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Abstract— Agreement algorithms allow individual
agents in a population to estimate a global quantity by
sharing information. A common example is computing the
global mean of a sensor measurement from each agent.
We present a practical agreement algorithm, input-based
consensus (IBC), that produces bounded error and recovery
in the face of significant communications failures in a
stochastic distributed system. We compare our algorithm
to linear average consensus (LAC), which produces an exact
result under ideal conditions, but is not robust to message
loss. For both algorithms, we measure performance with
respect to a varying percentage of dropped messages. The
algorithms are examined analytically, simulated using
the Stochastic Simulation Algorithm, and demonstrated
experimentally on a testbed of 20 robots. In all cases, the
IBC algorithm produced reasonable values, even when
tested with up to 90% message loss.

I. INTRODUCTION

Agreement algorithms are widely used on multi-
agent systems to diffuse information and combine local
measurements of a global quality. An example of this
type of algorithm is linear average consensus (LAC) [1],
in which agents compute the global mean of a locally
measured quantity by repeatedly computing pairwise
averages between agents. Assuming no communica-
tions messages are lost and no part of the system is
disconnected indefinitely, each agent’s local estimate
will converge to the global mean. At this point, it
can be said that the agents are “in agreement”, as the
variance of the estimates on each agent can be made ar-
bitrarily small. However, in the presence of intermittent
communications failures, information about the global
mean can be lost permanently, making agreement to the
correct global value impossible to reach. In this paper,
we apply the input-based consensus (IBC) algorithm [2],
which weights both current states and initial states, to
address this problem.

The contributions of this paper are as follows: First,
we extend previous results [2] by examining the algo-
rithm in the event of dropped messages; we demon-
strate that the agents converge with bounded error.
Second, we use LAC as a benchmark and compare its
performance via root mean square error. We compare
the two algorithms analytically, via simulation, and
experimentally on a system of 20 mobile robots.

II. RELATED WORK

There is a great deal of literature on agreement
in multi-agent systems and on stochastic systems in

general. We group this work into two categories: agree-
ment algorithms, including graph theory and faulty
agreement, and stochastic processes.

A. Agreement Algorithms and Graph Theory
Consensus in multi-agent systems is used to describe

multi-agent systems from flocking birds to algorithms
for controlling robots [1], [3], [4]. A common task is
to compute the average of the agents’ initial states. To
reach agreement in a distributed manner, one approach
is for each agent, k, to maintain a state variable, xk,
which is updated when interacting with neighboring
agents:

ẋk = ∑
j∈Nk(t)

fk(xj, xk). (1)

Here, j ∈ Nk signifies that agent k has access to xj,
the state variable of agent j. Note that the neighbor
set Nk may vary with time. When the output of the
update rule, fk, is a linear combination of the input,
the resulting protocol is linear average consensus.

Graphs are used to model the communications topol-
ogy between agents. A graph G consists of vertices
and edges. We represent an undirected graph as an
adjacency matrix, A, where each entry (i, j) is 1 if
vertices i and j are connected and 0 otherwise. The
degree matrix D is a diagonal matrix each entry (i, i)
is the sum of incident edges of vertex i. We define the
Laplacian matrix L = D − A. Much of the consensus
literature considers controllers of the form ẋ = −Lx,
where systems of agents are governed by Laplacian
dynamics [1].

Linear average consensus (LAC) is a specific case of
Laplacian dynamics where agents are computing the
average of the initial global state. In this paper, we
examine faulty consensus in the presence of dropped
messages, using LAC as a baseline to compare to our al-
gorithm. LAC has the constraint that the sum of initial
conditions, ∑i y0

i , must be constant for all time, where
y0

i is the initial value for robot i. If messages are lost,
the global sum changes, so linear average consensus
will not converge to the correct value. The major flaw
of linear average consensus is that the system cannot
recover from any disturbance that changes the global
sum.

Although LAC is not robust to message loss, we use
it as a baseline because it is representative of a large
class of consensus algorithms; those in which agents
converge to the convex combination of initial states



and a globally invariant quantity is maintained through
local interactions. Olfati-Saber et al. [1] refer to the class
of algorithms with this invariance property as average-
consensus algorithms. To our knowledge, computing
global averages is the simplest such consensus applica-
tion, thus, we found it suitable to use LAC to compute
the global average as a baseline for comparison.

