EE449 Project Milestone Report V

Cable Winding Controller for Surgical Robot Arm Capstans

Prepared for
BioRobotics Laboratory
Department of Electrical Engineering
University of Washington
Seattle, WA

Prepared by
Imam Tjung and Kiran Thomas

June 11, 2010

Executive Summary

The BioRobotics Lab at the University of Washington, Seattle is building new RAVEN surgical
robots for testing and development purposes. These robots consist of a complex cable
mechanism that requires following a tedious cabling procedure during construction and
maintenance. It was determined that a controller could be used to improve the cabling procedure
by involving the motors themselves during cabling.

The EE 449 project’s goal is to design a controller that will assist in the cabling procedure. This
was accomplished by using the various hardware of the RAVEN system and software. The
project duration was 3 months and followed a specific program. The first step was to model the
system and then simulate the model. Next the state space model was developed and used to
design a controller based on the specifications obtained from the customer. This controller design
was then implemented on a test rig which is similar to the actual robot.

The entire project was implemented successfully with the exception of a foot pedal. The foot
pedal helps the user by not having to use the keyboard to send various commands to the
computer. Even though the cabling procedure can be completed without the foot pedal
mechanism, the ease of use of the controller is limited by the fact that the user will be dependent
on access to the computer keyboard.

The foot pedal is scheduled to be implemented within one week of submission of this report.
Once this is complete the code and instructions will be handed over to the Bio-Robotic Lab, so
that it can be send to a student in UC Santa Cruz who will be constructing seven new RAVEN
robots.

Table of Contents

EXECULIVE SUMIMATY ...c.viiiiie ettt ettt eeneens I
LISt OF HIUSTFAtIONS........eoiiieieieie e 1\
) B o o] [=Ted LTS o]] o] £ o] o RSSO 1
2. LITErature REVIEWooiiiiiiie ettt ettt e et e e enee e enee e 2
3. SYMDOIS AN UNITS.....ooiiiiieiis et 3
O |V (oo [=] T oo USRS 4
4.1 Equations and State Space Model..........ccooviiiiiinieie 4

i A\ VAS (=10 (I D T T Vo > o o SRS 5
4.3 PaFAMETEIS. .. .oiiiiiiiie ittt ettt esnne e annes 5
4.4 Model SIMUIATION.......coiiiiiiiee e 6
4.5 Controllability and Observabilitycccccooveiiiiieic e, 8

e TR I L1 o o USROS 9
5.1 Performance SPecCifiCationscccccvveiieiieiiic i 9
5.2 CoNtroller DESIGN......c.cciieiiiiie ittt 9
5.3 SIMUIATIONS ...ttt eeenens 10
5.4 HAFAWALE......cciiiiiiee et e ae e snre e re e anes 12
5.5 SOTIWAKE ... 13
5.5.1 StAte MACKINGottt nae s 14

6. EXperimental Data..........coovviiiiiecee e 15
6.1 VeloCity Controllercovv v 15
6.2 PoSItion CoNtroller ... 15

7. CONCIUSIONS ...ttt e s e e s aee e sate e e neeenree s 17
8. BIDHOGrapnycoveeieee 18
L IR o] o 1< T QNSRS 19
| LR o 1T o [G = J OSSR TSPR 22

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

List of Hlustrations

Close up of the motor cluster on the RAVEN

RAVEN remote surgical robot

System state space model

System mechanical diagram

Simulink top level block diagram

Simulink inner plant model

Motor angle result from simulation

motor velocity result from simulation

Controllability calculation

Observability Calculation

Sisotool screen shot showing the design method for obtaining gains
Step response results showing the performance of the controller
Simulink block diagram showing velocity controller

Simulink block diagram showing position controller

Photo showing various hardware

Foot pedal

State Machine diagram

graph showing constant velocity for the velocity controller

Motor position for position control

1. Project Description

The RAVEN surgical robot developed by the BioRobotics lab has two robot arms each of which use
a complex pulley system to move the arms in different directions. The pulley system is powered by
separate motors that have one steel cable attached onto its shaft. The reels have threads on them into
which the steel cable wraps onto. These reels are located at hard to reach places, which makes the
initial cabling a tedious process. Also anytime a person has to remove and replace the cable during
maintenance.

Our project originated from this issue during cabling. Using the motors to assist in the cabling
process would benefit any person involved with cabling. So the idea was to create a controller for the
motors to wind up the cable onto the motor shafts using a controller and hold that position while the
other end was wrapped around. The goal in this project is to create a closed loop controller that will
perform an automatic cable winding for the RAVEN surgical robot. The system should be able to
wind the cable on the capstan (reel on which the motor shaft is attached to) at a specified velocity.
The user should be able to stop the motor once it has wound using a footpedal and wind it in the
opposite direction whenever required. In this report, we include the discussion about our customer
and his expectations of the project. We will also explain about our plant, actuator, sensor, and control
resources. In addition, we will cover our results and conclusions.

In designing a control system the general flow of tasks are system modeling, simulation, control
design, controller performance and robustness testing. This final milestone report covers the entire
progress of the Automatic Cable Winding for Surgical Robot Arms project. The purpose of this
report is to show the progress of the project leading to the final controller.

Figure 1. Close up of the motor cluster on the RAVEN

2. Literature Review

The BioRobotics laboratory, Department of Electrical Engineering, of the University of
Washington, Seattle mainly focuses on haptic devices and remote surgery. One of the main
projects of the Lab is the development of remote surgical technology. Haptic Devices are high
performance mechantronic (computer and mechanical) devices that allow the physical interaction
between humans and computer models. Surgical technology is the idea to create robotic devices that
makes the surgeon be able to perform a surgery safely and effectively. One of these initiatives is the
RAVEN remote surgical robot partly funded by the military. The idea behind the robot is to
deliver immediate surgical assistance to battlefields, disaster areas, rural areas etc. The project
has accelerated in recent years and is now under rigorous testing. To enable more testing and
improvements, seven new robots are being constructed by students in UC Santa Cruz. The
customer for the project is the BioRobotics Lab. They will hand over the software and
instructions to the students in UC Santa Cruz. The customer also wants the system to turn at a

certain direction with a specified number of turns. The system also should be able to rotate at a
specified speed.

>

SRS o0 3 DA

Figure 2. RAVEN remote surgical robot

3. Symbols and Units

The symbols and their corresponding units used in this report are:
Input voltage Va(t) (V)

Current i(Amps)

Load torque TL(t) (N-m)

Torque constant KT (N-m/A)
Speed constant Kv (V/(rad/sec))
Back emf voltage e(t) (volts)
Viscous friction Bm (N-m)

Motor terminal resistance Rm (Q)
Motor terminal inductance La (H)
Motor torque T(t) (N-m)

Motor angle 0 (rad)

Angular velocity o (rad/sec)
Amplifier Gain KA

Rotor + capstan inertia Jm (kg-m2)

4. Modeling

The first step in the project was the development of the model. This was accomplished by first
examining the system, deriving equations, developing the state space model, collecting
parameters and then simulating the model.

41 Equations and State Space Model

The state space model was derived from the physical system by dividing the motor into two
subsystems resulting in the equations:

Electrical Equation:
Va (t) = La di/dt + Rm i(t) + Kv o(t)

Mechanical Equation:
TL(t) = Kt i(t) — bm o(t) — Jm dw/dt

Friction torque inside the motor is modeled by the term bm(w)(t) which is a non-linear function of w.
It would be a simple linear function of w(t) when we consider only the viscous friction model (i.e.,
bm(m)(t) = bviscous w(t) [2]. The non linear damping term was obtained from the motor datasheet.
The figure below shows the state space representation of the model [3]. The matrix X is the state
consisting of the current I, angle theta and angular velocity omega. The matrix u is the input of the
system, the voltage v and the load torque.

