
SBf12, Assignment 4 Solutions

Kevin Oishi

October 28, 2012

1 Problem 1

1.1 Part (a)

Below is the gro code I used for part (a).

include gro

outfile := fopen("/tmp/1a_data.csv","w");

ROCK := signal(1,1);

PAPER := signal(1,1);

SCISSORS := signal(1,1);

thresh := 1;

program rpc(s) := {

r := [state:=s];

rfp :=0; gfp:=0; yfp:=0;

r.state=ROCK : {rfp:=100*volume}

r.state=PAPER : {gfp:=100*volume}

r.state=SCISSORS : {yfp:=100*volume}

true : {emit_signal(r.state,10*volume)}

r.state = ROCK & get_signal(PAPER) > thresh : { die() }

r.state = PAPER & get_signal(SCISSORS) > thresh : { die() }

r.state = SCISSORS & get_signal(ROCK) > thresh : { die() }

};

program main() := {

t := 0;

s := 0;

s2 := 0;

n := 0;

1



rocks := 0;

papers := 0;

scissors := 0;

true : {s := s + dt, t := t + dt}

s > 1 : {

rocks := sumlist maptocells if r.state=ROCK then 1 else 0 end end,

papers := sumlist maptocells if r.state=PAPER then 1 else 0 end end,

scissors := sumlist maptocells if r.state=SCISSORS then 1 else 0 end end,

fprint(outfile,t,",",rocks,",",papers,",",scissors,"\n")

}

s2 > 10 : {

snapshot("/tmp/a4/1a/"<>tostring(n)<>".tif"),

s2 := 0,

n := n+1

}

};

ecoli([x:=100*cos(0),y:=100*sin(0),theta:=0], program rpc(ROCK));

ecoli([x:=100*cos(2*pi/3),y:=-100*sin(2*pi/3),theta:=pi/3], program rpc(PAPER));

ecoli([x:=100*cos(4*pi/3),y:=-100*sin(4*pi/3),theta:=-pi/3], program rpc(SCISSORS));

Here are a few snapshots from a typical run of this program:

In these snapshots “rock” cells are red, “paper” cells are green, and “scissor”
cells are yellow. The rock colony can invade the scissor colony, the scissor colony
can invade the paper colony, and the paper colony can invade the rock colony.
The resulting morphology is a spiral pattern with chirality related to the initial
ordering of cell types. Plots of population and population fraction vs. time are
shown below.

50 100 150 200
time

50

100

150

200

250

300

350

cell count

50 100 150 200
time

0.1

0.2

0.3

0.4

0.5

population fraction

2



From these plots, you can see that the population of each colony type oscillates
around an exponential increase as the various cell types annihilate each other.

1.2 Part (b)

Here’s the code I used in part (b):

include gro

chemostat(true);

iter:=3;

outfile := fopen("/tmp/1b_data_10_"<>tostring(iter)<>".csv","w");

ROCK := signal(1,1);

PAPER := signal(1,1);

SCISSORS := signal(1,1);

thresh := 1;

k := 0.001;

program rpc(s) := {

r := [state:=s];

rfp :=0; gfp:=0; yfp:=0;

r.state=ROCK : {rfp:=100*volume, gfp:=0, yfp:=0}

r.state=PAPER : {gfp:=100*volume, rfp:=0, yfp:=0}

r.state=SCISSORS : {yfp:=100*volume, rfp:=0, gfp:=0}

true : {emit_signal(r.state,10*volume)}

rate(k) & r.state=ROCK : { r.state := PAPER }

rate(k) & r.state=ROCK : { r.state := SCISSORS }

rate(k) & r.state=PAPER : { r.state := ROCK }

rate(k) & r.state=PAPER : { r.state := SCISSORS }

rate(k) & r.state=SCISSORS : { r.state := ROCK }

rate(k) & r.state=SCISSORS : { r.state := PAPER }

r.state = ROCK & get_signal(PAPER) > thresh : { die() }

r.state = PAPER & get_signal(SCISSORS) > thresh : { die() }

r.state = SCISSORS & get_signal(ROCK) > thresh : { die() }

};

program main() := {

t := 0;

s := 0;

s2 := 0;

n := 0;

