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Abstract: We consider a distributed tracking problem where agents interact locally with limited
information. Each agent maintains both a discrete value and an estimate of the mean of
that value taken over all agents. In earlier work, we designed an estimator that converged
to the desired value with a finite variance and here, we derive a different estimator with
zero variance. We design the controller and estimator separately, prove their simultaneous
convergence and stability, finally demonstrate the results in simulation. While we present this
work in the context of of stochastic self-assembly, the algorithm can be applied other settings.
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1. INTRODUCTION

We address the problem of distributed estimation and
control of agents in a stochastic environment. In this pa-
per, distributed estimation refers to ensemble tracking of
a changing value and distributed control refers to asyn-
chronous and simultaneous state assignment to agents.

This work is motivated by, but not limited to, the Pro-
grammable Parts Testbed (PPT) (Klavins, 2007), which
consists of triangular robots that are propelled by an ex-
ternal system of randomly actuated airjets. When two
robots collide, they temporarily join using the embedded
magnets in their chassises and exchange information via
an infrared communication channel. Collision is the only
mechanism for information exchange and occurs stochas-
tically. Additionally, the robots can detach from one an-
other by rotating magnets that are mounted to motors.
Thus, the robots selectively reject undesirable configura-
tions.

In this paper, each agent can be one of two discrete
states, or types, and calculates an estimated population
fraction, which is the fraction of robots in the system
of a particular type. Additionally, the robots have the
ability to transform from one type to another; the rate of
switching is the control effort. Based on their estimates of
the population fraction, agents switch their type to match
a desired reference population fraction. This reference can
be determined by how many robots should be allocated
to certain tasks or, in the case of self-assembly, how many
parts should in a sub-assembly.

The contribution in this paper is a distributed estimator
of the population fraction that informs a stochastic con-
troller and together results in a zero-variance algorithm.
We introduce an estimator and controller, prove their con-
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vergence separately and together, and demonstrate our
results in simulation. While we present this work with
the example of stochastic self-assembly, the theory can be
generalized to be used in other examples such as swarms,
both robotic (Halasz et al., 2007) and biological (Seeley,
1996).

2. RELATED WORK

The distributed estimation and control problem consid-
ered here has ties to existing research. In particular, the
tools of distributed consensus are related to the esti-
mation process we develop. Much of the literature ad-
dresses these problems using gossip algorithms (Boyd
et al., 2006), sensor fusion (Xiao et al., 2005) (Spanos
et al,, 2005a), and distributed Kalman filtering (Olfati-
Saber, 2005), but this work is most closely related to linear
average consensus (Xiao and Boyd, 2003; Tsitsiklis et al.,
1986).

Alignment refers to all agents reaching the same value,
whereas consensus requires agreement at a specific value
and tracking refers consensus of a dynamic value. The
desired agreement value can be any convex combination
of the initial states, but is often the average of the agents’
initial states. To reach agreement in a distributed manner,
the approach taken frequently in the literature is for each
agent, k, to maintain a state variable, x;, which is updated
when interacting with neighboring agents
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Here, j € N signifies that agent k has access to Xj, the
state variable of agent j. Note that the neighbor set \V;, can
be time varying. When the output of the update rule, f,

is a linear combination of the input, the resulting protocol
is referred to as linear consensus.



In the case of linear consensus, the agreement protocol
can be written using the Laplacian matrix, L, of the graph
representing the interaction topology,

X = —Lx. 2)
When interactions are symmetric (j € Ni(t) < k €
N(t)), the Laplacian matrix can be computed as L = D —

A, where D is the diagonal degree matrix and A is the
adjacency matrix, (Godsil and Royle, 2001).

Consensus protocols have received a large amount of at-
tention recently (Jadbabaie et al., 2003). Bullo et al. (2008)
and Olfati-Saber et al. (2007) present a comprehensive
review of recent literature. However, nearly all consen-
sus protocols are static and are insufficient for tracking.
Once consensus is reached, agents forever maintain this
value. Emerging applications require that the agreement
value be non-stationary. One of the few works that does
address tracking is (Spanos et al., 2005b), in which the
authors examine a network that splits and merges and
subnetworks of agents come to consensus on their initial
conditions. Additionally, Tsitsiklis et al. (1986) addresses
consensus with an exogenous measurement and we use a
similar framework here.

