rates of system transitions from state
j to state i [13]. The analytical solution of (1) is

p(t) = eQtp0.(2)

Do not be mislead by the elegantly simple form of the solution, as
the matrix exponential, eQt , requires an infinite sum of high com-
putational cost. Instead of solving for the probability distribution
dynamics analytically, a numerical alternative exists, where the
exact realizations of the corresponding CRN can be obtained.

The Stochastic Simulation Algorithm (SSA) was developed
to numerically simulate individual trajectories of the species of an
arbitrary stochastic chemical reaction network [14]. The method
employs the fact that 1) each rate of a chemical reaction is the
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inverse of the mean waiting time for the reaction, and 2) the prob-
ability of a reaction is equal to the ratio of the reaction propensity
to the sum of all reaction propensities. Then, the time evolution
of a stochastic system can be approximated by generating a large
number of simulations of the system and studying the dynamics of
each species. It should be clarified that the probability distribution
dealt with in the CME corresponds to the joint probability distri-
bution of each specific state, P([X1 = x1, · · · ,Xn = xn] , t), whereas
the approximated probability distributions obtained via SSA are
the marginal probability distributions of all species, P(X1, t). Thus,
it is more straightforward with the SSA to portray the time-evolution
of each species probability distribution. However, this numerical
algorithm requires that the initial condition and the rate constants
be specified a priori, which means that if an analysis requires a
different set of rates or initial conditions, a whole new set of large
number of simulations is required to study the specific condition.

An alternative approach of characterizing the evolution of
the probability distribution for stochastic biochemical systems is
to compute the cumulant dynamic of each species of the system
[15]. The cumulants of a random variable are set of values that
characterizes the shape of the corresponding probability distri-
bution. For example, the second order cumulant of a random
variable is its variance and is representative of the width of the
probability distribution. The cumulants are computed using the
cumulant generator function,

GX (s) = log
⟨
esX⟩ ,(3)

where X is the random variable and ⟨·⟩ denotes the expected value.
The nth order cumulant of X is computed by taking the nth deriv-
ative of (3) with respect to s and setting s = 0. Usually, no more
than the first four cumulants are computed for a given species,
because cumulants of order five or higher have no straightforward
interpretation related to the probability distribution characteris-
tics. The time evolution of these cumulants requires an additional
function called the extended generator. Let ψ(X(t)) be some test
function of state X(t), then the expected value of this test function
evolves according to the following equation.

d ⟨ψ(X(t))⟩
dt

= ⟨Lψ(X(t))⟩

=
m

∑
j=1

λ j
(
ψ(X j(t))−ψ(X(t))

)
,(4)

where the X j(t) is the state after the reaction R j : X(t) 7→ X j(t)
has occurred, λ j is the reaction rate constant, and L is the ex-
tended generator. The cumulant dynamics is then obtained by
letting ψ(X(t)) = GX (s), and solving the resulting set of ordinary
differential equations. An interesting connection exists between
the cumulant dynamics and the differential equation obtained by
using the Law of Mass Action, such that the first order cumu-
lant dynamics is equal to the deterministic dynamics predicted by
Mass Action kinetics. In fact, this is not surprising because the
first order cumulant its the mean of the population and Law of
Mass Action predicts the average behavior of the population.

3.3. Experiments. Within a single cell resides a genome, a
chain of DNA molecules, that contains all the genetic information
the cell needs to harvest energy, reproduce and survive. The
genome alone, though mighty in its information content, cannot
make a living organism. It requires molecular machinery that
actualizes this information in useful form, thus is the function of
RNA and protein. DNA is transcribed into RNA, and in turn the

RNA is translated into protein, and proteins are the true workers
of biological functions [16]. The role of protein molecules as
the regulators of genomic information transfer is the most critical
with regards to the viability of an organism. If the processes of
transcription and translation were not properly regulated, in other
words if the entire genome was uniformly transcribed and trans-
lated, it would mean a disaster for the cell. Therefore, there exists
intricately connected networks of gene regulation that allows cells
to allocate energy, respond to its environment and procreate.

The two major components of gene regulatory mechanisms
are promoters and transcription factors (TF). TFs are protein com-
plexes that act either as a repressor or an activator by binding to
the promoter of a gene. Promoters are short sequence of DNA that
are located at the 5’-end of a gene and are recognized by RNA
polymerase to initiate an RNA synthesis. A bacterial promoter
has two short 6 basepair long sequences that are conserved in
most promoters, called the consensus sequences. The rest of
the promoter sequences are composed of operators that serve as
binding sites for specific TFs. A large number of TF and pro-
moter pairs have been identified in metabolic pathways, signal
transduction pathways, and developmental regulatory pathways.
The known pairs of TF and promoter are used to design and build
synthetic gene regulatory networks by arranging them in spe-
cific configurations [17, 18]. For example, the critical structure
of stress response in B. subtilis were identified by synthesizing
the same gene network, but with one of the two feedback loops
(coupled positive and negative feedbacks) removed [19]. The syn-
thetic network, when transformed inside cells, prohibited the cells
from leaving their competence state, showing that the removed
feedback is critical to the overall mechanism of B. subtilis stress
response.