X1 I amps u=| ul [= | V | volts
XHX2|=| © | rad u2 Tl | N-m
X3 w | rad/sec

dXl/dt |= |-Rm/ILa 0 -K/Ta X1 0 KATa © ul
dX2/dt | = 0 0 1 X2| + 0 + 0 0 u2
dX3/dt |= | K/ITm 0 0 X3 -bm(X3)/Jm 0 -1/Jm

Figure 3. System state space model

4.2 System Diagram

The figure 4 below shows a detailed description of the mechanical components of the system. The
system can be divided into three parts, motor, capstan and a variable tension from a person holding
the cable. Each part of the hardware is characterized by certain parameters which were included in
the modeling in milestone two.

Varying Disturbance
T Tension (F)
o+—
——> SteelCable
P T e |
-~ 1
1
e(t) % IDiameter :
T(t) by (@) :
felectrical side))) |
fmechanical side) Length
G e !
Motor Capstan

Figure 4. System mechanical diagram

43 Parameters

The parameters for the established model are for the motor on the pulley board, which is where all
the initial testing will be conducted. The values shown below were obtained from the data sheet and
also calculated based on measured data. The final implementation will use the information from the
actual robot’s parameters which is shown in the Appendix A.

Electrical Parameters:
Self inductance (La) = 1280 mH
Terminal Resistance (Rm) = 4.94 ohms

Mechanical Parameters:

Torque to Speed Ratio (Bm) = 1.1507e-3 Nm/(rad/sec)

Plant inertia (Jm) = 85 gcmz + 21.932 gcm2

Torque constant (Kt) = 0.09167 Nm/Amp

The plant inertia consists of the inertia contribute by the motor rotor and the capstan. Since the
capstan could not be isolated the total inertia was calculated by using the rotor inertia from the data
sheet and calculating the capstan inertia using the equation:

1 e

I; = —?Tph (TE.l — 'T14)
2

Where, h is the height of the capstan, rho(P) is the density of steel, r2 and r1 are the inner and our

radii of the capstan.

44 Model Simulation

A simulation was done to assess the model’s response to a constant input. Simulink was used to
create a block diagram [2] for the simulation as shown in Figure 5. The plant block consists of the
electrical and mechanical systems. The input signal used for the simulation was a 1 volt step and a
0.4 N-m disturbance torque. The results of the simulation are shown below in figure 7.

Simulstion Format

Ede View Tools Melp

FES LR | G 2> s [Nom N RspbeE REBR®
Matoe Voltage
Disturbance
Torque Nm

il 1

Step

- Motae Veloaity
Plant Moce!

Figure 5. Simulink top level block diagram

File Edit WView Simulation Format Tools Help

D|eHE|fB2R|E=s 422 = po [Momal SO REE®
Omegalt)
TLty (N-m) (radisec)
Lt Omegalt) =-
| Omegalth
Tt} P THA(E) Thetaft) 4..
Valt) Thetait)
i {rad}
Vmit) (V) Mechanical Subsystemn

Electrical Subsystem

Ready

[100%

Figure 6. Simulink inner plant model

|ode4s

4]

The graph shown below in Figure 7 shows the position of the motor as seen from the output of the
system. The straight line shows that the angle is changing at a constant rate as expected.

B Viotor Angle 1 s ST e

B [NLPL ABE PA R

Figure 7. Motor angle result from simulation

The graph below shows the motor velocity when there is a step input.

| R S
Iu Motor Velocity | 8

aEPLry HEE BAF =

Figure 8. motor velocity result from simulation

45 Controllability and Observability

The controllability and observability of the system was assessed using a method shown in the book
“Control Systems Engineering” [1]. The controllability was assessed by obtaining the controllability
matrix using the A and B matrix from the state equation. A MatLab command directly calculates the
matrix and also the rank. If the rank of the controllability matrix is the same as the order of the plant,
then the system is controllable. The figure below shows a MAtLab screen shot of the calculation.

>> Cm = ctrb(A,B)
Cm =
1.0e+002 *
0.0000 0 -0.0000 -0.0000
0 0 0 -0.0001
0 -0.0001 0.0000 0.0101
>»> rank(Cm)

ans =

3

0.0000
0.0000
-0.0007

0.0007
0.0101
-1.1382

Figure 9. Controllability calculation

Similarly the observability can be calculated from the A and C matrices. Matlab was used to
calculate the observability matrix also and the rank was 3 which is the same as the order of the plant.
Therefore the plant is observable.

>> Om=obsv(i,C)

>> rank (Om)

ans =

3

8] 0.0010 8]
u] 0 0.0010
8.5872 u] -0.1075

Figure 10. Observability calculation

5. Design

The design of the controller involved evaluating the specifications of the project and designing a
controller that is capable of meet those requirements.

51 Performance Specifications
The performance specifications that were established after multiple revisions were:

1. All the hardware used for the project must be from the BRL lab since that will be accessible to
students building or re-cabling the robots.

2. The user should be able to control the number of turns wound by the capstan and also the

velocity of rotation.

The system should be able to wind the cable in two different directions.

4. The system should hold the position of the capstan for a specified amount of time until the cable
can be wound around the actuator joint are brought back to attach on the other end of the shaft.

5. The controller should be able to track the specified velocity with 95%-+ accuracy.

6. The controller should detect and stop the motor in less than 1 sec if the cable gets dislodged from
the capstan.

w

52 Controller Design

We started designing our controller design by writing a MATLAB script to find the motor position
transfer function and motor velocity transfer function. After that we use root locus method in
Sisotool (MATLAB toolbox) to find the best proportional gain (Kv_p) and integral gain (Kv_I) for
velocity control and proportional gain (Kp) for position control. We use these values as starting
points for our Simulink simulation. In the simulation, we used trial and error method to improve the
results beyond what was obtained in the sisotool design to get the best possible gains. The best
controller should have fast rising time, minimum overshoot, and no steady state error. Below shows
the best result that we achieved using Sisotool. (See figure 11 and 12). The final values that worked
for the system was different since the designed values did not work effectively.

[l $150 Design for SISO Design Task

File Edit View Designs Analysis Tools Window Help

X w5 4y
"

Y% N

[xo 2w K

Root Locus Editor for Open Loop 1 (DL1

Open-Loop Bode Editor for Open Loop 1 (CL1)

3000 T 50
2000 . ,;—h\
1000 ; \
E ' T 50 \\
E A g .10 N,
= 1000 ! E 5
' =
3000 ! = dh \
! |6n. 28208 \\
3000 n L L 200 "
-3000 2000 1000 0 1000 2000 ;:g:ﬂfpm sec \
Bods Editor for Closed Loop 1 (CL1) 250 b |
g .
= .10 L
= . 0
£ 2w o —
3 o Fi
= 300 f -180 \\
=] i - -, _E \\
i) ™, a
g ol . 270 \
% e \\ PM.; 686 deg W,
2 - Freq 357 rad'
= . ‘ . - req. 3.67 radisec __-
1 10 10° 10 10° 107 10 0
Frequency (rad'sec) Freguency (radisec)
Ecitzd Gain

Figure 11. Sisotool screen shot showing the design method for obtaining gains

B (70 Viewer for SIS0 Design Task

Bl 2

File Edit Window Help

0b&| ™~

2 Sk

irtoy
Rize Time (secy 0.374

Ampliude

Systerm: Closed Looprioy '

Step Response
T T T

System: Chosed Loop rte y
WO rtoy

Peak ampliude: 1.01
Overshoot (%): 2.26
Attime (sec): 1.784

System: Closed Looprioy
Vo:rioy
Setting Time (sec); 0.8TT

04

06
Time (sech

LTI Vigsaver

ReakTime Updaic

Figure 12. Step response results showing the performance of the controller

5.3 Simulations

We used simulink (program inside MATLAB) to simulate our controller. For the velocity control, we

choose Pl controller because the motor need to

rotate at a constant velocity with a little steady state

error. We did not want to add D controller because our system has a lot of noise and it would not

10

help with the performance of the controller. Adding D controller will cause our system to have even
higher noise. The input of the velocity control need to go to pre-filter to get rid of overshoot. The
motor controller has a saturation limit which is 24 volts. However, for safety issues, we choose the
motor saturation limit to be 15 volts. The | controller need to have integral anti-windup to avoid the
integral goes unstable. The blue box convert the controller output and disturbance load to the angle
theta. Then, the result go to pseudo derivative to get rid of noises and convert angle theta (position)
to omega (velocity). The diagram of velocity controller is shown in figure 13.