In related previous work (Shaw and Klavins, 2008), we
derived a stochastic controller and estimator for robots of
two types. We proved that the estimation and control pro-
cesses were separately stable and demonstrable together.
However, the estimator converged to the population frac-
tion with a finite variance. In the current work, we have
modified the estimator to more accurately track the pop-
ulation fraction and provide a proof of the estimator and
controller working together.

3. PRELIMINARIES
3.1 Problem Setup and Notation

Consider a set of 1 robots where each robot i has a discrete
internal state g;(t) € {0,1}. Define
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to be the population fraction. The constant # is the
number of robots and is known by all the robots. Each
robot maintains an estimate £;(t) € R. The vector g =
(q1-..qs)7 is defined to be the vector of internal states
and £ = (£;...%,)" to be the vector of estimates. For sim-
plicity, we often omit the explicit dependency of x, £, and
g, on t. The symbols ¢~ and " denote the times imme-
diately before and after robot interactions, respectively.
In the sequel, the symbol (-) denotes expected value and
1=(1...1)7.

We assume that the robots are well-mixed, that is, the
pair of agents that interacts at any time is uniformly dis-
tributed. Thus, in the next dt seconds, any pair of robots
is equally likely to interact with probability k dt. When
two robots interact, we assume they are programmed to
simply exchange and update their estimates. Robots con-
currently update their discrete states to achieve a desired
population fraction. In particular, we address the follow-
ing problems:

(a) Distributed Estimation
Define an estimator function

(&(7), 2;(t7)) = f(&i(£7), %(t7))
so that £;(t) converges to x(t) as t approaches co with
high probability for all robots i.

(b) Distributed Control Problem

Define a rate function K;(x, g;) at which robot i switches
from g;(t) to 1 — g;(¢) so that x converges to a desired
reference population fraction r (a constant) with high
probability and K;(x,q;) converges to zero (the robots
eventually stop switching). We also define functions to
update the state and estimate for a control event:

(£i(£7), qi(t7)) = g(2i(t7),4i(t7))-

(c) The Simultaneous Estimation and Control Problem
Prove that a solution to the control problem running con-
currently with a solution to the estimation problem (that is,
with switch rate K;(£;,¢;)) drives £; and x to r with high
probability.

In this paper, we solve these three problems formally. Our
estimator performs linear average consensus, we design
a controller which also updates the estimate according to
a change in state at a rate K;, and prove that the estimator
and controller work together.

3.2 Notation and Basic Results

We model our system as a continuous-time Markov Pro-
cess over the compact state space Z and examine its em-
bedded discrete-time Markov chain. The set S C Z is
measurable and invariant, T is the hitting time of S, and
P(-) indicates probability. We write o = zpz1z5 ...z, as a
path of length n, or series of n states, that begins at state zg
and ends at z,, and Kzizj as the transition rate from state z;
to z;.

To address problem (c) we introduce a theorem: if for all
states there exists a finite path to an invariant set, then the
probability that any path eventually reaches the invariant
set S is 1, provided that the sum of the transition rates out
of each state is bounded. The following theorem applies
to discrete-time infinite-state Markov Processes.

Theorem 1. Assume Kz, , > € > 0and Z#y Kyy < Kinax-
If Vz € Z there exists a path starting at z and ending in S,
whose lengthisn < N < oo, then P(Tg < c0) = 1.

Proof of Theorem 1. Consider a path of length N,
0 = ziZi41 - .- Zi+N- By the assumptions of Theorem 1,

N
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Thus, the probability of its complement must be
P(ziyn € Slzi ¢ S) <1-0. (@)
We derive the probability P(z;,,n & S) as
P(zizmn & S|zigm-1)n € S)P(Zir(m-1)n € S) ©)
+P(zitmN € Slziv(m-1)n € S)P(Zix(m-1)n €S),
where P(ziyun & S|ziy(m—1)ny € S) in (6) equals zero
since the system cannot leave S. By iterating this substi-



tution, we arrive at the expression for
P(ziyun £ S) =
L P(zipjn & Slziyj1)n € S)P(zi € ).
Substituting (5) above gives
P(ziymn & §) < (1=6)"P(z; £ S).
Our condition P(Ts < o) is equivalent to
1 —limy—eP(Ts > mN)