In previous work, we show the convergence and sta-
bility of the estimator and tracking of a changing value
with finite variance [2]. LAC can also perform tracking
with the inclusion of an exogenous input, or relative
state change [5]. There have also been consensus-like
algorithms developed to perform distributed Kalman
filtering in noisy systems [6], [7].

Consensus problems have attracted the interest of
many authors particularly under the condition of faulty
communication. Often, consensus is considered with
additive noise representing sensor error [8], [9], [10]
and also as packet losses [11], [12]. Huang assumes an
observer under the event of a known packet loss [11].
Our work is similar to the latter, in that we can also
model packet loss as a Markov process. However, we
assume that packet losses are not observable.

B. Stochastic Processes

Passive parts [13], non-locomoting but actuated
robots [14], [15], and mobile robots [16] have been
described using Markov process formalism. In these
testbeds, robots move randomly and generate random
communication graphs. There has been much work on
random graphs in this context [17], [18], [19]. Agree-
ment is reached often when the union of the graph
induced by the communication events is connected
[20]. However, this work does not directly address
communication failure.

Our experimental multi-robot system generates ran-
dom graphs through the mobility of the robots. We
assume the system is well-mixed; that is, every agent
is equally likely to interact with any other agent in the
system. Thus, we can associate a rate k for interactions,
where k dt is the probability in the next dt seconds of
an event occurring.

We model our system as a Stochastic Hybrid Systems
(SHS) [21]. A SHS consists of a set of discrete and con-
tinuous states governed by a state-dependent stochastic
differential equation. Since our system evolves via a
deterministic update at random times for random pairs
of robots, we find the SHS formalism fitting. To reason
about the expected behavior over many runs, we ex-
amine the first and second moment dynamics for the
estimate, 〈x̂〉 and 〈x̂x̂T〉 respectively.

III. PRELIMINARIES

Consider a set of n robots where each robot i has a
constant discrete internal state, qi ∈ {0, 1}. Define the

population fraction to be

x ,
1
n

n

∑
i=1

qi , (2)

or the discrete value averaged over all the robots. Each
robot also maintains an estimate x̂i(t) ∈ R of x. It is
assumed that each robot knows the value of n. The
vector q = (q1 . . . qn)T is defined to be the vector of
internal states, x̂(t) = (x̂1(t) . . . x̂n(t))T to be the vector
of estimates, and 1 to be the vector of 1s.

In our system, the robots move randomly through
the environment, and randomly select a partner within
its communication range to exchange information. We
assume that the agents do not know when a message
is lost, that they have limited computational and com-
munication resources, and we design a a protocol to be
as simple as possible.

IV. INPUT-BASED CONSENSUS

We introduced IBC in our previous work [2] and
here, we apply the algorithm to a mobile multi-robot
system. We consider the case in which the estimator
update function is defined by a convex combination
of the estimates and states of the interacting robots. In
particular, if robot i interacts with robot j at time t then
the robots update their estimates according to

x̂i(t + 1) = f (x̂i(t), qi , x̂j(t), qj)
x̂j(t + 1) = f (x̂j(t), qj, x̂i(t), qi)
x̂l(t + 1) = x̂l(t) for all l 6= i, j,

where f (x̂i(t), qi , x̂j(t), qj) is defined by

ζ
(
ax̂i(t) + (1− a)x̂j(t)

)
+ (1− ζ)

(
1
n

qi +
(

n− 1
n

)
qj

)
(3)

at a particular time t. Here ζ ∈ [0, 1] is the consen-
sus parameter, which is the weighting of the relative
importance of the estimates and discrete states in the
update rule; 1

n is the weighting of a robot’s own
discrete state; and a ∈ [0, 1] is the weighting on a
robot’s own estimate. The last line of the above update
rule represents the fact that robots not participating
in the interaction do not update their estimates. We
call this algorithm input-based consensus (IBC) because
an agent’s state appears as an input in the update
equation. LAC is equivalent to IBC when ζ = 1, we
call ζ the consensus parameter. Here we demonstrate
that our algorithm is robust to dropped communication
between agents where the message loss is not detected.