—
B DCMotor_Velocity_Control_Simulation I o| g 23_ |
File Edit View Simulation Format Tools Help
DzES @« L » 5 Nomnal | B B $ RERE®
-
Disturbance Torgue
TLt) (N-m)
.—DTL(tl (N-m)
te Input (rad/se: Velocity T
" Errar |
- - (v_F i, > I Vmit) (V)
tauys+ |
Prefilter_Vel KV_F Mgtor Controller Saturator DC-Matar Model
+- 15V
1
[
Kv_I Integrator =
with Anti-Windup
+- 18V
£l
taus+1
Pseudo-derivative
Matar Velocity p
] [T 3
Ready 100% odedd

Figure 13. Simulink block diagram showing velocity controller

For the position control, we choose to create a position control (outer loop) outside the velocity
control (inner loop). This design will help while transitioning between controllers since the velocity
controller block is always part of the control loop. The diagram of position controller is shown in
figure 14.

o|EB =

Iiticn_Co ntrol_Simulation

gSimulat\cn Format Tools Help

$EBE - 9 » '5_N0rrnal Y Ol E REE®

Constant Torque
TLE (m)

Cunent Angle {tad) R |
> s —» | Woter
Angle (tad)
P Wotor Controller Saturstion Plant Model
+- 18V
o
K Integrator
s
"
o+
taust!
Pseudo-derivative

il b

100% oded5

Figure 14. Simulink block diagram showing position controller

11

Implementation
The project was implemented using the following hardware and software:

5.4 Hardware

The hardware used for the project was limited to those available in the BioRobotics Lab as
requested by the customer. The hardware on which the design and testing was done was based on
the pulley board. The descriptions of each are given below:

1. Motor:

The motor is a MAXON brushless DC motor. It works with a motor controller which can also acts as
an amplifier. The motor has a power rating of 120W with a max stall torque of 0.7 Nm. The
remaining motor data is available in the data sheet attached in the appendix.

2. Encoder:
The encoder is built onto the motor and is also powered by the motor controller.
3. Capstan and Cable:

The capstan is a steel cylinder that is welded onto the motor shaft. The cable is a 4mm thick steel
cable. The inertia of the capstan and cable combination was calculated based on the dimensions and
included in the system model.

Figure 15. Photo showing various hardware

12

4. Foot pedal:

Since under the new design the user will be cabling the capstan by hand, typing commands or using
the keyboard during cabling is impractical. Since haptic devices used in the BRL lab use a USB foot
pedal, we are including that into our system. The pedal is an extension of the keyboard and has three
pedals. One pedal will be used to start rotating in one direction, second for the opposite direction and
third for emergency stop. Figure 16 below shows a photograph of the foot pedal.

Figure 16. Foot pedal

55 Software

The system uses RTAI (Real Time Application Interface) that allows the computer to
communicate to the pulley-board in the real time. First, the system needs to initialize the USB-
board and set up the communication protocol. Then, it will compute the correct values to the
USB-board to operate the correct DC motor motion. These tasks are happen periodically every 1
millisecond. Inside the function where it computes the correct motor motion, we program our

controller which is proportional control for position and proportional and integral control for
velocity.

The control for the system is done in C and built onto the RTAI module on the USB 1/0 board.
The velocity controller was implemented using the encoder data and making necessary
manipulations. The position controller is switched on currently after a certain time. Once the foot
pedal is implemented the corresponding pedals will control the switching between states.

The gains of the final design were Kp = 0.02 for position control.
For the velocity control Kp = 0.4 and Ki = 0.01.

13

5.5.1 State Machine

Based on the need to isolate the functions of the system, a finite state machine was developed. The
purpose of the state machine is to clearly define and separate the functions of the system into parts at
a top level stage.

The figure 17 below shows the state diagram. There three states named A, B and C. Each of these
states output a certain value which either shuts off the system or activates either the velocity control
or position control. The possibilities that are not shown in the diagram are considered as “dont
cares”. The start command is initiated when the user presses the left pedal.

The Emergency stop command is initiated when the user presses the right pedal.

The opposite direction command is initiated by the capstan reaching the angular position specified by
the user in the first rotational cycle.

LeftPedal

B

Pl Velocity
Control

E Stop

Middle

LeftPedal

Position
Control

Figure 17. State Machine diagram

14

6. Experimental Data

The data shown here are the results on the day of the report compilation. The velocity control
and the state transitions work effectively. The foot pedal has not been implemented and the
program required to run the USB interface is being developed. The data below shows the various
other parts of the project.

6.1 Velocity Controller

The velocity control of the controller was limited to 500 deg/sec so that the user can stop the
motor when required. This might be necessary when the cable falls into the wrong thread or if
there is a delay before the foot pedal is pressed. The graph below in Figure 18 shows the motor
velocity of the motor when there is no resistance. The max tension provided by the motor while
winding is 0.5N.

angle vs time
SDDD T T T T T T T T T

4500 B

4000 A

3500 .

3000 B

2500 -

velocity (deg/sec)

2000 A

1500 | A

1000 | B

500

0 2 4 6 8 10 12 14 16 18 20
time(sec)

Figure 18. graph showing constant velocity for the velocity controller

6.2 Position Controller

The position controller worked effectively even though it was only a proportional control. The
motor managed to hold the position up to a measured tension of 55N (measured using a force
sensor). The graph below in Figure 19 shows the motor holding its position after 20secs of
rotation.

15

angle (deg)

5500
5000
4500
4000
3500
3000
2500
2000
1500
1000

500

angle vs time

5 10 15 20

time(sec)

25

30

Figure 19. Motor position for position control

16

7. Conclusions

The purpose of the EE 449 class is to learn about real world implementation of control principles
for an actual customer. This project was created out of necessity and provided the necessary level
of complexity. Over the course of the quarter we successfully modeled the system. Then we
designed a controller and implemented the controller. We learned the different ways to
implement a controller. Also implementing a theoretical design in the real world has numerous
challenges. Planning for obstacles and unexpected behavior should be part of the project plan.
We also learned about effective ways to conduct technical presentations and write reports.

In terms of the project, most of the parts have been implemented with the exception of the foot
pedal. Even though the controller can be used without the foot pedal, since making cabling easier
is the main goal of the project, the project will be complete only once the foot pedal can be
properly used. The data from the other motors on the actual robots being built are included in the
appendix. The next step is to complete the foot pedal information and then hand over this info to
the BioRobotics Lab.

17

8. Bibliography

[1] Norman S. Nise, “Control Systems Engineering”, Wiley 2008
- Used to learn about control principle and to calculate controllability and observability
matrix.

[2] Uy-Loi Ly, “DC Motor Control”, 2010, https://courses.washington.edu
/aa448/DCMotorControl_LabDescription.pdf
- Used to help model and simulate system.