> 1—limp e y_(1—0)"P(z; =z2)
z€Z

>1-0
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4. SUMMARY OF ESTIMATOR AND CONTROLLER
4.1 Estimator

We consider an estimate function is defined by a convex
combination of the estimates of the interacting robots. In
particular, if robot i interacts with robot j at time ¢ then
the robots update their estimates according to

(1) = a%i(t7) + (1 —a)%(t")

(tT) = (1—a)&;(t7) +a2;(t7) )

£ (tT) = 2(t7) for all k # i, j.
Here a € (0,1) is a design parameter defining the weight
of a robot’s own estimate. The last line of the above

update rule represents robots not participating in the
interaction. The interaction is written as matrices

R(ET) = Ay&R(t7), 8)
where Aj; is defined for robot i and j according to equa-
tion (7).

4.2 Controller

For the controller, we define a rate K; at which the robots
change state so that (a) x(t) approaches r and (b) the
robots eventually stop switching. The update rule for
robot i when changing state is

qi(t") =1—qi(t") ©)
HE) = &) +q:(t) —ai(t). (10)
Equation (10) is necessary to preserve
Y9 =) % (11)
1 1

and allow the estimator to track the population with zero
variance. Tsitsiklis et al. (1986) refer to Equation (10) (their
Equation 2.1) as an exogenous measurement.

We choose a control scheme where robot i toggles its state
at the rate

Ki £ |q; —rllx —rl. (12)
To show convergence of the controller, we first consider
perfect knowledge of x and later, we substitute the esti-
mate, £;, into the expression for K;. Note that K; is 0 when
x=r.

4.3 Moment Equations

Our system has a deterministic update function for events
that occur at random times and we can describe it us-

ing Stochastic Hybrid System (SHS) formalism. To reason
about the dynamic behavior of a SHS, we use the follow-
ing theorem.

Theorem 2. (Hespanha, 2006) Let ¢ : R"
arbitrary function. Then

d
S() = (L),

where L is the extended generator of the SHS (defined in
(Hespanha, 2006)).

— R™ be an

(13)

Our system has neither continuous flow nor time depen-
dence, thus we do not use the entire formalism described
in Hespanha (2006). In the present case, the extended
generator L is given by

LY(R,q Z)\

where ¢ is the test functlon, ¢; is the function for a par-
ticular change of state i, and A; is the associated rate. To
examine the expected value of the estimates, we choose
P(®) = £ and substitute into (14) the estimate function
(8) with rate k and the discrete value function (10) with
rate K;, which gives

d <ZA1] (%) > + < ZK (1-2q;) > (15)
i<j i=1

where where the indices i < j refer to the possible
interactions between robots i and j. Since a is constant and
the next reaction pair 7, j is uniformly distributed over all
pairs, then (A;;£) = A(%), where

A2 <2Aij> = ZAi]»,
1<j 1<]
which can be shown to be
((n —1)(1—a)+ (’;) 1) +(1—a)@T —1). (16)

Thus we derive the dynamics for the moments of the
estimate and discrete value:

i(&)zk(A(Z)I) (%) <;11< 12q1)> 17)

and
;w—<i&u4w>

i=1

¥ (9i(29) -y (&q), (04

5. STABILITY ANALYSIS
5.1 Estimator Stability in Isolation

To examine the estimator stability, we consider the es-
timator without control; that is the discrete value g; is
constant for all 7 and K; = 0. Equation (17) becomes

;t (#) =k (A - (’;) 1) (2).

Relationship to Laplacian Dynamics

Proposition 1. The dynamics of the estimator, without
control, is a function of the Laplacian matrix for a com-
plete graph.



Fig. 1. Birth-death process modeling the controller. States
are labeled with the number of robots with discrete
state 1, or nx. Note state nr is invariant.

