
Distributed Estimation and Control
For Stochastically Interacting Robots

Fayette W. Shaw and Eric Klavins

Abstract— We introduce a distributed estimation algo-
rithm for use by a collection of stochastically interacting
agents. Each agent has both a discrete value and an estimate
of the mean of that value taken over all agents. The
estimates are updated according to a local rule when
pairs of agents interact. In this paper we prove that the
ensemble average of the estimates converges to the correct
global average. We then use the estimate information to
control the agents to a desired average value. Furthermore,
we demonstrate the algorithm experimentally using the
Programmable Parts Testbed [1].

I. INTRODUCTION

We consider a kind of consensus problem motivated
by the self-assembly of simple robotic parts [1] into a
larger structure. As the parts form larger and larger
subassemblies of the desired structure, controlling the
relative numbers of each subassembly type becomes
important for maximizing the yield of the process. For
example, suppose an assembly of type A is formed
from subassemblies of type B and C, which are each
made up of some number of parts. To maximize the
yield of A, it is desirable to balance the number of parts
destined to compose each subassembly by the rate at
which the subassemblies form. That is, the stoichiometry
of B and C must be maintained at 1 : 1. In this paper
we capture the essence of this problem by supposing
that in a population of stochastically interacting robots,
each robot has a discrete state that is either zero or one
and that, by switching between these values, they can
control the ratio ρ(t) of robots of state one to the total
number of robots. In particular, we concentrate first on
supplying each robot with an estimate of ρ(t) so that
it can decide how to change its discrete state to effect
the evolution of ρ(t).

The particular physical setting we have at hand is the
Programmable Parts Testbed [1]. In this testbed, robotic
parts are randomly mixed on an air-table to induce ran-
dom collisions. We have programmed the parts so that,
when two of them collide they briefly bind together to
share information and then they detach. In other work
we have experimentally verified that this process can
be reasonably described by a continuous time, jump
Markov process in which a vector of discrete states

This work is supported by NSF grants #0347955 and #0501628.
Fayette W. Shaw is a graduate student in the Department of Me-
chanical Engineering, University of Washington, Seattle, WA 98195,
fayshaw@u.washington.edu. Eric Klavins is an Assistant Professor in
the Department of Electrical Engineering, University of Washington,
Seattle, WA 98195, klavins@ee.washington.edu.

Fig. 1. Cartoon of Programmable Parts with discrete states zeros
(black) and ones (white). Each robot has its own measurement, or
estimate, of the ratio of white robots to total number of robots n,
indicated by the number in the thought bubble. The goal is to drive
the average of the discrete values to a reference, in this case 0.5,
which is depicted in the last panel.

(the zeros and ones) and a vector of estimates (each
entry maintained by a different robot) is updated upon
random collisions between random pairs of robots.

To some extent, existing results on consensus over
randomly changing networks [2] apply here, except
that we desire that the robots do not simply come to
a consensus of their initial states, but that they track
the time varying average of their discrete states (i.e.
they track their stoichiometry). Thus, our approach
uses both the estimates and discrete states of the robots
when updating, which is similar to [3] except that we
track a discrete signal in a stochastically changing net-
work. The trade-off is that we can no longer guarantee
that the estimate converges with probability one to
the correct value, although we can come arbitrarily
close to such an equilibrium distribution by tuning a
“consensus” parameter.

The specific contributions of this paper are as fol-
lows. First, we introduce a simple update rule defining
a distributed estimation scheme that balances consen-
sus with tracking. We then show that the probability
distribution of the vector of estimates obeys a Master
Equation [4] and derive from it the first and second
moment dynamics. From these we can compute the
evolution of the mean estimate and its variance. We
show that when the robots ignore the discrete state
and simply do consensus, the estimates converge with
probability one to the average of the initial values of
the estimates. In addition, by appropriately weighting
the discrete state in the update rule we can track the
average ρ with an arbitrarily small variance at steady
state. We demonstrate our algorithm with simulations
and with experiments using the Programmable Parts
Testbed. Finally, we show (in simulation) that a simple

distributed control law can be composed with the
estimator and that it achieves the desired steady state
stoichiometry as though it were using the actual value
of ρ(t).