Written as matrices, the update in which robots 1 and
2 happen to interact at time t can be written as

or x̂(t + 1) = ζ A12 x̂(t) + (1− ζ)B12q. (4)



In general, matrices Aij and Bij are defined as follows:

Aij(i, i) = Aij(j, j) = a Bij(i, i) = Bij(j, j) = 1
n

Aij(i, j) = Aij(j, i) = 1− a Bij(i, j) = Bij(j, i) = n−1
n

Aij(l, l) = 1
ζ for all l 6= i, j

(5)
and all remaining matrix entries are 0. Matrices A12
and B12 are derived in this manner.

We prove in the condition without dropped messages
that the estimate converges to the actual population
fraction of the system [2].

A. Dropped Messages

In the case of dropped messages, the update function
if robot i drops a message is

x̂i(t + 1) = x̂i(t)
x̂j(t + 1) = f (x̂j(t), qj, x̂i(t), qi)
x̂l(t + 1) = x̂l(t) for all l 6= i, j,

where f (x̂i(t), qi , x̂j(t), qj) is defined as above (3). This
results in the following update matrices where

Ciji(j, j) = a Diji(j, j) = 1
n

Ciji(j, i) = (1− a) Diji(j, i) = n−1
n

Ciji(i, i) = Ciji(l, l) = 1
ζ

(6)

for a message dropped by robot i, with all the remain-
ing matrix entries 0. There are corresponding matrices
Cijj and Dijj for message dropped by robot j.

B. Moment Dynamics

Because the system is a stochastic process, we reason
about the moments of the system, particularly, the
mean for the estimate x̂. The first moment of the
estimator process is examined using the Stochastic
Hybrid Systems (SHS) formalism introduced in the
related work section. In the present case, the extended
generator L is defined by

Lψ(x̂, q) = ∑
i<j

λi (ψ (φi (x̂, q))− ψ (x̂, q)) , (7)

where ψ is the test function, φi is the update function
for interaction i, and λi is the associated rate at which
this process occurs. Since we are interested in the
behavior of the mean of the estimate, which evolves
at rate k, so we choose the test function to be ψ(x̂) = x̂
and substitute into (7), which gives

d
dt
〈x̂〉 = γk

〈(
∑
i<j

(
ζ Aij − I

))
x̂ + (1− ζ)∑

i<j
Bijq

〉

+ (1− γ)k

〈(
∑
i<j

∑
m∈i,j

(
ζCijm − I

))
x̂

+ (1− ζ)∑
i<j

∑
m∈i,j

Dijmq

〉
(8)

where the indices i < j refer to the possible interactions
between robots i and j. The second sum where m ∈ i, j
indicates that either robot i or j can drop a message.

Equation (8) can be simplified as follows. Define

A , ∑
i<j

Aij, B , ∑
i<j

Bij,

C , ∑
i<j

Ciji + ∑
i<j

Cijj D , ∑
i<j

Diji + ∑
i<j

Dijj.

For now, we consider the estimate independent from
any changing discrete values and thus, assume that the
discrete state q is constant. It can be shown that

A =
(

1
ζ

((
n
2

)
− n + 1

)
+ na− 1

)
I + (1− a)11T

B = D = n−1
n 11T

C = A + 1
ζ

(
n
2

)
I.

(9)
We can show that equation (8) becomes

d
dt
〈x̂〉 = k

((
ζA−

(
n
2

)
I
)
〈x〉 + (1− ζ)Bq

)
, (10)

which yields the same desired equilibrium solution

〈x̂〉∗ = x1

and the same results for the dynamics of the second
moment as in our previous work [2]. Note that as
the consensus parameter ζ approaches 1, the variance
decreases. This is observable in our data.

We numerically solve the differential equation (8)
for the mean 〈x̂〉 and second moment 〈x̂x̂T〉 for LAC
and IBC for γ = 0.5 and plot them below. Figure 3(a)
and 4(a) show the analytical solutions for the expected
value of the estimate for success fraction γ = 0.25.
An example robot trajectory for one experimental run
is plotted in orange. Note that for LAC, Figure 3(a),
the single trajectory converges to an incorrect steady
state value, while the single robot for IBC, Figure 4(a),
oscillates about the correct value.

