
SBf12, Assignment 5 Solutions

Kevin Oishi

October 29, 2012

1 Problem 1

1.1 Part (a)

Keeping in mind the addendum about cell division in gro, and adding degrada-
tion reactions for gfp and rfp, here are is the chemical reaction network for Part
1a,

∅
1−⇀1−⇀ X (1)

X
k−⇀k−⇀ rfp+ gfp (2)

rfp
0.05−−⇀0.05−−⇀ ∅ (3)

gfp
0.05−−⇀0.05−−⇀ ∅. (4)

The following gro code implements the chemical reaction network:

include gro

outfile := fopen("/tmp/a5_1a.csv","w");

population_size := 1;

program p(k) := {

gfp := 0;

rfp := 0;

X := 0;

rate(volume) : { X := X + 1 }

rate(k*X) : { rfp := rfp + 1, gfp := gfp + 1 }

rate(0.05*rfp) : { rfp := rfp - 1 }

rate(0.05*gfp) : { gfp := gfp - 1 }

just_divided & daughter : { population_size := population_size + 1 }

};
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program main() := {

population_size >= 500 : {

maptocells fprint(outfile,X,",",rfp,",",gfp,",",volume,"\n") end,

stop()

}

};

ecoli([], program p(0.1));

The scatter plot of the state of cells at population size = 500 is shown below,
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Normalized rfp and gfp intensity at n=500 cells, k=0.1

In this example, solving for intrinsic noise,

η2int =

〈
(gfp− rfp)2

〉
2 〈gfp〉 〈rfp〉

(5)

ηint = 0.0560378 (6)

Solving for extrinsic noise,

η2ext =
〈gfp× rfp〉 − 〈gfp〉 〈rfp〉

〈gfp〉 〈rfp〉
(7)

ηext = 0.108718 (8)
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Then for total noise,

η2tot = η2int + η2ext (9)

ηtot = 0.122311 (10)

And here is a plot of intrinsic, extrinsic, and total noise as a function of
log10 k. The blue line is η2int, the orange line is η2ext, and the gray line is η2tot.
Error bars were found using the Jackknife method with subsample size M = 100.
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Note that as k increases both intrinsic and extrinsic noise decrease, and appear
to reach some nonzero asymptote. One way to think about this is that as
k increases to infinity the conversion of X into rfp and gfp tends towards
deterministic and instantaneous. The resulting noise comes from the production
of X and degradation of rfp and gfp.

1.2 Part (b)

The CRN for Part (b) is as follows,

∅
1−−⇀↽−−
0.1

RNA1 (11)

∅
1−−⇀↽−−
0.1

RNA2 (12)

RNA1 +RNA2
k−⇀k−⇀ ∅ (13)

RNA1
1−⇀1−⇀ RNA1 + gfp (14)

RNA2
1−⇀1−⇀ RNA2 + rfp (15)

gfp
0.05−−⇀0.05−−⇀ ∅ (16)

rfp
0.05−−⇀0.05−−⇀ ∅. (17)
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gro code that implements this CRN is show below,

include gro

outfile := fopen("/tmp/a5_1b_3.csv","w");

population_size := 1;

program p(k) := {

gfp := 0;

rfp := 0;

rna1 := 0;

rna2 := 0;

rate(volume) : { rna1 := rna1 + 1 }

rate(volume) : { rna2 := rna2 + 1 }

rate(0.1*rna1) : { rna1 := rna1 - 1 }

rate(0.1*rna2) : { rna2 := rna2 - 1 }

rate(k*rna1*rna2) : { rna1 := rna1 - 1, rna2 := rna2 - 1 }

rate(rna1) : { gfp := gfp + 1}

rate(rna2) : { rfp := rfp + 1}

rate(0.05*rfp) : { rfp := rfp - 1 }

rate(0.05*gfp) : { gfp := gfp - 1 }

just_divided & daughter : { population_size := population_size + 1 }

};

program main() := {

population_size >= 500 : {

maptocells fprint(outfile,rna1,",",rna2,",",rfp,",",gfp,",",volume,"\n") end,

stop()

}

};

ecoli([], program p(kr));

Here is a sample output where k = 10−1,
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Normalized rfp and gfp intensity at n=500 cells, k=0.1

And here is a plot of intrinsic, extrinsic, and total noise as a function of
log10 k. The blue line is η2int, the orange line is η2ext, and the gray line is η2tot.
Error bars were found using the Jackknife method with subsample size M = 100.
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Note that here as k increases the distribution of (RNA1, RNA2) becomes more
and more bimodal, tending towards a distribution will some RNA1 and very
little RNA2 or some RNA2 and very little RNA1. Intrinsic noise initially
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increases, and approaches an asymptote, since as k increases the combined ex-
pression fo gfp and rfp are driven primarily by either the production and
degradation of RNA1 (reaction 11) or RNA2 (reaction 12).