To show Proposition 1, it is equivalent to show that

H2A- (Z)I— —wL,
where w is a weight and L = (n — 1)I + (117 — I). Using
the definition for A from (16) gives

H=(1-a)(~(n-DI+m" - 1),

Thus, H = —wL, where w = (1 — a), and the results
are consistent with linear average consensus algorithms,
which obey (2). The union of the graphs induced by
the random interactions of the robots is jointly connected,
(Jadbabaie et al., 2003) and, in fact, complete. Thus, we
observe that the estimator dynamics is governed by the
Laplacian for a complete graph. |

Because we have a complete graph, the associated Lapla-
cian is positive semi-definite and there exists a single
stabile equilibrium (Olfati-Saber et al., 2007). This corre-
sponds to the mean estimate for all agents converging to
the correct population fraction x with a variance of 0, and
thus all estimates £; are equal.

5.2 Controller Stability in Isolation

To analyze the stability of the controller, we consider
the control rate K; informed by a perfect estimate of the
system. Consider nx € {0,1,...,n}, representing the
number of agents with state 1. Define y;dt to be the rate
at which nx transitions from nx = i tonx = i 4+ 1 in the
next dt seconds. Similarly, let A; dt to be the rate at which
nx transitions from nx = i to nx = i — 1 in the next dt
seconds. Then, we have a birth-death chain where

i . Z
I’li_(n*l) E*T and /\i_l(lfr) Eir

are rates derived using (12). To understand the expression
for the (birth) rate y; note that when nx = i, there are n — i
robots left that can transition from 0 to 1 and they each
iy

do so at the same rate |q; — r|[x — 7| = r , since

q; = 0and x = ;.. The expression for A; is similar. Note
that py, = Ay = 0 and the state nr is invariant: all of
the probability masses of nx eventually flows to nr and x
approaches r. This is illustrated in Figure 1.

We now analyze the estimator and controller together.
5.3 Simultaneous Estimation and Control Stability
To combine the estimator and controller and ensure sta-

bility, we must adjust the controller. The controller sta-
bility in the previous section is dependent upon the es-
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Fig. 2. Levels labeled with the population fraction x. The
state x = 7 includes the sink set S. Dashed arrows
and ellipses indicate omitted states. Red arrows in-
dicate control events and yellow arrows indicate es-
timation events. Curved arrows specify a trajectory
and blue dots are states along this trajectory.

timates £; being equal to the actual x. Since the space of
% is continuous, this will never occur. Thus, we alter our
controller so that rate K; becomes 0 when £ ~ r:

_]0 ifr—e<ux; <r+4e,Vi
Ki= { |g; — r||x; — 7| otherwise. (18)
Note thate < % should be chosen to be sufficiently small
to preserve the conservation property (11).

We divide the state space X x Q into equivalence classes
where x is constant in each class. We call these classes
levels and define them as x(x) = {(%q)|iq71 = x}.
Refer to Figure 2 for a graphical description. We prove
that there is an invariant S in level x(r), where 1471 = r
and %; € [r — e, 7+ €]Vi.

Using the following lemmas with proofs outlined below,
we show that there exists an invariant set S, where

1
S={(&,q)r—e<%<r+eVi=1,..,n}fore < 7

Lemma 1. S is invariant with respect to the estimator and
controller actions. In particular,

(a) No estimation event takes an agent out of S.
(b) No control event takes an agent out of S.

Proof of Lemma 1. For any robots i and j, estimates £; and
%; are updated by the convex combination in (7). Without
loss of generality, assume £; < £;. Then

(19)

t; and £; are the updated estimate values. No

where £;

estimation event can take the agents’ estimates outside
of any level x(x). In particular, S € x(r) is invariant with
respect to estimation events.

Similarly, by construction, no control event can take an
agent’s state out of S. Refer to the definition of the modi-
fied controller (18). |

Lemma 2. The rate K; = 0 for all i only when (%;,4;) € S.

Proof of Lemma 2 All invariant states are in the sink set
S. We prove this lemma by contradiction and show that
ifxer—er+e]Vithenx =r.



Assume that £ € [r —€,7+ €] Vibut x # r. Thus, the sum
Y.i % € [n(r —€),n(r — €)]. We note by definitions (3) and
(11) that x = 1y, % and x € [r —¢€,7 + €]. The values
x and r can be written as fractions: x = % and r = %

where j, k € {0,1,...,n}. Since € can be no larger than %,
j € [k—1,k+1]. There s only one integer in that interval,

so j = k and x = r, which is a contradiction.
Thus, if £ € [r —€,7 + €] Vi, then K; = 0 Vi robots and the
agents estimates are within the invariant set S. u

Lemma 3. S is reachable from any initial condition in
finite time.