C. Analysis
We compare algorithms by calculating the standard

deviations. Figure 1 shows the standard deviation at
equilibrium of LAC to IBC as the function of com-
munications failures, 1 − γ. The numerical solutions
are found at the steady-state of the mean estimate
dynamics (10) and the second moment dynamics. Ef-
fectively, this evaluates the standard deviation across
multiple executions of each algorithm, not within a
single run. Note that the standard deviation of IBC
is almost unaffected by communications loss, but the
standard deviation of LAC approaches the maximum
value – the initial conditions.

V. SIMULATED RESULTS

We simulated the system using the Stochastic Sim-
ulation Algorithm [22]. At every time step in the sim-
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(a) Numerical analysis.
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(b) Experimental results.

Fig. 1. (a) LAC compared to IBC numerically. We plot the standard
deviation as a function of communication failures (1 − γ) for 20
robots. The red (dashed) line is the numerical standard deviation
for LAC and the blue (solid) line is the standard deviation for IBC.
(b) LAC compared to IBC experimentally. We conducted a total of
96 runs. The experimental data shows a much larger variance for the
LAC RMSE than the IBC RMSE.

ulation, a pair of robots is chosen to interact and
update their estimates. This produces a well-mixed
system, i.e. interactions between any pair is uniform.
Two representative trajectories for the simulated results
are shown in Figure 3(b) and Figure 4(b), for LAC and
IBC respectively. The communications success rate is
γ = 0.25. LAC converged with variance 0 to a value
that is not the correct value while IBC oscillates about
the correct value with a finite variance. The results from
simulation are confirmed by experimental results.

VI. EXPERIMENTAL RESULTS

The SwarmBot robot platform [23] was used to
validate algorithm performance. The robots are au-
tonomous, using only local computation and com-
munication to run the algorithms. Each robot has a
infra-red communication system that allows robots to
communicate to neighbors within approximately a 1.0
meter radius. This produces multi-hop networks within
the confines of our experimental workspace, which is
a 2.43 m × 2.43 m (8’ × 8’) square.

We generated dynamic network topologies by mov-
ing the robots randomly throughout the workspace.
Since their communication range is smaller that the
workspace dimension, this will force frequent changes
in neighbors, producing random interactions. The
robots drive straight until they contact an obstacle,
then use their bump sensors to estimate the angle of
incidence and rotate to “reflect” themselves back into
the environment. Each trial was 5 minutes long and
initialized with 20 robots. Robots would occasionally

run out of batteries during the experiment and were
not replaced.

We can calculate the effect of losing a robot on the
global estimate. As shown in previous work [2], the
equilibrium estimate is

〈x̂〉∗ = (1− ζ)
((

n
2

)
I − ζ A

)−1
Bq.

Suppose that one robot has a dead battery and the rest
of the robots still believe that there are n robots in the
system, but instead there are actually n− 1 robots. The
error of the equilibrium is 〈x̂〉actual − 〈x̂〉measured = e1.
We can solve this error as

e = (1− ζ)
((

n
2

)
I − ζ A

)−1
(Bactual − Bmeasured)q

where Bactual = n−2
n−1 11T and Bmeasured

n−1
n 11T . As the

number of robots increases, the effect of an incorrect
coefficient decreases. For example, parameters for a
representative experiment are n = 20 robots, two robots
with state 1, a = 0.5 and ζ = 0.95. If there are 19 active
robots at the end of an experiment, the error is 0.27%.
For 18 active robots, the error is 0.58% and so on.

Both algorithms require pairwise updates between
neighbors, which required a communications hand-
shaking protocol. First, if a robot is not updating, it
selects a neighbor at random and transmits a “partner
request” message. Then, if that neighbor is not updat-
ing, it replies with a “partner acknowledge” message
and runs the update rule. Upon receipt of the ac-
knowledgement, the original robot runs its update rule
with probability γ. This success probability parameter
γ allows us to simulate communication losses much
larger than the actual loss of the system, which is less
than 1% [23].
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each hop. Increasing B, the bandwidth, decreasing BA, the algorithm’s required
bits per round, or reducing mmax, the number of neighbors, all allow the round, τ ,
to be shorter, which increases message speed. A smaller spanning ratio, k, gives
the message a straighter, more efficient path. The maximum number of neighbors,
mmax, can be estimated by knowing the workspace area and the number of robots,
and controlled at run-time with dispersion algorithms.