2 Problem 2

2.1 Part (a)

The state transition diagram for this system starting with A = 2 is shown below.
In this diagram vector subscripts represent state indices used in constructing
the rate matrix.
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2.2 Part (b)

Using the state indices indicated in the transition diagram above, the rate matrix
is as follows,

Q =



−2 1 0 0 0 0 0 0 0
2 −4 6 0 0 0 0 0 0
0 1 −10 0 0 0 0 0 0
0 2 0 −2 3 0 0 0 0
0 0 4 1 −6 0 0 0 0
0 0 0 1 0 −1 1 0 0
0 0 0 0 3 1 −3 0 0
0 0 0 0 0 0 2 −1 0
0 0 0 0 0 0 0 1 0


. (18)

2.3 Part (c)

Using the rate matrix Q, the probability vector p is the solution to the following
ODE,

ṗ = Qp (19)

p(t) = eQtp(0). (20)

Let p(0) =
[

1 0 . . . 0
]T

, then the probability of being in any particular
state as a function of time, where state index is indicated in the state transition
diagram, is shown in the plot below.
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Note that an exact solution can be easily solved analytically by finding a simi-
larity transformation that diagonalizes Q.
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2.4 Part (d)

The mean and variance of C can easily be found knowing p(t) and the value of
C at each state in the Markov process,

µC(t) =



0
0
0
1
1
2
2
3
4



T

p(t) (21)

V arC(t) =



(0− µ(t))2

(0− µ(t))2

(0− µ(t))2

(1− µ(t))2

(1− µ(t))2

(2− µ(t))2

(2− µ(t))2

(3− µ(t))2

(4− µ(t))2



T

p(t). (22)

I used Mathematica to solve these functions numerically. The mean and one
standard deviation window are plotted below.

5 10 15 20
time

1

2

3

4

ð C
ΜC ± ΣC

3 Problem 3

Suppose a system of reactions over a finite number of species admits a mass
vector with no zero entries. Let v be the vector representing the concentration
of all species. Let the stoichiometric matrix of this system be A with nontrivial
rate vector K(x) and mass vector m. Then to say the system is conservative
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means,

mT ẋ = mTAK(x) (23)

= 0, ∀v with nonnegative entries. (24)

Note that this condition holds only if mTA = 0, meaning that conservation is
independent of rates, and depends only on the topology of the reaction network.

In writing down the stochastic Markov process, note that any discrete state
change can be written,

xt+1 = xt +Ak̃ (25)

where xt is the current state, xt+1 is the new state, and k̃ is a rate vector where
only one entry is nonzero, and that entry is 1. Looking at the mass of the
discrete states,

mTxt+1 = mT (xt +Ak̃) (26)

= mTxt +mTAk̃ (27)

= mTxt. (28)

This means that if the reaction network is conservative, then any discrete state
change in the Markov process is also conservative.

Finally, note that the mass of a system at any discrete state is a linear
combination of the molecular counts where every term is non-negative. This
means that for some initial conditions x0 with total mass mtot = mTx0, there
are a finite maximum number of species xmax,i = bmtot/mic that can ever occur.
This means that the set of unique states that a trajectory xt may pass through
is a subset of the power set of states P,

xt ∈ P (29)

P =


 s1

...
sk




s1=0...xmax,1,...,sk=0...xmax,k

(30)

|P| =
∏
i

xmax,i. (31)

Since the order of P is finite, the mass conserving system must produce a finite
number of states.

However, it is not true that a system that produces a finite number of states
must be mass conserving! The simplest example of this is the network consisting
of the degradation reaction,

A −⇀−⇀ ∅. (32)
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4 [Extra Credit] Problem 4

∅
k1=5−−−⇀↽−−−
k2=1

X (33)

Below are the plots for n = 5, 10, 20, 30, 40, as well as a figure of all of these plots
overlayed on each other. Note that the steady state mean of the true infinite
state process is at X = 5. As you increase n you should see the moments of the
resulting finite process approach the moments of the infinite state process. This
is the intuition behind the Finite State Projection (FSP) algorithm for approx-
imating the solution of the chemical master equation for infinite or extremely
large processes (Munsky and Khammash, 2006). For more information, check
out this paper:

Brian Munsky, and Mustafa Khammash. “The Finite State Projection Al-
gorithm for the Solution of the Chemical Master Equation.” The Journal
of chemical physics 124, no. 4 (2006): doi:10.1063/1.2145882.
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