II. RELATED WORK

Our work is an extension of standard consensus [5]
in that we control a group of agents to track a varying
signal ρ(t). In this sense, the present paper is quite
similar to [6] except that we assume a stochastic net-
work and the properties of the stochastic process that
result. A randomly changing network is considered in
[2] and the results there apply to our system when our
consensus parameter ζ = 1. However, the algorithm
in [2] does not track a changing state. Our work also
differs from [2] in that we investigate the continuous
time moment dynamics of our the estimator instead of
a discrete time system. This distinction is crucial for
our system so that we may implement a controller that
uses the estimate information and runs concurrently on
a different time-scale. Investigating the second moment
dynamics of our system also results in an alternative
proof method for the probability-one convergence of
consensus in [2] and also allows us to predict the non-
zero equilibrium variance of the estimate when we
track ρ(t).

Distributed systems has its foundations in computer
science [7] and has broadened to include many appli-
cations. Thus, distributed and decentralized estimation
have many meanings in the literature. Often the terms
refer to sensing and sensor fusion [3], where agents
may independently perform Kalman filtering to fuse
measurements. In the present paper, distributed esti-
mation refers to agents in a network which each have
a measurement of the global state, which get updated
through local interactions.

In this paper, we also describe a controller that up-
dates the discrete state based to force ρ(t) to a desired
reference. To achieve this, the robots switch roles in
the network similar to examples of agents dynamically
updating their roles in robotics and biology. For exam-
ple, in [8], robots dynamically allocate roles to actu-
ate highly coordinated actions. In nature, ants switch
between foraging and nest repair [9] in such a way
as to achieve a balance of responsibility. This type of
controller could be used in more complex cooperative
control scenarios where balancing activities based on
an estimate of available resources or outstanding tasks
is important.

III. PROBLEM SETUP AND NOTATION

Consider a set of n robots similar to the pro-
grammable parts [1]. Each robot i has a discrete internal
state qi(t) ∈ {0, 1}. Define

ρ(t) !
1

n

n

∑
i=1

qi(t) (1)

where n is the number of robots. Each robot also
maintains an estimate xi(t) ∈ [0, 1] of ρ(t). It is assumed
that each robot knows the value of n. The vector q =
(q1, ..., qn)T is defined to be the vector of internal states
and x = (x1, ..., xn)T to be the vector of estimates. The
symbol 〈·〉 denotes expected value and 1 = (1, · · · , 1

︸ ︷︷ ︸

n

)T.

In our system, the robots are mixed together to
induce collisions. We assume that in the next dt seconds
there is a probability k dt that any particular pair of
robots i and j will collide and that any pair of robots
is equally likely to interact next (that is, the system
is well-mixed). We have experimentally verified this
assumption and measured the rate k in other work
[1]. When two robots collide, they are programmed to
simply exchange their discrete states and estimates and
update their estimates based on this information. Also,
the robots concurrently update their discrete states so
as to achieve a desired discrete state. We address the
following three problems:

a) The Estimation Problem Define an estimator update
(xi, xj) $→ f (xi, qi, xj, qj) so that xi(t) converges to ρ(t)
as t → ∞ with high probability.

b) The Control Problem Define a rate function Ki(ρ, qi)
at which robot i switches from qi to 1 − qi so that ρ(t)
converges to a desired reference ratio r (a constant)
with high probability and Ki(ρ, qi) converges to zero
(the robots eventually stop switching).

c) The Simultaneous Control and Estimation Problem
Demonstrate that the a solution to the control problem
running concurrently with a solution to the estimation
problem (that is, with Ki(xi, qi) defining the rate at
which robots switch states) drives xi(t) and ρ(t) to r
with high probability.

In this paper, we solve the first two problems for-
mally, and demonstrate in simulation a working solu-
tion to the last problem.

IV. THE ESTIMATOR

We consider the case in which the estimator update
function is defined by a convex combination of the esti-
mates and states of the interacting robots. In particular,
if robot i interacts with robot j at time t then the robots
update their estimates according to

xi(t+) = f (xi(t−), qi(t−), xj(t−), qj(t−))

xj(t+) = f (xj(t−), qj(t−), xi(t−), qi(t−))

xk(t+) = xk(t−) for all k '= i, j,

where f (xi(t−), qi(t−), xj(t−), qj(t−)) is defined by

ζ
(

axi + (1 − a)xj
)

+ (1 − ζ)

(
1

n
qi +

(
n − 1

n

)

qj

)

.

Here ζ ∈ (0, 1) is the consensus parameter, which is the
weighting of the relative importance of the estimates

and discrete states in the update rule; 1
n is the weight-

ing of a robot’s own discrete state; and a ∈ (0, 1) is
the weighting on a robot’s own estimate. The symbols
t− and t+ denote the times immediately before and
after the interaction, respectively. The last line of the
above update rule represents the fact that robots not
participating in the interaction do not update their
estimates.