[3] “dcmodel”, 2010. https://courses.washington.edu/aa448/dcmodel.pdf
- Used to determine the State Space equation.

[4] “Maxon EC Motor Data Sheet”, 2010.
http://shop.maxonmotor.com/ishop/article/article/118898.xml
- Used to get the model parameters

[5] Atef Saleh Othman Al Mashakbeh, “Proportional Integral and Derivative Control of
Brushless DC Motor” European Journal of Scientific Research. ISSN 1450-216X Vol.35 No.2
(2009), pp.198-203

-Used the author’s method to model the BLDC motor.

[6] J. Rosen, B. Hannaford, 'Doc at a Distance," IEEE Spectrum, pp. 34-39, October 2006.
- The paper contained detailed information about the RAVEN projects and photographs

[7] M. Lum, D. Friedman, J. Rosen, G. Sankaranarayanan, H. King, K. Fodero, R. Leuschke, M.
Sinanan, B. Hannaford, 'The RAVEN - Design and Validation of a Telesurgery System,'
International Journal of Robotics Research, vol. 28, pp. 1183-1197, September 2009.

-Used to understand the design of the RAVEN.

[8] RTAI documentation, https://www.rtai.org/documentation/magma/html/api/
-Used to learn about the USB 1I/O board’s existing code.

[9] Borsjie, P.; Chan, T.F.; Wong, Y.K.; Ho, S.L.; , "A Comparative Study of Kalman Filtering

for Sensorless Control of a Permanent-Magnet Synchronous Motor Drive," Electric Machines

and Drives, 2005 IEEE International Conference on , vol., no., pp.815-822, 15-15 May 2005
-To understand implementation of the unscented kalman filter

18

http://brl.ee.washington.edu/BRL_Pubs/HtmlFiles/Rep220.html
http://brl.ee.washington.edu/BRL_Pubs/HtmlFiles/Rep220.html
https://www.rtai.org/documentation/magma/html/api/

9. Appendix A

Motor information for the motors used on the RAVEN

1. Maxon Motor — 310009 motor RE30 + 166155gear GP32C

hominal wkage v 45
0 hoad spead mi-*)
WE. continucus hargue mhm 7S
Sl targue ik 11
Articke Mo 186155

Planetary Semrmead

o an
FLEEL oy

Version
Foeduction ar
N0 of stages 1
b confinucius forgue N ars
mermimently permissiole rgue at gear output] 11
Sanse of rotation, drive io aulput -
M. eficlency % a1
Aprage backlash no lad ' ar
Mzss et game 15
Zeamesd gLl mm i
‘Welght g 118
Wz mofar sl diameter men 3]
Anicle Na 310009

RE 30 &30 mm
Program Graprnife Binushes, 60

al
Assigned power rating W 60
wominal wkage v 48
0 koad speed mi-* a0
Sall torgue ek 120
hE. confinuoius horgue mikem 552
Epesd | forgue gradient il k- 833
M0 boad curnnent A TAS
Stating curnent A 19
Termingl reslstancs Ohm T
Mz permissible speed mi-* 12000
Mcrmingl curnent (e contifucs current) A 172
Mz efickency % -
Torgue constant ik A 538
Spead constant - - 178
Miszranizal time constan ms 3
Footor Ineria gam? M3
Teminal inductance mH Q513
Trermal reslsiance hogsing-amalkent B]
Trermal reststancs winding-nousing B 17
Trermnal fime constant winding 5 169
Mickar lengint a1al] =i}
Walgit g 60

19

2. Maxon Motor — 148877 motor RE40 + 203115 gear GP42C

Womiral wkage W 5l
Mo load spead miln-* [
M. continucis horgue ik 15
Sxall horgue mikim 11
Articie Mo 205115

Planstar Searnead

GP42Cad2mm 3-
FELEd 15 Nm, Ceramic

Wershon
Feduction 121
Mo of stages 2
Mz continucis lorgue Nm 5
misnmanily penmissinie ngue 3t gesr Kutout N 1
Serse of rotation, drive 10 ouiu -
k. efMclency] il
Aerage backlash no oad - 08
Wzzs ez o 15
Gearmesd leng L1 e S54
Welgh g o)
Az miofar sha®t dlamefer M 10
Aricie Mo 145577

RE 40 @40 mm
Pragram Sraphife Brushes, 150

WaR
Assigred poweT rEing W 150
Nomiral wkage v 43
W load speed min-* 7580
Sall hargue mim 500
A= comtinucius hargue G| 184
Speed | fargue gradient il { emim-* 304
Mo load current A BRE
Staning curnent A 414
Terminal neslstEnce Ohm 116
W permissinle speed - 12000
NOMINE] curnen (ImEk. SOMTINUouUS Surment) A 312
Wik eficlency % oz
Tongue constan TN A 603
‘Speed constant milA-" y-* 158
hAecranieal fime constant M i3
Ror Inertta gom 138
Termlal Inductance mH ikr]
Thermnal reststance housng-amoknt K- 465
Tremal resksiEnce winding-nausing L 183
Thiarmnal fime constant winding] 419
hAchar leng T T
elght g 450

20

3. SERIES Z12A PWM SERVO AMPLIFIERS

SPECIFICATIONS:

MODELS
POWER STAGE SPECIFICATIONS Z6A6 Z12A8
DC SUPPLY VOLTAGE 16 — 60 VDC 16 -80VDC
PEAK CURRENT (2 sec. max., internally limited) +6A +12A
MAX. CONTINUOUS CURRENT (internally limited) +3A +6A
MINIMUM LOAD INDUCTANCE * 100 uH 100 pH
SWITCHING FREQUENCY 50 kHz + 15% 33 kHz + 15%

HEATSINK (BASE) TEMPERATURE RANGE **

0°to +75°C, disables if > 75°C

POWER DISSIPATION AT CONTINUQUS CURRENT

10w

24 W

OVER-VOLTAGE SHUT-DOWN (self reset)

67V

asvV

BANDWIDTH (load dependent)

5 kHz

21

10. Appendix B

Code Comments
pulley_board_control.c
/ *

File: pulley board control.c
Author: Hawkeye
Created October 2008

This is the main control loop content for the pulley board.

Inputs: Encoder values
Outputs: DAC values

*/

#include "pulley board control.h"
#include <rtai fifos.h>
#include "velocity.h"

#include <stdio.h>
unsigned char kb;

//extern int input;
//#include <string.h>
//#include <iostream>
//#include <sys/time.h>
//#include <termios.h>
//#include <stdlib.h>

//static struct termios g old kbd mode;
/*
// did somebody press somthing???
static int kbhit (void) {

struct timeval timeout;

fd set read handles;

int status;

// check stdin (fd 0) for activity

FD ZERO (&read handles);

FD SET (0, &read handles);

timeout.tv_sec = timeout.tv usec = 0;

//status = select(0 + 1, &read handles, NULL, NULL,

22

&timeout) ;

return status;
}
*/
/*
// put the things as they were befor leave..!!!
static void old attr (void) {
tcsetattr (0, TCSANOW, &g old kbd mode) ;

// Hack to get rid of annoying compiler warnings w/ math.h
#ifdef attribute used

#undef attribute used

#endif

#ifdef attribute pure

#undef attribute pure

#endif
#ifdef always inline
#undef always inline
#endif

#include <math.h>

#include "../core code/RTAI modules/motor.h"
#include "../core code/RTAI modules/t to DAC val.h"
#include "../core code/RTAI modules/utils.h"

#include "defines.h"
#include "UnscentedKalmanFilter.h"

#ifndef INT COUNT

int count = 1;
#define INT COUNT
#endif

int positionhold=1;
extern unsigned long int globalTime;
int globalNumMech = 1;

struct tagDOF type globalDOF types[1l];