3



rocks := 0;

papers := 0;

scissors := 0;

true : {s := s + dt, s2 := s2+dt, t := t + dt}

s > 1 : {

rocks := sumlist maptocells if r.state=ROCK then 1 else 0 end end,

papers := sumlist maptocells if r.state=PAPER then 1 else 0 end end,

scissors := sumlist maptocells if r.state=SCISSORS then 1 else 0 end end,

fprint(outfile,t,",",rocks,",",papers,",",scissors,"\n")

}

s2 > 1 : {

snapshot("/tmp/1b_"<>tostring(iter)<>"_10_"<>tostring(n)<>".tif"),

n := n+1,

s2 := 0

}

};

ecoli([], program rpc(ROCK));

Different behaviors were obtained by varying the switching rate k. With a
small value k = 0.001 each cell type had an opportunity to sweep the entire
population before a switch occurred. The result is a 3-phase oscillation moving
from rock to paper to scissor cell types. This behavior is shown below with a
plot of the cell count and population fraction vs. time for k = 0.001.

200 400 600 800 1000
time

20

40

60

80

100

120

140

cell count
k � 0.001

200 400 600 800 1000
time

0.2

0.4

0.6

0.8

1.0

population fraction

4



With a larger value of k = 0.01, switching occurred too frequently on average
for a single cell type to sweep the colony. Small neighborhoods of cells within the
chemostat switch from rock to paper to scissors, but there is no clear chemostat-
scale synchronized behavior.

200 400 600 800 1000
time0

5

10

15

20

25

cell count
k � 0.01

200 400 600 800 1000
time0.0

0.2

0.4

0.6

0.8

1.0

population fraction

Finally, with a large value k = 0.5, switching occurs faster on average than
cell division. Because I set the threshold to signal detection to be very low, cells
can only survive by switching from rock to paper to scissors and back to rock.
Admissible switching becomes increasingly unlikely as time increases. This is
shown in the plot below where a single cell starts as rock, and successfully makes
3 switches before dying.

2 4 6 8
time0.0

0.2

0.4

0.6

0.8

1.0

cell count
k � 0.5

5



2 Problem 2

The gro code I used to implement this problem is shown below.

include gro

set("ecoli_growth_rate",0);

outfile := fopen("/tmp/2_00.csv","w");

ALPHA := signal(1,1);

DOX := signal(1,1);

GLU := signal(1,1);

fun hill x k . x/(k+x);

program cell3() := {

rfp := 0;

true : {

rfp := 100*volume,

emit_signal(ALPHA,10*volume*(1-hill (get_signal(DOX)) 0.05))

}

};

program cell5() := {

gfp := 0;

yfp := 0;

true : {

yfp := 100*volume,

emit_signal(ALPHA,10*volume*(1-hill (get_signal(GLU)) 0.05))

}

};

program cell6() := {

r := [s:=0, t:=0];

gfp := 0;

true : {r.s := r.s + dt, r.t := r.t + dt}

r.s > 0.2 : {

r.s := 0,

fprint(outfile,r.t,",",gfp/volume,"\n");

}

r.t > 50 : { stop() }

rate(100*get_signal(ALPHA)) : { gfp := gfp + 1 }

rate(gfp) : { gfp := gfp - 1 }

};

6



program main() := {

true : {

//set_signal(DOX,-20,20,100), set_signal(DOX,20,20,100),

//set_signal(GLU,-20,-20,100), set_signal(GLU,20,-20,100),

skip()

}

};

ecoli([x:=-20,theta:=pi/2], program cell3());

ecoli([x:=0,theta:=pi/2], program cell6());

ecoli([x:=20,theta:=pi/2], program cell5());

Below are figures showing snapshots from gro, output protein gfp vs. time,
and the resulting truth table generated by exposing the system to different
combinations of DOX and GLU. In these figures DOX responsive Cell 3 is on
the left, GLU responsive Cell 5 is on the right, and the ALPHA responsive
reporter Cell 6 is in the middle.