(a) From any level, there is a path of m, steps to x(r).
(b) From within x(r), there is a path of m, steps to S.

In other words, S is globally attracting.

Proof of Lemma 3.  Using the results of Lemmas 1 and
2 and Theorem 1 we prove Lemma 3, that our system
always reaches a desired state in finite time. We use
Lemma 1 to prove that the set S is invariant and Lemma
2 to prove that the set S appears in only one level.

From Theorem 1, to show that the probability that any
infinite path will end up in S is 1, it is sufficient to
construct a finite path from any state (£,4) to S provided
bounded transition rates. First, we find a bound, K;;;,;, on
the sum of transition rates out of any state by summing
the controller and estimator rates.

n

Kiax > Z |¢71 — T’HJ?Z' — 1’| + <Z>k
i=1

Each control rate is bounded, that is |g; — r||%; — | < 2

and the rate k is measured from the physical testbed,

(Burden et al., 2006). Thus, K,y = 21 + (Z) k.

Second, we construct a path from any point in any level
to the set S using m, control actions and m, estimation
actions. From any level, the minimal path length to level
x(r) via control actions is m, = |rn — q"1|. Similarly, from
any location in x(r), a path can be constructed in 1, steps
via estimation events to S. We choose two agents with
maximal difference to update their estimates. Since S is
measurable and estimation events are contracting (19),
then estimates £; move closer to each other and closer to
r for all i. Therefore, all £; must be within € of r at a finite
time thereby reaching S in a finite number of steps. W

6. DEMONSTRATION OF ESTIMATOR AND
CONTROLLER IN SIMULATION

We demonstrate the estimator and controller working
together by directly simulating the system using the
Stochastic Simulation Algorithm, (Gillespie, 1977). Figure
3 shows the behavior for 8 robots in a single run and
averaged over 50 runs. In Figure 3(a), note that all esti-
mates converge to the reference with zero variance. When
averaged over many runs as in Figure 3(b) we see asymp-
totic convergence. The series of histograms in Figure 4
shows the evolution of the distribution over time. For
these simulations the parameter € is chosen to be 0.05 for

the controller and this fulfills the constraint that € < ﬁ

Estimation on a single run for 8 robots

—average label
- - -reference
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(a) Single run.

Estimation averaged over 50 runs for 8 robots
1
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8
= 0.6
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0 500 1000 1500 2000
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(b) Fifty averaged runs.

Fig. 3. Demonstration of the estimator and controller
working together. In both (a) and (b), thin lines repre-
sent data for single robots and thick green lines rep-
resent the average label. In both figures, the dashed
red lines represent the reference 0.125.

7. DISCUSSION AND FUTURE WORK

In this paper we demonstrate and prove convergence for
a distributed estimator and controller with zero variance.
However, this algorithm is not robust to arbitrary initial
conditions or any scenario where the agents’ mean esti-
mate deviates from the population fraction and violates
(11). For example, if a message is dropped between two
agents or if a robot turns off, the mean of the discrete
values is not preserved and the system will not converge
to the intended mean. We do have earlier work that can
address this problem (Shaw and Klavins, 2008), but the
algorithm in this previous work converges with finite
variance. In the future, we will develop a notion of ro-
bustness for our system to compare algorithms.

While the example presented in this paper is a small-
scale testbed with non-locomoting agents, we can apply
our distributed control and estimation framework to a
number of applications. For example, many task assign-
ment algorithms require all-to-all communication, fixed
graphs, or leader election. This often results in sequen-
tial task assignment, an approach that does not scale
well. Since our controller employs simultaneous and dis-
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Fig. 4. Normalized histogram data at various times. The histogram at the far left shows the initial distribution of
estimates where 5 of 8 robots start with discrete state 1. The histogram on the right shows the distribution of
estimates at 2000s, with a spike about the reference 0.125.

tributed task assignment, it can be applicable to large-
scale systems.

Furthermore, our stochastic framework can include dis-
turbances that can be difficult to model by including
agent failure at a particular rate. Thus, we can compose
different processes occurring at various rates and main-
tain distributed, asynchronous algorithms that are based
on local information exchange. These characteristics are
appealing for decentralized algorithms and have impli-
cations for applications of larger scale.
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