#define I MAX DES7010 31.97 // Includes fudge-factor from empirical
measurement. Nominally 30.0 Amps

#define I MAX EC40 PULLEYB 9.725

#define I CONT EC40 PULLEYB 1.77

#define GEAR BOX TR PULLEYB 1

#define T PER AMP EC40 MEASURED 0.09167

//header file with experiment settings in it

23

#include "settings.h"

//place to cache the UKF's estimate of the parameter value. The
estimates for the state

//variables are placed in tagDOF, but because there is no place to put
this number there,

//it can't be done that way.

static double damping estimate;

static double stiffness estimate;

// Initialize some stuff.
void init pulley board(struct tagDOF *in jl1)
{

//Load IMAX
globalDOF types[0].currentPeakMax =
globalDOF types[0].currentContMax

I MAX DES7010;
(double) (I_CONT_EC40 PULLEYB) ;

//Load the torquePerAmp
globalDOF types[0].tauPerAmp =
GEAR BOX TR _PULLEYB) ;

(double) (T_PER _AMP EC40 MEASURED *

//Initialize the old positions and velocities

int k=0;
for (k = 0; k < STATE HISTORY LEN; k++)
{
globalDOF types[0].stackMotorPos[k] = 0;
globalDOF types[0].stackMotorPosDes[k] = 0;
globalDOF types[0].stackMotorVell[k] = 0;
globalDOF types[0].stackMotorVelDes[k] = 0;

}

//- Initialize torque to zero
in j1 -> tau d = 0;

// Initialize the Kalman filter
initUKF () ;

//- sinusiod parameters

//the actual values are defined in settings.h.

//for more information.

//These are used in the function pulley board control() and

output parameters() .

#ifdef SUM OF SINUSOIDS

static const int numSin = 6;

static const double scaleMag =

static const double const Magl] =
SUM_OF SINUSOIDS MAGNITUDES;

See this file

MAGNITUDE SCALAR;

24

static const double const wl[] =
SUM OF SINUSOIDS FREQUENCIES;
#endif

#ifdef SIMPLE SINUSOID
//the actual values are defined in settings.h. See this file
//for more information.

static double const SingleMag = SIMPLE SINUSOID MAGNITUDE;
static double const Singlew = SIMPLE SINUSOID FREQUENCY;
#endif

#ifdef ROTATE

//the actual values are defined in settings.h. See this file
//for more information.

static double const piToAngle = PI TO ANGLE;
static double const rotAngle = ROTATION ANGLE;

static double const numbRotate
static double const medSpeed
#endif

NUMBER OF ROTATION;
MEDIUM SPEED;

//- This is the control code for the pulley board.
void pulley board control (struct tagDOF *const J1) {

//—- frequency sweep variables
#ifdef SWEEP

double freqgHz = SWEEP FREQUENCY;
const double sweepMag = SWEEP MAGNITUDE;
#endif

//these variables are only required if low pass position
//filtering is being used. See settings.h for more information.
#ifdef LPF POS

//arrays used to store previous filtered and unfiltered encoder

//positions

static float enc in[3] = {0,0,0};
static float enc out[3] = {0,0,0};
#endif

//- Coefficients for position LPF
//coefficient values are defined in settings.h
#ifdef LPF POS

static const float const B[] = LPF IN COEFFS;
static const float const A[] = LPF OUT COEFFS;
#endif

double xhk[N]; // State estimate
//Changed to N so that it is compatible with the new
//Kalman filter --Cooper

25

//- Get time in seconds
const double secs = (double) (globalTime) / 1000;

//- LPF for position
float enc _cur = (float)jl->enc val;

#ifdef LPF_POS

float filt enc = (B[0]*enc cur +
B[l]*enc in[0] +
B[2]*enc in[1l] +
B[3]*enc in[2] +
A[l]*enc out[0] +
A[2]*enc out[l] +
A[3]*enc out[2]);

#endif

//LPF _POS can be defined to enable position filtering in
//settings.h. See this file for more information.
#ifdef LPF_POS

//- calculate motor angle from filtered position

jl->mpos = (float)filt enc * (2 * PI) /ENC PER REV;
#else
//- calculate motor angle from un-filtered position
jl->mpos = (float)enc cur * (2 * PI) /ENC_PER REV;
printk ("unfilt\n");
#endif

//- update old values for position LPF filter
#ifdef LPF POS

enc_in[2] = enc_in([1];
enc_in[1] = enc_in([0];
enc _in[0] = enc cur;

enc_out [2] enc_out[1];

enc_out[l] = enc out[0];
enc_out[0] = filt enc;
#endif

//- Apply unscented kalman filter

if (-1 == doUKF (xhk,
(float)enc cur * (2 * PI) / ENC PER REV,
(-1 * jl->tau d))){
printk ("UKF estimation failed. (-1)\n");

}

//—- save kalman estimates to data structure

jl->jpos = xhk[0]; // estimated motor angle
jl->jpos _d = xhk[1]; // estimated link angle;
jl->jvel = xhk[2]; // estimated motor velocity;
jl->jvel d = xhk[3]; // link velocity;

26

stiffness estimate = xhk[4]; //cache it so that it can be output as
data

damping estimate = xhk[5]; //cache it so that it can be output as
data

//The following compilation is contingent on a #define in
//settings.h. See this file for more information.
#ifdef SWEEP

//- Generate frequency sweep

freqHz = floor(secs / 10) + 1;

if (freqgHz > 50) fregHz = 1;

jl->mpos d = sweepMag * sin(fregHz * 2 * PI * secs);
#else
#ifdef SUM OF SINUSOIDS

//—- Generate sin wave

//- desired position = a Sin (w*t)

jl->mpos d = 0;
int 1=0;
for (i=0; i<numSin; i++){
jl->mpos d += Mag[i] * scaleMag * sin(w[i] *2*PI * secs);
}
#else
#ifdef SIMPLE_SINUSOID
//- Generate sin wave
//- desired position = a Sin (w*t)

jl->mpos d = SingleMag * sin(Singlew *2*PI * secs);
#else
#ifdef STEP
//- Generate step input
/ /= Stay at zero for 5 sec. Then step to 90 degrees
if (secs < 5.0){
jl->mpos d = 0;
} else {
jl->mpos d = PI / 2;
}
#else
#ifdef SQUARE WAVE
//- Generate square wave input
if (secs < 2.0){
jl->mpos d = 0;
}
else if (((int)floor(secs) % 4) < 2) {
jl->mpos d = PI / 4;
}
else if (((int)floor(secs) % 4) < 4) {
jl->mpos d = -1 * PI / 4;
}
else 1f (secs < 8) {
jl->mpos d = 0;
}

27

/*

if

}
*/

//
//

/*

else {
jl->mpos d = 0;
}
#else
//#ifdef ZERO
// //- desired position = 0;
// jl->mpos d = 0;
//#else
#ifdef ROTATE
// rotate from 0 to desire position
//j1->mpos = 0;
//double lastSec = 0;
int YES = 0;

(YES == 0) {

char ch;

//static char init;

struct termios new kbd mode;

//if (init)

// return;

// put keyboard (stdin, actually) in raw, unbuffered mode
tcgetattr(l, &g old kbd mode);

memcpy (&new kbd mode, &g old kbd mode, sizeof (struct termios));

new kbd mode.c 1flag &= ~(ICANON | ECHO);
new kbd mode.c cc[VTIME] = O;

new kbd mode.c cc[VMIN] = 1;

tcsetattr (1, TCSANOW, &new kbd mode) ;
atexit (old atr);

YES = 1;

while (!kbhit()) {
//char chl;
while (1) {
// getting the pressed key...