Feedbacks are not observed just in this specific example of
transient differentiation. In fact, feedback mechanisms are fre-
quently observed in a number of gene regulatory network classes.
A class of gene networks that give rise to stochastic state switch-
ing, such as cancer and developmental differentiation, has been
consistently shown to contain positive feedback loops [20, 21,
22, 23]. Another class of behavior that arises from containing
positive feedback loops in the gene regulatory networks is pro-
crastinating differentiation [24]. Procrastination refers to the phe-
nomenon observed in isognenic cells, that when triggered for spe-
cific response (e.g. sporulation, apoptosis), the response time of
each cell widely vary within the microcolony and results in varied
states of the population. This phenomenon is an example of the
relationship between the probability distribution of completion
time and the distribution of differentiated state mentioned in the
previous section.

3.4. Related Works. One way of deriving the analytical ex-
pression of completion time probability distribution is to solve
the CME of the system in Laplace domain [25]. In this work,
a kinetic proofreading (KPR) process was modeled by a Markov
chain with an absorbing state, where the absorbing state corre-
sponded to the completion of the proofreading process that re-
quired sequential intermediate steps. In recognition that the com-
pletion time is essentially the first-passage time of Markov chain,
they performed Laplace transform to the solution of the CME
shown in (2) to obtain the analytical expression [26]. The solution
showed that the distribution of first-passage time approaches a
limiting behavior, depending on the direction of the bias imposed
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by the transition rates - forward to the sink state, or backward
to the initial state. However, the solution and the conclusion
is limited to an open-loop system where the transition rates are
independent of the states. Though the authors simulate systems
with site-varying transition rates by using randomly generated
values and expand their conclusion, this is quite different from
site-dependent transition rates of feedback mechanisms. It will
be interesting to investigate whether a similar conclusion can be
drawn from biochemical processes with feedback.

Another example is the library of hybrid promoters created in
combinatoric fashion using operating sites from multiple natural
promoters [27]. Promoters usually have more than one operating
sites that are recognized by transcription factors. The authors
isolated these operating sites from natural promoters and con-
structed hybrid promoters through random DNA assembly. The
expression level of these hybrid promoters were characterized in
consistent conditions, which allows the construction of reliable
synthetic gene networks.

4. Preliminary Results

4.1. Construction and assay of positive feedback gene net-
works. Even regulated gene regulatory networks often exhibit
some basal leaky expression without explicit activation. And a
system with positive feedback can quickly switch from an off
state to an on state with only a small amount of the output be-
cause of the autocatalysis. Therefore, we wanted promoters that
had minimal leaky expression and gave maximal control over
the range of expression. In [28], hybrid promoters made from
multiple operating sites of natural promoters were shown to have
tighter regulation of leaky transcription than its natural peers. Based
on this result, we selected two hybrid promoters from [27] - A12
and D61 - based on their response inducers and the AND-gate
score. The promoters have operating sites from a pBAD promoter
that is activated by AraC-arabinose complex, and a pLac promoter
that is repressed by LacI protein. Therefore, by inserting the araC
gene downstream of the promoters, we were able to construct a
positive feedback loop. In addition, GFP gene was inserted so that
the expression level can be monitored using fluorescence imaging
techniques. Ideally, the circuit would require both IPTG (re-
lieves LacI suppression) and arabinose (forms the activator AraC-
arabinose complex) in order to express the output proteins. Cur-
rently, we have four different variations of the positive feedback
gene network (shown in Figure 1 (c)) that are sequence verified
and transformed into 3 different strains of E. coli: DH5α , BL21
LacIq, and Keio JW0063-1. Each of four gene circuits either has
A12 or D61 promoter and pMB1, pSC101, or pSB3K3 origin of
replication1.