4 Experimental Setup

The SwarmBot [4] robot platform was used to validate algorithm performance. The
robots are fully autonomous, using local computation and sensor readings to run the
algorithms. Each robot has a 32-bit ARM processor running at 40mhz, a unique ID
chip, a bump sensor, and wheel encoders. Large top mounted LEDs on each robot
are used to inform the user of the robot’s status.

(a) A SwarmBot (b) The Swarm. (c) Hop distribution on
robots

Fig. 1 a. Each SwarmBot has an infra-red communication and localization system which enables
neighboring robots to communicate and determine their pose, {x,y,θ} relative to each other. The
three lights on top are the main user interface, and let a human determine the state of the robot
from a distance. The radio is used only for data collection and software downloads. b. There are
112 total robots in the Swarm, but a typical experiment uses only 25-35 at a time. c. Picture of the
robots constructing a broadcast spanning tree in the experimental workspace. Robots that are an
even number of hops from the root are flashing their blue light, those located an odd number of
hops are flashing their red light. The root is in the lower-left.

Each robot has an infra-red communication and localization system that allows
nearby robots to communicate and determine their pose, p = {x,y,θ} relative to
each other [10] . The system was run at its lowest power setting, which has a range
of about 1.0 meter. The lowest power setting is used to produce multi-hop networks
within the confines of our experimental workspace, which was an 2.43 m × 2.43 m
(8’ × 8’) square.

Ground truth was determined by a vision-based localization system. The system
was developed by Newton Labs [6], and tracks the position, {x,y}, of each robot.

(a) A SwarmBot. (b) An experiment.

Fig. 2. a. Each SwarmBot has an infra-red communication and lo-
calization system which enables neighboring robots to communicate
and determine their pose relative to each other. The three lights on
top are the main user interface, and let a human determine the state
of the robot from a distance. The radio is used for data collection and
software downloads. b. Each trial started with 20 robots, but often
robots would run out of batteries during a trial. These robots were
not replaced until the next trial.

A total of 95 experimental runs were performed with
the variables γ = {0.1, 0.5, 1} and ζ = {0.95, 1.0}.
Figures 3(a) and 4(a) each show one sample trajectory
from the experimental data plotted with the analytical



results. We estimate k = 0.22 from our experimen-
tal results and see that our data compares nicely to
our analytical solution. We compute the root mean
square errors (RMSE) for experiments, where RMSE is√
〈x̂− x〉2. Figure 1(b) shows the experimental results

for 96 trials where the RSME of LAC to IBC are plotted
as a function of communications failures, 1 − γ. The
data supports the analytical results and simulations.
The LAC trials have a much larger RSME across mul-
tiple runs. Although LAC produces runs with small
RSME, it does not do so consistently. The IBC algorithm
produces more consistent RSME, even at which is 90%
message loss.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed agreement in the event
of severe undetected message loss. We use input-based
consensus (IBC) to weight initial and current agent val-
ues in order to recover the initial state. Thus, the mean
estimate of the robots that is recovered is close to the
actual mean in the event of message loss. We compare
this algorithm to linear average consensus (LAC) by ex-
amining the resultant differential equations, simulating
the robots, and performing experiments on hardware.
In all cases, IBC provides robustness to message loss
that LAC cannot, but at the cost of a bounded variance
for minimally lossy networks.

Looking forward, we would like to find bounds on
performance and derive an expression for the error
due to dropped messages. In this paper, we have only
demonstrated recovery of a mean initial condition, but
this work can be extended to tracking a changing quan-
tity. Our previous work leads [2], [24] us to believe that
agreement upon the mean is sufficient for control. Thus,
we can extend this work to consensus and control for
coordination, such a task assignment, in the presence
of lossy communications.
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(a) Analytical solution (blue) of first moment dynamics of the
estimate with LAC parameters and standard deviation window
(purple) about the mean. Desired mean (green dashed) plotted
with experimental data for one robot (orange).
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(b) Simulated Data for 21 robots using LAC. The green dashed
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average of
trajectories.
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(c) Experimental Data for 21 robots using LAC. The solid red
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average of
trajectories.