//int a = 'a' + 13;
//int s = 's' + 13;
//int d 'd' + 13;
//chl = getchar();

//delay (100) ;
//char inp[2];
int input = 1;
while (strcmp (inp,"ex") !'= 0) {
//puts ("Enter text: ab, cd, or ef");
scanf ("%s", inp);
printf ("Inp is: %s \n", inp);
if (strcmp (inp, "ab") ==0) {

28

*/
/%

*/
if

//
//

input = 1;
}

else if (strcmp(inp,"cd") ==0) {
input = 2;

}

else if (strcmp (inp,"ef") ==0) {
input = 3;

}

else {
input = 3;

}
printf ("Input is: %d \n", input);

if (kb == 'a'){
input = 1;

}

else if (kb == 's'){
input = 2;

}

else if (kb == 'd") {
input = 3;

}

else {
input = 2;

}

(secs < numbRotate) {

// rotate right to left

if(input == 1) {
jl->mpos = rotAngle * piToAngle * secs;
jl->mpos d = (rotAngle * piToAngle * secs) - medSpeed;
}
// stop
else if (input == 2) {

jl->mpos d = rotAngle * piToAngle * numbRotate;
}
// rotate left to right
else if (input ==) {
jl->mpos = rotAngle * piToAngle * secs;
Jl->mpos d = (rotAngle * piToAngle * secs) + medSpeed;
}
else(
jl->mpos d = 0;
}

29

if (secs > numbRotate) {
// get rid of jl->mpos (how to do that)
jl->mpos = ((float)enc cur * (2 * PI) / ENC_PER REV);

if (positionhold==1) {
jl->mpos d = jl->mpos;// ((float) ((int) (jl->mpos/ (2*PI))))*2*PI;
positionhold=0;

//- update old values for position LPF filter
enc_in[2] = enc_in[1];
enc_in[1] enc_in[0];

enc_in[0] = enc cur;

enc_out[2] = enc out[l];

enc_out[l] = enc out[0];

enc_out[0] = filt enc;
#else

//no reference signal was chosen--compilation will fail with
message
#error no reference signal defined in settings.h

//Nesting implements "elif"-style structure; only one reference
signal is compiled.
#endif
#endif
#endif
#endif
#endif
#endif

//- Calculate motor velocity
//— This should be done after calculating desired trajectory to
determine mvel d

//The following four function calls invoke code in velocity.c

GetJointVelocity(jl, VEL DESIRED);

GetJointVelocity(jl, VEL ACTUAL);

// NOTE: These two lines of code above are correct in that the same
function is called

// twice with a different second parameter. The first time the
desired velocity 1is

// computed based on past desired motor positions, and cached in the
mvel d field.

// The second time the actual velocity is computed based on past
actual motor positions,

// and cached in the mvel field. --Cooper

30

PushPos (1) ;
PushVel (j1);

//- compute torque
// mvel stores actuals
// jvel stores UKF estimates

//The following compilation is contingent on a #define in
//settings.h. KP and KD are also defined there. See this
//file for more information.
#ifdef P_CONTROL
jl->tau d = KP * (jl->mpos - jl->mpos d); //- P-control
//#error P_CONTROL not implemented!!!
#else

#ifdef PI_CONTROL

if (secs < numbRotate) {
jl->tau d = KPV * (jl->mpos - jl->mpos d) + KI * (jl->mvel
- jl->mvel d); //- V-control
}
elsef
jl->tau d = KP * (jl->mpos - jl->mpos d);// - jl->jpos);
//—- P-control
}
//if (secs > numbRotate) {
//jl->mpos = 0;
//31->mpos d = 0;
// jl->tau d = jl->tau d - (jl->tau d - 0.01);
//}

#else

#ifdef PD TRAJECTORY FOLLOWING

jl->tau d = ((KP) * (Jl->mpos - jl->mpos d) + (KD) * (jl->mvel -
jl->mvel d)); //- PD control
#else

#ifdef PD STEP FOLLOWING

jl->tau d = ((KP) * (jl->mpos - jl->mpos d) + (KD) * (jl->mvel -
0)); //- PD control
#else

#ifdef D_CONTROL

// jl->tau d = KD * (jl->mvel - jl->mvel d); //- D-control
#error D CONTROL not implemented!!!
ffelse

#ifdef ZERO CONTROL
// Jjl->tau d = 0; // Zero-control
#error ZERO CONTROL not implemented!!!
#else

31

#ifdef PD TRAJECTORY MOTOR ESTIMATE

jl->tau d = ((KP) * (jl->jpos - jl->mpos d) + (KD) * (jl->jvel -
jl->mvel d)); //- PD control with motor estimates
#else

#ifdef PD STEP MOTOR ESTIMATE

jl->tau d = ((KP) * (jl->jpos - jl->mpos d) + (KD) * (jl->jvel -
0)); //- PD control with motor estimates relative to static target
#else

#error no control type defined in settings.h

//Nesting implements "elif"-style structure; only one control type
is compiled.
fendif
fendif
fendif
fendif
fendif
fendif
fendif
fendif

//- Set constant torque
// jl->tau d = 0.1623;

//— Calculate a DAC value from the desired torque
jl->current cmd = DACFromTorque (jl);

// print state
if (globalTime % 99 == 0) {
printk ("mpos: (%d),\tmpos d: (%d),\tmvel: (%d), \tjpos: (%d),
\tjpos d: (%d), \tdac:(%d / %d)\n\n",
(int) (jl->mpos * 180 / M PI * le2),
(int) (jl->mpos d * 180 / M PI * le2),
(int) (jl->enc val * 180 / M PI * le2),
(int) (j1->jpos),
(int) (j1->jpos d * 180 / M PI * le2),
(int) (100*jl->tau d) ,
jl->current cmd); //+ ZERO DAC);

}

//void output parameters (int out);

void pulley board output (struct tagDOF *jl, int out) {
char foo[400];

#ifdef PRINT ASCII

32

//only if the option is selected to print the header,
//otherwise don't do this
#ifdef PRINT OUTPUT HEADER

static int first time = 1;

if (first time) {
//this header information wasn't really that useful...

///sprintf (foo,"%% new data collection\n\n");
///rtf put(out, foo, strlen(foo));

//sprintf (foo, "\n%% globalTime (ms), mpos (deg * 100), mpos_d
(deg * 100), jl->mvel (deg/sec * 100), tau d (torque*100), DAC val,
enc_val (motor), enc _val(link)");

//rtf put(out, foo, strlen(foo));

//sprintf (foo, " (9)mpos(est), linkAngle (est), mvel (est),
linkVel (est)\n") ;

//rtf put (out, foo, strlen(foo));

//try this header instead
//macro to send line to FIFO

#define out to fifo(...) \
sprintf (foo, = VA ARGS); \
rtf put (out, foo, strlen(foo)) \

//basically, print the comment made below
out to fifo("\tThe output format is as follows:\n");
out _to fifo("\n");

(

out_to_fifo("\tcolumn 1 ——Time elapsed in milliseconds\n");

out to fifo("\tcolumn 2 --Motor position as determined from
motor encoder\n");

out to fifo("\t in degrees * 100 (centidegrees?). This
may\n") ;

out to fifo("\t have been low-pass filtered first\n");

out to fifo("\tcolumn 3 --Reference signal in angle units
in\n");

out to fifo("\t degrees * 100 (centidegrees?)\n");

out to fifo("\tcolumn 4 --Motor velocity computed from previous
motor\n") ;

out to fifo("\t positions. This is done in
velocity.c.\n");

out to fifo("\t Units are degrees/sec * 100
(centidegrees/sec?)\n");

out to fifo("\tcolumn 5 --Torque values sent to motor
(units?)\n");

out to fifo("\tcolumn 6 --Integer value sent to USB board to
effect desired\n");

out to fifo("\t torque\n") ;

out_to_fifo("\tcolumn 7 —--Some encoder value, don't know
which\n") ;

out to fifo("\tcolumn 8 --Some encoder value, don't know
which\n") ;