A preliminary cellular assay using microscope fluorescence
imaging - cells grown on agar with inducer - showed that the cells
with the positive feedback network has slower growth rate than
the cells with open-loop network (1 (a)). A similar observation
was made in a flow cytometer assay - cells were induced at max-
imal concentration of IPTG and L(+)-arabinose, and the fluores-
cence distribution of 50,000 cells were measured at 15 minute
interval (1 (b)). About two hours after the induction, a separate
population of cells with fluorescence level an order of magnitude
larger was observed. However, this population disappeared 30

1Each has a copy number of ∼ 100,∼ 101 and ∼ 102 respectively

minutes afterwards. We hypothesize that this population corre-
sponds to the cells with activated positive feedback, and that the
over-synthesis of protein is affecting the cell viability - in short,
AraC/GFP toxicity is suspected.

4.2. Approximation of completion time distribution.

Gu +X
ka−−⇀↽−−

α ka
Gb

Gb
β1ex−−⇀β1ex−−⇀ Gb +X

Gu
β2ex−−⇀β2ex−−⇀ Gu +X

X
dx−⇀dx−⇀ ϕ(5)

The Chemical Reaction Network shown on the right corresponds
to the positive feedback genetic network discussed in the previous
section. The three chemical species are gene without a tran-
scription factor bound to it (Gu), gene with a transcription factor
(Gb), and the transcription factor (X). The parameters are rates of
transcription factor binding (ka), unbinding-to-binding ratio (α),
ratio of unbound gene expression to a basal expression (β1), ratio
of bound gene expression to a basal expression (β2), and tran-
scription factor degradation/dilution rate (dx). One thousand SSA
realizations of (5) are shown in Figure 2(a). For each trajectory,
we locate the time at which the copy number of X reaches half of
its steady-state value (N) and set this as the response time of the
network to inducers. This response time distribution is shown to
have asymmetric shape (Figure 2 (b)).

For sensitivity analysis of response time distribution, analyt-
ical solution for (2) is required. However, the solution becomes
more unwieldy as the size of the state-space grows. Therefore,
to investigate the response time distribution as a function of the
system parameters, we devised a crude approximation method
using truncated cumulant dynamics. First, we compute the first
and second order cumulants of X , κX (t) and κXX (t) by assuming
at all times t, X is distributed normally. Then, using the normal
distribution function, we compute the fraction of the ensemble
population with X count number less than (N/2) as a function
of time. This turns out to be an approximation of the cumula-
tive distribution of the response time. By taking the derivative
of this function, we are able to approximate the response time
distribution. Though a fair approximation, the function lacks
mathematical rigor. For example, the normal distribution assump-
tion applies to continuous variables, and an alternative method of
approximating the response time distribution is warranted.

4.3. Completion Time Probability Distribution. In this pa-
per, completion is defined as the instance where the population of
a chemical species reaches some saturation value, N/2, and the
completion time is defined as

ti = min
t

{t ∈ T : Xi(t)≥ χ} .(6)

The stochastic nature of gene regulatory networks dictates that
the CTPD is the more appropriate quantity of interest. From
the CTPD, we can derive the fraction of the population that is
completed at any given time.

cumulative distribution of the completion monotonically in-
creasing Fi : R→ [0,1] right

Fi(χ) = 1−P(Xi(t)< χ)(7)
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FIGURE 1. Preliminary experimental results and construction of a positive feedback gene network. (a) Microscope
imaging data over 12 hour duration. The doubling time (∼ 5 hr) is significantly reduced compared to open-loop system.
(b) Flow cytometer data showing the fluorescence distribution over 6 hours. The red circle indicates the separate
population with higher fluorescence level, which is observed for less than an hour before disappearing altogether. (c)
The construction of positive feedback gene networks. Each circuit consists of a hybrid promoter, araC gene and gfp
gene.

FIGURE 2. Thousand realizations of Stochastic Simulation Algorithm of positive feedback network CRN, and
completion time distribution. The parameters used are [k,α ,β1,β2,ex,dx] = [10−3 log(2), 0.1, 1, 10, 10log(2), log(2)]
and the initial condition is [Gunboud ,Gbound ,X ] = [5, 0, 0]. The system is considered complete,when the protein X
reaches one-half of its steady-state value, where the steady-state value is predicted by solving the Mass Action Kinetics
ODE model. The completion time distribution (b) corresponds to the time distribution at the dotted line in (a).

probability distribution of the completion fi : R→ [0,1]

fi(t) = P(Xi(t) = χ)(8)

completion time cumulative distribution

P(χ, t) =
NTotfraction of population with Xi(t)≥ χ

NTot
(9)

In the previous section, the cumulants of chemical species
and the dynamics of the cumulants were obtained directly from
an arbitrary stochastic chemical reaction network. Computing the
probability distribution of a random variable from the cumulants
is an alternative form of a popular problem in mathematics called
the classical moment problem, where the probability distribution
of a random variable is computed from a sequence of moments.
The classical moment problem does not have a definitive solution,
but various approximative algorithms exist.