The update equations can be written using matrices.
For example, in a three-robot system in which robots 1
and 2 happen to interact at time t, the update rule is

x(t+) = ζ

a 1 − a 0
1 − a a 0

0 0 1
ζ

 x(t−)

+ (1 − ζ)

1
n 1 − 1

n 0
1 − 1

n
1
n 0

0 0 0

 q(0),

or more compactly and generally

x(t+) = ζAijx(t−) + (1 − ζ)Bijq(0). (2)

Matrices A and B are defined as follows:

Aij(i, i) = Aij(j, j) = a Bij(i, i) = Bij(j, j) = 1
n

Aij(i, j) = Aij(j, i) = 1 − a Bij(i, j) = Bij(j, i) = n−1
n

Aij(k, k) = 1
ζ

and all remaining matrix entries are 0.

For a process (Y, t), the change in probability can be
expressed as a Master Equation [4]

d

dt
P(y, t) =

∫

W(y|y′)P(y′, t)−W(y′|y)P(y, t)dy′,

where W(y|y′) is the probability that the system tran-
sitions to y in time t + dt given that state is y′ at
time t. The first term in the integral refers to the
transitions going into the state and the second refers to
the transitions leaving. Using (2) to derive the Master
Equation for the estimator process we arrive at

d

dt
P(x, t) =

k

ζ ∑
i<j

1

|Aij|
P

(
1

ζ
Aij

−1 (

x − (1 − ζ)Bijq
)

, t

)

− k

(

n
2

)

P(x, t), (3)

where P(x, t) is the probability of having the estimate
vector x at time t and k is the rate of the robots’ pairwise
interaction.

A. First Moment Dynamics

The first moment of the estimator process are exam-
ined using the Master Equation (3). The dynamics of

the expected value of the estimate vector 〈x〉

d

dt
〈x〉 = k

〈
(

ζ∑
i<j

Aij −

(

n
2

)

I

)

x + (1 − ζ)∑
i<j

Bijq

〉

.

(4)
This equation can be simplified as follows. Define

A ! ∑
i<j

Aij and B ! ∑
i<j

Bij.

For now, we assume that the discrete state q is constant.
It can be shown that

A = (n − 1)

(

a +
n − 2

2ζ

)

I + (1 − a)11
T (5)

B =
n − 1

n
11

T. (6)

Therefore, equation (4) becomes

d

dt
〈x〉 = k

[(

ζA −

(

n
2

)

I

)

〈x〉+ (1 − ζ)Bq

]

. (7)

Theorem 1: The unique fixed point of d
dt 〈x〉 is

〈x〉∗ = ρ1. (8)
That is, the estimates converge to the average value

of the discrete states, assuming the discrete states are
constant.

We confirm (8) in Appendix A and its uniqueness in
Appendix B.

Theorem 2: The fixed point 〈x〉∗ = ρ1 is stable.
Proof: By (7) and since at equilibrium q is deterministic,
it suffices to show that

H ! ζA −

(

n
2

)

I

is negative semi-definite. Note that each term in the
sum A has the same eigenvalues since the Aij matrices
are permutations of each other. To show that any Aij − I
has negative eigenvalues it suffices to show that the
eigenvalues of Aij are less than 1, as all zero eigen-
values represent robots that are not updating. Thus
without loss of generality we can examine

A12 =

v u
u v

0

0 I

 ,

whose eigenvalues are {1, v− u, v + u}. The eigenvalue
1 has multiplicity n− 2. Finally, all eigenvalues are less
than or equal to 1, based on our assumptions on a and
ζ. "

B. Second Moment Dynamics

Similarly, we derive the dynamics for the second
moment 〈xxT〉. Using the Master Equation we have

d

dt
〈xxT〉 = k

〈

∑
i<j

(

Cijx + Dijq
) (

Cijx + Dijq
)T

〉

− k

(

n
2

)

〈xxT〉

(a) Average behavior, ζ = 1 (b) Average behavior, ζ = 0.9 (c) Average behavior, ζ = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Histogram of Estimate, 1 run, 700 samples

F
re

q
u
en

cy
o
f

E
st

im
a
te

Estimate

(d) Histogram, ζ = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Histogram of Estimate, 1 run, 700 samples