Fig. 4. Analytical, simulated, and experimental data for LAC.
Analytical, simulated, and experimental data for LAC. Figure 4(a)
shows the analytical solution of the first moment dynamics of the
estimate. Figure 4(b) shows robots simulated using the Stochastic
Simulation Algorithm. Figure 4(c) shows data collected from the
Swarmbot testbed.
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(a) Analytical solution (blue) of first moment dynamics of the
estimate with IBC parameters and standard deviation window
(purple) about the mean. Desired mean (green dashed) plotted
with experimental data for one robot (orange).

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250
Estimation on a single run for 20 robots, success 0.25

time (s)

es
ti

m
at

e
x

(b) Simulated Data for 20 robots using IBC. The green dashed
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average of
trajectories.
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(c) Experimental Data for 20 robots using IBC. The red line indi-
cates the desired mean state. Light lines indicate individual robot
trajectories and the solid blue line is the average of trajectories.

Fig. 5. Analytical, simulated, and experimental data for IBC. Figure
5(a) shows the analytical solution of the first moment dynamics of
the estimate. Figure 5(b) shows robots simulated using the Stochastic
Simulation Algorithm. Figure 5(c) shows data collected from the
Swarmbot testbed.
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(a) Analytical solution (blue) of first moment dynamics of the
estimate with IBC parameters and standard deviation window
(purple) about the mean. Desired mean (green dashed) plotted
with experimental data for one robot (orange).
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(b) Simulated Data for 20 robots using IBC. The green dashed
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average of
trajectories.
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(c) Experimental Data for 20 robots using IBC. The red line indi-
cates the desired mean state. Light lines indicate individual robot
trajectories and the solid blue line is the average of trajectories.

Fig. 5. Analytical, simulated, and experimental data for IBC. Figure
5(a) shows the analytical solution of the first moment dynamics of
the estimate. Figure 5(b) shows robots simulated using the Stochastic
Simulation Algorithm. Figure 5(c) shows data collected from the
Swarmbot testbed.
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(a) Analytical solution (blue) of first moment dynamics of the
estimate with LAC parameters and standard deviation window
(purple). Desired mean (green dashed) plotted with experimen-
tal data for one robot (orange).

(b) Simulated Data for 20 robots using LAC. The green dashed
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average
of trajectories.

(c) Experimental Data for 21 robots using LAC. The solid red
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average
of trajectories.

Fig. 3. Analytical, simulated, and experimental data for LAC
(ζ = 1, γ = 0.25). Figure 3(a) shows the analytical solution of the
first moment dynamics of the estimate. Figure 3(b) shows robots
simulated using the Stochastic Simulation Algorithm. Figure 3(c)
shows data collected from the Swarmbot testbed.
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(a) Analytical solution (blue) of first moment dynamics of the
estimate with IBC parameters and standard deviation window
(purple) about the mean. Desired mean (green dashed) plotted
with experimental data for one robot (orange).

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250
Estimation on a single run for 20 robots, success 0.25

time (s)

es
ti

m
at

e
x

(b) Simulated Data for 20 robots using IBC. The green dashed
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average of
trajectories.
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(c) Experimental Data for 20 robots using IBC. The red line indi-
cates the desired mean state. Light lines indicate individual robot
trajectories and the solid blue line is the average of trajectories.

Fig. 5. Analytical, simulated, and experimental data for IBC. Figure
5(a) shows the analytical solution of the first moment dynamics of
the estimate. Figure 5(b) shows robots simulated using the Stochastic
Simulation Algorithm. Figure 5(c) shows data collected from the
Swarmbot testbed.
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(a) Analytical solution (blue) of first moment dynamics of the
estimate with IBC parameters and standard deviation window
(purple). Desired mean (green dashed) plotted with experimen-
tal data for one robot (orange).

(b) Simulated Data for 20 robots using IBC. The green dashed
line indicates the desired mean state. Light lines indicate indi-
vidual robot trajectories and the solid blue line is the average
of trajectories.

(c) Experimental Data for 20 robots using IBC. The red line
indicates the desired mean state. Light lines indicate individual
robot trajectories and the solid blue line is the average of
trajectories.

Fig. 4. Analytical, simulated, and experimental data for IBC ζ =
0.95, γ = 0.25. Figure 4(a) shows the analytical solution of the
first moment dynamics of the estimate. Figure 4(b) shows robots
simulated using the Stochastic Simulation Algorithm. Figure 4(c)
shows data collected from the Swarmbot testbed.