The assumption that at any given time the population is dis-
tributed normally implies that the cumulants of order three and
higher are all equal to zero. Thus the set of ordinary differential
equations of the cumulant dynamics contains only the first and
second order cumulants of the chemical species, making the task

of ODE solving manageable. Additionally, the normal distribu-
tion assumption allows us to solve for the probability distribution
of the chemical species given the cumulants. For example, let the
first and second order cumulants of a chemical species Xi at time
τ be κ(1)

X ,i (τ) and κ(2)
X ,i (τ). Then the probability distribution of X

at the time is

P(Xi = χ,τ) =
1√

2πκ(2)
X ,i (τ)

exp

(
−
(χ −κ(1)

X ,i (τ))2

2κ(2)
X ,i (τ)

)
.

(10)

The normal distribution has a well-characterized description
of the population distribution with respect to its mean and stan-
dard deviation. This relationship is represented by the erf function
such that the fraction within [κ(1) − n

√
κ(2),κ(1) + n

√
κ(2)] is

equal to erf
(

n√
2

)
. Using this relationship, we solve for the

distance between the mean (µ) and the saturation level (χ) with
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respect to the standard deviation and derive the following equa-
tion

distance between κ(1) and χ = n

=
χ −κ(1)
√

κ(2)
(11)

Using this, we compute the completed fraction of the population,
Xi above χ , at any given time t. Because the normal distribution is
symmetric and the fraction given by the erf function includes the
population both above and below the mean, we divide the fraction
by two and add to or subtract from 1/2 in order to avoid incorrect
counting. Finally, the cumulative and probability distribution of
completion time, F(χ, t) and f (χ, t), are given in (12) and (13).
κ̇(1)

X (t) and κ̇(2)
X (t) are the time derivative of the first and second

order cumulants of X .
Even in the cases where the analytical solutions of the first

and second order cumulants are not available, numerical approxi-
mations are easily obtained through brute force Euler integration.
In the following section, the algorithm is verified with the SSA
and compared with previous algorithms for computing CTPD.

5. Plan of Work, Schedule and Required Resources

5.1. Plan of Work & Schedule. The long-term goal of this
project is to study feedback gene regulatory networks and its role
in developmental process. We believe that there exists univer-
sal features with in the structure and the relative magnitude of
the system parameters that give rise to differentiation of isogenic
cells into multiple specialized groups. The proposed project has
distinctive goals in both theory and experiments. It is important
that the two endeavors are complementary to each other. The
schedule, therefore, will have individual estimated duration, but
will be concurrent. The 12 months starting from December 2010
are divided into four quarters of 3 months each.

5.2. Required Resources. The experimental side of the re-
search requires basic biological laboratory equipments, a flow
cytometer, a plate reader, and a microscope. Some examples of
additional components required to enhance the cellular assays are
software for microscope fluorescence image processing where a
single cell can be tracked through a long duration of experiments,
or multiple filters for imaging of multiple fluorescent protein tags.
External resources, not required in residence, are DNA sequenc-
ing and synthesis facility,
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F(χ, t) =
1
2
± 1

2
erf

χ −κ(1)
X (t)√

2κ(2)
X (t)

(12)

f (χ, t) =
d
dt

F(χ, t)

= ±1
2

−
√

κ(2)
X (t)κ̇(1)

X (t)− κ̇(2)
X (t)(χ −κ(1)

x (t))

κX (t)

exp

(
−
(x̄−κ(1)

X (t))2

κ(2)
X (t)

)
(13)

Theory Experiment

1st quarter Using a variety of tools (matrix norms,
asymptotics, etc), identify analytical solu-
tions for upper and lower bounds of the
probability distribution cumulants with some
reasonable error.

Identify the optimal concentration of inducers
for activating the hybrid promoters. Plate
reader assay allows measurements over large
number of inducer conditions (up to 96 con-
ditions at a time). Ideally, we would want to
identify the effect of metabolic strain caused
by positive feedback.

2nd quarter Study the sensitivity of the bounds with re-
spect to system parameters.

Using the optimal condition, study the single
cell dynamics of positive feedback gene net-
works using fluorescence microscope imag-
ing. The fluorescence time series data will
resemble the SSA realizations shown in Pre-
liminary Results section - from which the
distribution of the response time is derived.

3rd quarter Investigate different probability distributions
of response time that can be engineered via
altering the structure of gene regulatory net-
works.

Repeat the experiments using variations of
the current construct (e.g. different RBS,
promoters) and initial conditions (e.g. copy
number of plasmids). Using the data, we can
invalidate some candidate models and make
modifications.