F
re

q
u
en

cy
o
f

E
st

im
a
te

Estimate

(e) Histogram, ζ = 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Histogram of Estimate, 1 run, 700 samples

F
re

q
u
en

cy
o
f

E
st

im
a
te

Estimate

(f) Histogram, ζ = 0.5

Fig. 2. Comparisons of simulated data with various parameters for 7 robots. Figures 2(a), 2(b), and 2(c) show a step change of the discrete
states from a mean of 3

7 to 4
7 indicated in green. The data is simulated from the perspective of a robot starting at a discrete state 0. The

purple regions indicate the mean plotted with error bars. The blue lines indicate single estimate trajectories. The simulations vary parameter
ζ in the update rule and result in these different plots. In Figure 2(a), ζ=1 and this is equivalent to the consensus algorithm presented in [2]
and others. The mean of estimates converges to a delta function, as seen in Figure 2(d), to the incorrect mean discrete state; the correct stat is
plotted as a dotted blue line. Figure 2(b) demonstrates our algorithm with parameter ζ = 0.9. The mean converges close to the correct mean
discrete state with a wider distribution than delta function. As the parameter ζ decreases, the variance becomes larger but convergence is
faster.

where Cij = ζAij and Dij = (1 − ζ)Bij. The second
moment dynamics can be expressed as

d

dt
vec(〈xxT〉) = k ∑

i<j

[

Cij ⊗ Cij vec(〈xxT〉)

+ Cij ⊗ Dij vec(q〈xT〉) + Dij ⊗ Cij vec(〈x〉qT)

+ Dij ⊗ Dij vec(qqT)
]

− k

(

n
2

)

vec(〈xxT〉)

where ⊗ is the Kronecker product and vec(·) is the
vector representation of a matrix where matrix columns
are concatenated vertically.

C. Second Moment Equilibrium

The equilibrium value of the second moment is a
tedious function of q and the parameters ζ, a, and n.
However, a simple expression for the equilibrium can
be obtained when ζ = 1, which corresponds to pure
consensus. Our argument (below) amounts to an alter-
native proof that consensus in this setting converges
to the average of the initial conditions of the estimates
with probability one. Said differently, when ζ = 1 the
variance at equilibrium is 0 (even though the estimate
is completely wrong).

It is also evident that as ζ decreases, the variances
increase although the expected value of the estimate
is correct. This is illustrated in Figure 2 where the
estimator attempts to track a changing ρ(t). When
ζ = 1, the estimator (i.e. pure consensus) fails. With
ζ < 1, the estimate can track ρ(t), but with a non-zero
variance at steady state.

When ζ = 1, the expression for the second moment
dynamics reduces to

d

dt
〈xxT〉 = ∑

i<j

Aij〈xxT〉Aij. (9)

Setting the derivative to zero and solving for 〈xxT〉
yields 〈xxT〉 = w11T where w is a scalar. Now, define

V = 1
T〈xxT〉1.

Multiplying (9) by 1T on the left and by 1 on the right,
noting that 1TAij = 1T, and noting that Aij1 = 1 shows

that d
dt V = 0.

Now, initially 〈xxT〉 = x(0)xT(0) (i.e. the variances
are zero initially since we start with deterministic val-
ues for x). Thus, V∗ = V(0). Also, the equilibrium

value for 〈x〉 (only when ζ = 1) is

η !
1

n
1

Tx(0)

so that V(0) = 1Tx(0)xT(0)1 = η2n2. Thus, writing out
V(0) = V∗ we have

η2n2 = wn2

so that w = η2. Thus, the covariance matrix at equilib-
rium is

C = 〈xxT〉
∗
− 〈x〉∗〈xT〉

∗
= w11

T − η2
11

T = 0.

D. Second Moment Stability

Theorem 3: The equilibrium of the second moment
dynamics is stable.

Since we consider q to be deterministic , we examine
the following matrix to determine stability of 〈xxT〉:

M ! k∑
i<j

Aij ⊗ Aij − k

(

n
2

)

I = k∑
i<j

(Aij ⊗ Aij − I).

Call λi the eigenvalues of A and µi the eigenvalues
of B. Then the eigenvalues of A⊗B = λiµi. We showed
in Theorem 2 that the eigenvalues of Aij were {1, v −
u, v + u}. Thus, the eigenvalues Aij ⊗ Aij are {1, v −
u, v + u, (v − u)2, (v − u)(v + u), (v + u)2}, which are
all less than 1, based on our assumptions on a and ζ.