33

out _to fifo ("\tcolumn
filter\n");

out to fifo("\t

out _to fifo ("\tcolumn
filter\n");

out to fifo("\t

out to fifo("\tcolumn
filter\n");

out to fifo("\t
(centidegrees/sec?)\n") ;

out _to fifo ("\tcolumn
filter\n");

out to fifo("\t
(centidegrees/sec?)\n");

out to fifo ("\tcolumn
estimation.\n");

out to fifo("\t

out to fifo("\t

out to fifo("\n");

--first time;

}

in
10

in
11

in

12

in

13

-—-Estimated motor angle from Kalman

degrees * 100 (centidegrees?)\n");
--Estimated link angle from Kaman

degrees * 100 (centidegrees?)\n"):;
-—-Estimated motor velocity from Kalman

degrees/sec * 100
-—-Estimated link velocity from Kalman
degrees/sec * 100

--Experimental column used for parameter

Currently parameter being estimated is\n");
transmission damping in Ns/m * 100\n");

#endif //PRINT OUTPUT HEADER

N N,

Time elapsed in milliseconds
Motor position as determined from motor encoder

(centidegrees?). This may

have been low-pass filtered first
Reference signal in angle units in

(centidegrees?)

Motor velocity computed from previous motor

This is done in velocity.c.

Units are degrees/sec * 100
Torque values sent to motor

Some encoder value,
Some encoder value,
Estimated motor angle from Kalman filter

(centidegrees/sec?)
(units?)

Integer value sent to USB board to effect desired

don't know which
don't know which

(centidegrees?)

Estimated link angle from Kaman filter

(centidegrees?)

Estimated motor velocity from Kalman filter

(centidegrees/sec?)

Estimated link velocity from Kalman filter

/177177777

//

// The output format is as follows:
//

// column 1 --

// column 2 --

// in degrees * 100

//

// column 3 --

// degrees * 100

// column 4 --

// positions.

//

// column 5 --

// column 6 -—-

// torque

// column 7 --

// column 8 --

// column 9 --

// in degrees * 100

// column 10 --

// in degrees * 100

// column 11 --

// in degrees/sec * 100
// column 12 --

// in degrees/sec * 100

(centidegrees/sec?)

34

// column 13 -- Experimental column used for parameter

estimation.

// Currently parameter being estimated is
// transmission damping in Ns/m * 100

//

N,
/11777777

sprintf (foo, "%d,\t%d,\t%d, \t%d,\t%d, \tsd, \t%d, \t%d, \t",

globalTime,

(int) (jl1->mpos * 180 / M PI * le2), //

(int) (jl1->mpos d * 180 / M PI * le2),

(int) (jl->mvel * 180 / M _PI * le2),

(int) (le5 * jl->tau d) ,

jl->current cmd + ZERO DAC,

jl->enc_val,

Jjl->enc_offset

) 7
rtf put (out,

foo, strlen(foo));

//0ld, without parameter estimation

// sprintf (foo, "%d,\t%d,\t%d, \t%d\n",

// (int) (jl->jpos * 180 / M PI * le2), // estimated motor
angle

// (int) (jl->jpos d * 180 / M PI * le2), // estimated link

angle;

// (int) (jl->jvel * 180 / M PI * le2), // estimated motor
velocity;

// (int) (j1->jvel 4 * 180 / M PI * le2) // link velocity;

//)

// rtf put(out, foo, strlen(foo));

//new, with parameter estimation

sprintf (foo,

(int) (
angle

(int) (
angle;

(int) (
velocity;

(int) (

(int) (

(int) (

) ;
rtf put (out,

"d, \t%d, \t%d, \t%d, \t%d, \tsd\n",

jl->jpos * 180 / M PI * le2), // estimated motor
jl->jpos d * 180 / M PI * le2), // estimated link
jl->jvel * 180 / M PI * le2), // estimated motor
jl->jvel d * 180 / M PI * le2), // link velocity;
stiffness estimate * le2), // parameter;

damping estimate * le2) // parameter;

foo, strlen(foo));

#else //PRINT ASCII not defined, output binary

35

rtf put(out, &globalTime, sizeof (unsigned long int)); // 1
rtf put(out, &jl->mpos, sizeof (float)); // 2

rtf put(out, &jl->mpos d, sizeof (float)); // 3

rtf put(out, &jl->mvel, sizeof (float)); // 4

rtf put(out, &jl->tau d, sizeof(float)); // 5

rtf put(out, &jl->current cmd, sizeof(s 16)); // 6

rtf put(out, &jl->enc val, sizeof(s 24)); // 7

rtf put(out, &jl->enc offset, sizeof(int));

rtf put(out, &jl->jpos, sizeof(float));

rtf put(out, &jl->jpos d, sizeof(float));

rtf put(out, &jl->jvel, sizeof (float));

rtf put (out, &jl->jvel d, sizeof(float));

rtf put (out, &stiffness estimate, sizeof (double));
rtf put (out, &damping estimate, sizeof (double));

#endif //PRINT_ASCII

Settings.h

/***

KA A A A A A A AKX KKKk kK

* settings.h is a header file designed to contain experiments
settings
used in pulley board control.c

X X%

Cooper Clauson February 25, 2010

*

KKK A KA A A A A A A A A A A A AR A KA A A A A A KA A A A A A A AR A A A A AR AR AR ARk K

***************/

#ifndef SETTINGS H
#define SETTINGS H

/***
kA AkkkA KAk AhAkKh AKXk k k)%,

REFERENCE SIGNAL TYPE

One of the following reference signal types should be defined:
-ZERO
-STEP
-SWEEP

-SUM_OF SINUSOIDS
-SIMPLE_ SINUSOID
-SQUARE_WAVE

P A T T 3

If more than one is defined, the program behavior is indeterminate.

36

KA AR AR KKK

****************/

/*One of these should be uncommented, the rest should be commented:*/
//#define ZERO

//#define STEP

//#define SWEEP

//#define SUM_OF SINUSOIDS

//#define SIMPLE SINUSOID

//#define SQUARE WAVE

#define ROTATE

/***

R IR I e I i db b S db b 2b I b Ib Sb 4

*

SUM OF SINUSOIDS PARAMETERS

*

*

The following parameters control the SUM OF SINUSOIDS reference
signal.

* Both SUM OF SINUSOIDS MAGNITUDES and SUM OF SINUSOIDS FREQUENCIES
are six element

* float array literals of the form "{XXX, XXX, XXX, XXX, XXX, XXX}",
where each XXX

* is a floating point number. MAGNITUDE SCALAR is a floating point
number.

*

* SUM OF SINUSOIDS MAGNITUDES contains the magnitudes of the various
component sinusoids

* (units?), while MAGNITUDE SCALAR is a premultiplier that multiplies
each of them.

* SUM OF SINUSOIDS FREQUENCIES is the frequency of each sinusoid in

herz.
*

KA AR AR A AR A A A A AR A A AR A A A A A A A A A AR A AR A AR A A A AR A AR A AR A A A A A AR AR A A A A A A A kK
******************/

#ifdef SUM OF SINUSOIDS

#define SUM OF SINUSOIDS MAGNITUDES {1, -0.7, 0.5, 0.8, -
0.2, 0.1}

#define MAGNITUDE_SCALAR 0.5

#define SUM OF SINUSOIDS FREQUENCIES {1./3, 1.5/3, 2./3,
2.5/3, 3./3, 3.5/3}
#endif

/***
KAXAKAAAAAAAAKANKA XK KK KK
*

* SIMPLE SINUSOID PARAMETERS
*

37

* The following parameters control the SIMPLE SINUSOID reference
signal.