4th quarter Theorize what different distributions in re-
sponse time would mean biology, specifically
in the developmental context.





Bibliography

[1] D. Wolf, V. Vazirani, and A. Arkin. Diversity in times of adversity:
probabilistic strategies in microbial survival games. Journal of Theoretical
Biology, 2005.

[2] M. Kaern, TC Elston, WJ Blake, and JJ Collins. Stochasticity in gene
expression: from theories to phenotypes. Nature Reviews Genetics, 2005.

[3] T. Suda, J. Suda, and M. Ogawa. Single-cell origin of mouse hemopoietic
colonies expressing multiple lineages in variable combinations. PNAS USA,
80:6689, 1983.

[4] M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403, 2000.

[5] T. Gardner, C. Cantor, and J. Collins. Construction of a genetic toggle
swithch in Escherichia coli. Nature, 403(20), 339-342 2000.

[6] M. Hirsch, S. Smale, and R. Devaney. Differential equations, Dynamical
systems, and an introduction to chaos. Elsevier Academic Press, 2004.

[7] N. Nise. Control Systems Engineering. Wiley, 2000.
[8] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford

University Press, 2001.
[9] D. Gibson and et. al. Creation of a bacterial cell controlled by a chemically

synthesized genome. Science, 2010.
[10] R. Carlson. The changing economics of DNA synthesis. Nature Biotechnol-

ogy, 27, 2009.
[11] M. Feinberg. Lectures on Chemical Reaction Networks. Online - Depart-

ments of Chemical Engineering and Mathematics, The Ohion State Univer-
sity, 1979.

[12] D. Stroock. An Introduction to Markov Processes. Springer, 2005.
[13] D. Gillespie. A rigorous derivation of the chemical master equation. Physica

A: Statistical Mechanics and its Applications, 188:404–425, 1992.
[14] D. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions.

The Journal of Physical Chemistry, 81(25), 1977.
[15] J. Hespanha. Modeling and Analysis of Stochastic Hybrid Systems. IEEE

Proc - Control Theory and Applications, Special Issue on Hybrid Systems,
153:520–535, 2007.

[16] B. Alberts. Molecular Biology of the Cell (Chapters 1 - 7). New York :
Garland Science, 4th edition, 2002.

[17] M. Elowitz, A. Levine, E. Siggia, and P. Swain. Stochastic gene expression
in a single cell. Science, 297:1183–1186, 2002.

[18] T. Knight. Idempotent Vector Design for Standard Assembly of Biobricks.
Technical report, MIT, 2003.

[19] G. Suel, J. Garcia-Ojalvo, L. Liberman, and M. Elowitz. An excitable gene
regulatory circuit induces transient cellular differentiation. Nature, 440:545–
550, 2006.

[20] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo. Adaptive Response of
a Gene Network to Environmental Changes by Fitness-Induced Attractor
Selection. PLoS ONE, 2006.

[21] M. Levine and E. H. Davidson. Gene regulatory networks for development.
Proc. Natl. Acad. Sci. U.S.A., 102:4936–4942, Apr 2005.

[22] E. H. Davidson, J. P. Rast, P. Oliveri, A. Ransick, C. Calestani, C. H. Yuh,
T. Minokawa, G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C. T.
Brown, C. B. Livi, P. Y. Lee, R. Revilla, A. G. Rust, Z. Pan, M. J. Schilstra,
P. J. Clarke, M. I. Arnone, L. Rowen, R. A. Cameron, D. R. McClay,
L. Hood, H. Bolouri, and E. H. Davidson. A genomic regulatory network
for development. Science, 295:1669–1678, Mar 2002.

[23] V. F. Hinman, A. T. Nguyen, R. A. Cameron, E. H. Davidson, and
E. H. Davidson. Developmental gene regulatory network architecture across
500 million years of echinoderm evolution. Proc. Natl. Acad. Sci. U.S.A.,
100:13356–13361, Nov 2003.

[24] A. Eldar and M. Elowitz. Functional roles for noise in genetic circuit. Nature,
467, 2010.

[25] G. Bel, B. Munsky, and I. Nemenman. The simplicity of completion time
distributions for common complex biochemical processes. Physical Biology,
7(1), 2010. Bel, Golan Munsky, Brian Nemenman, Ilya.

[26] S. Redner. A Guide to First-Passage Processes. Cambridge University Press,
2001.

[27] R. Cox, M. Surette, and M. Elowitz. Programming gene expression with
combinatorial promoters. Molecular Systems Biology, 2007.

[28] R. Lutz and H. Bujard. Independent and tight regulation of transcriptional
units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regula-
tory elements. Nucleic Acids Research, 1997.

9