As in the proof for Theorem 2 each term in this sum
is symmetric and negative semi-definite, from which it
can be concluded that M itself is negative semi-definite.

V. DEMONSTRATION OF THE DISTRIBUTED

ESTIMATOR IN SIMULATION AND EXPERIMENT

We demonstrate the algorithm by directly simulating
the system using the Stochastic Simulation Algorithm
[10]. Figure 2 shows simulations of the update rule
with various parameters. Note that 2(a) reduces our
formulation to the consensus algorithm presented in
[2]. Various choices of parameters result in different
convergence speed and variance.

The PPT has been adapted to make internal estima-
tion states observable by an overhead camera. Each
robot computes its estimate with 7-bit accuracy and
displays it as a 5-bit number using LEDs. Each robot
has a bright blue LED in its center and a green LED to
indicate the lowest bit of the estimate, and continuing
clockwise to indicate the binary estimate as depicted
in Figure 3. The estimates indicated by the LEDs were
automatically extracted from images using MATLAB.
The robots display a quantization error of 2−7 in Figure
4, which appears to be a steady state error.

VI. DISTRIBUTED CONTROL OF STOICHIOMETRY

We now address the control problem discussed in
Section III. That is, we define a rate at which the robots
should flip their discrete states from 0 to 1 and vice
versa so that (a) the ρ(t) → r (a constant) and (b) the

(a) Photo of Programmable Parts (b) LEDs indicating estimates

Fig. 3. Programmable Parts Testbed. 3(a) shows the robots. 3(b)
shows the lighting conditions for runs. On each robot the blue LED
points to the lowest significant bit to indicate a binary estimate.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (seconds)

M
ea

n
Es

tim
at

e

Estimation Experimental Data

Fig. 4. Experimental data on PPT. Each line represents a run
with all estimates averaged together. (Current setup does not allow
for individual tracking). The red dashed line indicates the average
discrete state in all runs. The parameters for this run are ζ = 0.8 and
a = 0.5.

robots eventually stop switching. For now we assume
that the robots have perfect knowledge of ρ(t). Later,
we replace this knowledge with the estimated value
computed in the previous section. The update rule for
robot i when changing its discrete state is simply

qi(t+) = 1 − qi(t−).

There are many possible control schemes. Here is a
simple one: robot i toggles its state at the rate

Ki ! |qi − r||ρ − r|.

Consider the random variable N(t) = ∑
n
i=1 qi(t). Define

µidt to be the rate at which N transitions from N = i
to N = i + 1 in the next dt seconds. Similarly, let λi dt
to be the rate at which N transitions from N = i to
N = i − 1 in the next dt seconds. Then, we have a
birth-death chain where

µi = i(1 − r)

∣
∣
∣
∣

i

n
− r

∣
∣
∣
∣

and λi = (n − i)r

∣
∣
∣
∣

i

n
− r

∣
∣
∣
∣

.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Estimation 10 runs 10 robots

time (s)

va
lu

e

rho
estimate
reference

(a) Average Behavior

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

time (s)

sw
itc

hi
ng

 ra
te

 K
i

Switching Rate Ki

average rate Ki over 10 robots for 10 runs

Ki for one robot, one run

(b) Rate Ki.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Histogram of Estimate, 50 runs

N
or

m
al

iz
ed

 F
re

qu
en

cy
 o

f E
sti

m
at

e

Estimate

(c) Histogram.

Fig. 5. Controller with estimator. Figure 5(a) is a plot of 50 runs with 10 robots. The green line indicates the average of discrete states
ρ, the thick blue line is the average of estimates over all robots, and the red dashed line is the reference for this trajectory. Parameters are
ζ = 0.9 and a = 0.9. Note that the controller using the estimate information does not stop as the perfect controller does. Figure 5(c) shows a
histogram of the last hundred timesteps over all runs.

λ1 λ2 λn−1 λnλn0+1

µ0 µ1 µn−2 µn−1µn0−1

1 n-1 nn0· · · · · ·

0

0

0

Fig. 6. Birth-death process modeling the controller. States denote ρ
or number of robots with discrete state 1. Rates µi indicate increases
in ρ while λi indicate decreases. Note that n0 = ρn is a sink state
and there are rates of 0 leaving it.

To understand the expression for µi note that when
N(t) = i, there are i different robots that could transi-
tion from 0 to 1 and they each do so at the same rate

|qj − r||ρ − r| = (1 − r)
∣
∣
∣

i
n − r

∣
∣
∣ since qj = 0 and ρ = i

n .