Inputs Snapshot gfp vs. time truth table entry

-DOX, -GLU

5 10 15 20 25 30
time0

5

10

15

20

25

30

gfp�vol
H~DOX,~GLUL

DOX GLU gfp
F F T

-DOX, GLU

5 10 15 20 25 30
time0

5

10

15

20

25

30

gfp�vol
H~DOX,GLUL

DOX GLU gfp
F T T

DOX, -GLU

5 10 15 20 25 30
time0

5

10

15

20

25

30

gfp�vol
HDOX,~GLUL

DOX GLU gfp
T F T

DOX, GLU

5 10 15 20 25 30
time0

5

10

15

20

25

gfp�vol
HDOX,GLUL

DOX GLU gfp
T T F

3 Problem 3

This is a very cool problem! First off, it should be noted that Fischer, Lynch,
and Paterson (1985) showed that in a natural model of asynchronous comput-

7



ing it is impossible to solve the consensus problem if even one process can fail.
However extensions to this model, notably allowing randomization, makes con-
sensus possible again. In writing up this solution I aimed for simplicity of code
and logic, so this solution will not always solve the majority problem correctly
but it does seem to work robustly for initial distributions that are far enough
from 50/50.

include gro

set("ecoli_growth_rate",0);

outfile := fopen("/tmp/3_40_2.csv","w");

ZERO := signal(1,1);

ONE := signal(1,1);

g := [t:=0, zeros:=0, ones:=0];

fun max a b . if a>b then a else b end;

program rcp(s,h,k) := {

r := [state:=s];

rfp := 0;

yfp := 0;

r.state = ZERO : {

rfp := 100*volume,

yfp := 0,

emit_signal(ZERO,50)

}

r.state = ONE : {

rfp := 0,

yfp := 100*volume ,

emit_signal(ONE,50)

}

rate(k) & r.state=ZERO

& get_signal(ONE) > max (get_signal(ZERO)-h) 0 : { r.state:=ONE }

rate(k) & r.state=ONE

& get_signal(ZERO) > max (get_signal(ONE)-h) 0 : { r.state:=ZERO }

r.state=ZERO

& rate(k*get_signal(ONE)/(get_signal(ONE)+get_signal(ZERO))) : {r.state := ONE}

r.state=ONE

& rate(k*get_signal(ZERO)/(get_signal(ONE)+get_signal(ZERO))) : {r.state := ZERO}

};

program main() := {

s := 0;

8



x := {0,0};

true : {

g.t := g.t+dt, s := s+dt ,

x := { sumlist maptocells if r.state=ZERO then 1 else 0 end end,

sumlist maptocells if r.state=ONE then 1 else 0 end end}

}

x != {g.zeros,g.ones} : {

g.zeros := x[0];

g.ones := x[1];

fprint(outfile,g.t,",",g.zeros,",",g.ones,"\n");

}

g.t <= dt : { print(g.t,",",g.zeros,",",g.ones,"\n") }

(x[0]=0 | x[1]=0) & x[0]+x[1]>1 : {stop()}

};

fun dist x . if rand(1000)/1000.0<=x then 0 else 1 end;

foreach q in cross (range 10) (range 10) do

ecoli([x:=q[0]*25-125, y:=q[1]*25-125], program rcp(dist 0.4, 336.708, 0.1))

end;

The idea behind this algorithm is that every cell emits a signal (ONE or ZERO).
At steady state, a cell can evaluate the ONE and ZERO signal concentration at
its location, normalizing for its own signal emissions by subtracting a constant
h. An individual cell uses these normalized values to make a decision about the
majority in its local neighborhood, and changes state accordingly. In order to
make it more likely that the signal concentrations are near steady state before
such a decision is made, these evaluations occur at a small tunable rate k. To
avoid situations where a cell grid gets “stuck” before coming to consensus, at
some very small rate cells that sense a contradictory signal may change state
spontaneously. Below I plotted a few typical trajectories generated with this
algorithm, starting with approximately 60%, 70%, 80%, 90%, and 100% of cells
in state ZERO.

50 100 150
time

60

70

80

90

100

ð cells in state 0

9