* Both SIMPLE SINUSOID MAGNITUDE and SIMPLE SINUSOID FREQUENCY are
floating point numbers.

* SIMPLE SINUSOID MAGNITUDE is the magnitude of the signal (units?),
and SIMPLE SINUSOID FREQUENCY

* is the frequency in herz.
*

R IR b I b db b e S b 2h b b SR b b Sh b e dh b 2 dh b b Sb (b 2b b b 2b b 2 dh b b Sh b dh db b dh b b 2b b dh b b Sh b b Sb b db b 2b S 4b b b dh b g4

******************/

#ifdef SIMPLE_SINUSOID
#define SIMPLE_SINUSOID_MAGNITUDE 1
#define SIMPLE_SINUSOID_FREQUENCY 0.5
#endif

/***

KAXKAKAKAKAKAKAKAKAKAKXA KA KA XX KKK

SWEEP PARAMETERS
These parameters are relevant to the SWEEP reference signal.

P T

KA AR AR A AR A AR A AR A AR A A A A A A AR A AR A AR A AR KA A I AR A AR A AR A A A A I AR AR A AR A A A A Kk K
*******************/

#ifdef SWEEP
#define SWEEP FREQUENCY 1.0
#define SWEEP MAGNITUDE PI / 3
#endif

/***
KAk KkhkA KRk Ak kA XAk Ak Ak Kh)x*%

ROTATE PARAMETERS

*
*
* These parameters are relevant to the ROTATE reference signal.
*
*
*

KA AR AR A A AR AR AR AR KK

*******************/

#ifdef ROTATE

#define PI_TO ANGLE PI / 180

#define ROTATION ANGLE 5

#define NUMBER OF ROTATION 0.28 * (360 / ROTATION ANGLE)

38

#define MEDIUM_SPEED 0.035
#endif

/***

kAhkkkhkkhkkkkkkhkKh*k

CONTROL TYPE

One of the following control types should be defined:
-P _CONTROL
-PD TRAJECTORY FOLLOWING
-PD_STEP_ FOLLOWING
-D_CONTROL
-ZERO_CONTROL
-PD_TRAJECTORY MOTOR_ESTIMATE
-PD_STEP MOTOR ESTIMATE

If more than one is defined, the program behavior is indeterminate.

b T . . S D P D I

KKK KA A A A A A A A A A AR A KA A A A A A A A KA AR A A AR AR AR AR AR AR kK

************/

/*One of these should be uncommented, the rest should be commented:*/
//#define P_CONTROL //In P control, the torque is
proportional between the

//desired motor position and the current
motor position
//#define PD TRAJECTORY FOLLOWING //NOTE: This one tends not to
result in vibrations.
//#define PD_STEP FOLLOWING

//#define D CONTROL //NOTE: Not currently
implemented

//#define ZERO CONTROL //NOTE: Not currently
implemented

//#define PD TRAJECTORY MOTOR ESTIMATE

//#define PD STEP MOTOR ESTIMATE //NOTE: This is the one

that tends to cause vibrations.

#define PI CONTROL
/***

*AhkAkhkhkkhkkhkkhkkhkkhk*k

*

* CONTROL GAIN

*

* A number of the control types depend on the parameters KP and KD.
KP is the gain

* related to the position error. KD is the gain related to the

velocity error.
*

KA AR AR AR A A A AR A A A A A A A AR AR A A A A A A AR A A A Ak hA Ak h k%
***************/

39

#define KPV 0.4 // Proportional for Velocity

#define KP 0.02 // 0.7 // Proportional for Position
#define KD 0.01 // 0.006

#define KI 0.01 // Integral for Velocity

// NOTE:
// 0.7 /
// 0.4 /
// 0.4 /
// 0.6 /

.001 was unstable on 25-Sep-09 without UKF

.005 was stable on 25-Sep-09 without UKF, unless excited
.005 was totally stable on 25-Sep-09 with UKF

.014 was totally stable on 28-Sep-09 with UKF

O O O o

/***
* Kk kkkkkkkk

*

* POSITION LOW PASS FILTERING

*

* To enable low pass filtering of position, define LPF POS.
Otherwise, leave

* it undefined.
*

KKK KA A A A A A A A A A AR A A A A AR A KA A A A A A A A KA A AKX A A A AR AR AR AR AR kK

**********/

/*uncomment to enable, comment to disable*/
#define LPF POS

/***
*kkhkkkkhkkkhkkkk*k

*

POSITION LOW PASS FILTERING PARAMETERS

*

* The following parameters are coefficients used to "weigh" previous
values of

* the filtered and unfiltered position.

*

* Each should be a four element float array literal of the form
XXX, XXX, XXX, XXX}",

* where each XXX represents a floating point number.

*

* The first value in each array multiplies the most recent position
value, and the

* last value multiplies the oldest. LPF IN COEFFS[0] multiplies the
current encoder

* value. LPF OUT COEFFS[0] doesn't multiply anything--its value

doesn't matter.
*

KA R A AR AR A A A AR A A A A A A AR A A A A A A A A A AR A A A A Ak A Ak x k%

************/

40

#ifdef LPF POS
#define LPF IN COEFFS {0.0029, 0.0087, 0.0087, 0.0029}
#define LPF OUT COEFFS {1.0000, 2.3741, -1.9294, 0.5321}
#endif

/***
kAhkkkkhkkkkkkKhkk

*

VELOCITY FILTERING

*

* If FILTER VELOCITY is defined, then velocities are computed as a
linear combination

* of previous velocities and previous positions. This applies both
to the computation

* of desired velocities from desired positions, and actual velocities
from actual

* positions.

*

*

This impacts code in velocity.c

*

KKK KA KA A KA AR AR AR AR AR AR ARk K

************/

//comment this line out to disable filtering
#define FILTER VELOCITY

/***

kAhkKkkkAk Kk kKk kK

*

VELOCITY FILTERING PARAMETERS

*

*

The following parameters are coefficients used to "weigh" previous
values of

* the velocity and position.

*

* Each should be a four element float array literal of the form
XXX, XXX, XXX, XXX},

* where each XXX represents a floating point number.

*

* The first value in the position coefficient array multiplies the
current position,

* the second value the last position, the third the position before
that, and so on.

* The second value in the velocity coefficient array multiplies the
last velocity,

* the third the velocity before that, etc. The first value in the
velocity coefficient

* array does nothing, so it can be anything.

*

* Note that these parameters do nothing if velocity filtering is
disabled.

41

KA AR AR KKK

************/

#ifdef FILTER VELOCITY

// When importing coefficients from Matlab:

//

// ~*** CHANGE THE SIGN OF A TERMS ***
//

// 100Hz

#define VF_POSITION COEFFS {0,66.1659,-30.8672,-35.2987)
#define VF_VELOCITY COEFFS {1.0, 1.6005, -0.8538, 0.1518}

// 50Hz
// #define VF POSITION COEFFS {0, 11.3235, -3.0528, -8.2707}
// #define VF VELOCITY COEFFS {1, 2.1912, -1.6005, 0.3897}

// 10Hz
//Poles Zeros configured for triple pole at w = 10Hz
// #define K 10HZ 0.056517
// #define VF POSITION COEFFS {K 10HZ, K 10Hz, - K 10HZ, - K_10HZ}
// #define VF VELOCITY COEFFS {1, 2.8172, -2.6456, 0.8282}
#endif

#define PRINT ASCII
#define PRINT OUTPUT HEADER

#endif // SETTINGS H

42