The expression for λi is similar.
Now, choose r = n0

n for some 0 ≤ n0 ≤ n. Then
µn0 = λn0 = 0 and the state n0 is absorbing: all of the
probability mass of N(t) eventually flows to n0. Since
n0 = rn we get ρ(t) → r. This is illustrated in Figure 6.

In Figure 5(a) we show a simulation of the control
scheme where

Ki ! |qi − r||xi − r|.

This suggests that the estimation algorithm described
above does indeed yield a value that can be used to
control the system. We are currently working on a proof
that this composition of the estimator and the control
indeed results in the correct behavior.

VII. DISCUSSION

A. Contributions

In this paper, we described and verified a distributed
estimation and control algorithm that allows a stochas-
tically interacting group of agents to form local esti-
mates of the stoichiometry and control it to a desired,
stable fixed point. Convergence of the first and second
moments of the estimate are proven formally and
demonstrated empirically. Furthermore, the algorithm

is applicable in the case of a changing global prop-
erty. Current work in consensus utilizes discrete time
arguments to prove convergence but cannot address
concurrent processes occurring at different rates.

B. Future work

In future work, we will improve the estimator’s
variance by inserting a feedforward term and develop
a proof that the estimator and controller work together.
Also, we plan to extend the algorithm so that estimates
of other global quantities can be tracked (e.g. the
relative concentrations of arbitrary numbers of assem-
bly types). The analysis will be extended to describe
both higher order moments and the dynamics of sub-
populations of agents having different discrete states.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Daniel Georgiev and
Maryam Fazel for aid in model formulation, Samuel
Burden for assistance in simulation, and Nils Napp and
Alex Leone for collecting experimental data.

REFERENCES

[1] E. Klavins, “Programmable self-assembly,” Control Systems Mag-
azine, vol. 24, pp. 43–56, August 2007.

[2] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, pp. 988–1001, 2003.

[3] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed
sensor fusion using dynamics consensus,” in IFAC World
Congress, 2005.

[4] N. G. V. Kampen, Stochastic Processes in Physics and Chemistry.
Elsevier, 2007.

[5] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” in Proceedings
of the IEEE, vol. 95, pp. 215–233, January 2007.

[6] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic
consensus for mobile networks,” in IFAC World Congress, 2005.

[7] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann Pub-
lishers, Inc, 1996.

[8] L. Chaimowicz, V. Kumar, and M. F. M. Campos, “A paradigm
for dynamic coordination of multiple robots,” Journal Au-
tonomous Robots, vol. 17, pp. 7–21, July 2004.

[9] D. M. Gordon, Information Processing in Social Insects, ch. Inter-
action patterns and task allocation in ant colonies. BirkhŁuser,
1999.

[10] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The Journal of Physical Chemistry, 1977.

APPENDIX

A. First moment equilibrium solution

We show that (8) is an equilibrium solution for the
first moment dynamics (7). Since we are interested in
the solution for d

dt〈x〉 = 0 it is equivalent to show
(

ζA −

(

n
2

)

I

)

(ρ1) = −(1 − ζ)Bq. (10)

Using the definition of A in (5) the left-hand side of
(10) becomes

ρ(n − 1)

(

ζ

(
n − 2

2ζ
+ 1

)

−
n

2

)

1,

which reduces to

ρ(n − 1)(ζ − 1)1.

Substituting the definitions of B and ρ into the right-
hand side gives

(1 − ζ)
n − 1

n
11

Tq = −ρ(n − 1)(ζ − 1)1.

Thus, (10) is true. "

B. Proof of Uniqueness for Equilibrium Solution

Since (7)

〈x〉∗ = (1 − ζ)

((

n
2

)

I − ζA

)−1

Bq.

To prove that this is a unique solution, we show that
the matrix

H =

(

n
2

)

I − ζA

is invertible in the parameter region of interest. The
matrix H is singular when

H = u11
T and H = −(n − 1)I + (11

T − I).

However the values for which this holds,

{v = 0} and u = 1, v = −n

The values that make v = 0 are n = 1, which is a
trivial estimation problem, and ζa = −1, which is not
allowable by our parameter choices. To examine the
second condition, we compute H1 = (n − 1)(1 − ζ)1.
For this to hold true with v = −n and u = 1, the
parameter ζ = 1, which we already know reduces to
the traditional consensus case and doesn’t converge to
our desired fixed point. Thus, H is invertible in the
parameter region of interest. "

