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Executive Summary 

 

The BioRobotics Lab at the University of Washington, Seattle is building new RAVEN surgical 

robots for testing and development purposes. These robots consist of a complex cable 

mechanism that requires following a tedious cabling procedure during construction and 

maintenance. It was determined that a controller could be used to improve the cabling procedure 

by involving the motors themselves during cabling. 

The EE 449 project’s goal is to design a controller that will assist in the cabling procedure. This 

was accomplished by using the various hardware of the RAVEN system and software. The 

project duration was 3 months and followed a specific program. The first step was to model the 

system and then simulate the model. Next the state space model was developed and used to 

design a controller based on the specifications obtained from the customer. This controller design 

was then implemented on a test rig which is similar to the actual robot. 

The entire project was implemented successfully with the exception of a foot pedal. The foot 

pedal helps the user by not having to use the keyboard to send various commands to the 

computer. Even though the cabling procedure can be completed without the foot pedal 

mechanism, the ease of use of the controller is limited by the fact that the user will be dependent 

on access to the computer keyboard.  

The foot pedal is scheduled to be implemented within one week of submission of this report. 

Once this is complete the code and instructions will be handed over to the Bio-Robotic Lab, so 

that it can be send to a student in UC Santa Cruz who will be constructing seven new RAVEN 

robots. 
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1. Project Description 

The RAVEN surgical robot developed by the BioRobotics lab has two robot arms each of which use 

a complex pulley system to move the arms in different directions. The pulley system is powered by 

separate motors that have one steel cable attached onto its shaft. The reels have threads on them into 

which the steel cable wraps onto. These reels are located at hard to reach places, which makes the 

initial cabling a tedious process. Also anytime a person has to remove and replace the cable during 

maintenance.  

Our project originated from this issue during cabling. Using the motors to assist in the cabling 

process would benefit any person involved with cabling. So the idea was to create a controller for the 

motors to wind up the cable onto the motor shafts using a controller and hold that position while the 

other end was wrapped around. The goal in this project is to create a closed loop controller that will 

perform an automatic cable winding for the RAVEN surgical robot. The system should be able to 

wind the cable on the capstan (reel on which the motor shaft is attached to) at a specified velocity. 

The user should be able to stop the motor once it has wound using a footpedal and wind it in the 

opposite direction whenever required. In this report, we include the discussion about our customer 

and his expectations of the project. We will also explain about our plant, actuator, sensor, and control 

resources. In addition, we will cover our results and conclusions. 

 

In designing a control system the general flow of tasks are system modeling, simulation, control 

design, controller performance and robustness testing. This final milestone report covers the entire 

progress of the Automatic Cable Winding for Surgical Robot Arms project. The purpose of this 

report is to show the progress of the project leading to the final controller.  

 

 

 
           Figure 1. Close up of the motor cluster on the RAVEN 
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2. Literature Review 

The BioRobotics laboratory, Department of Electrical Engineering, of the University of 

Washington, Seattle mainly focuses on haptic devices and remote surgery. One of the main 

projects of the Lab is the development of remote surgical technology. Haptic Devices are high 

performance mechantronic (computer and mechanical) devices that allow the physical interaction 

between humans and computer models. Surgical technology is the idea to create robotic devices that 

makes the surgeon be able to perform a surgery safely and effectively. One of these initiatives is the 

RAVEN remote surgical robot partly funded by the military. The idea behind the robot is to 

deliver immediate surgical assistance to battlefields, disaster areas, rural areas etc. The project 

has accelerated in recent years and is now under rigorous testing. To enable more testing and 

improvements, seven new robots are being constructed by students in UC Santa Cruz. The 

customer for the project is the BioRobotics Lab. They will hand over the software and 

instructions to the students in UC Santa Cruz. The customer also wants the system to turn at a 

certain direction with a specified number of turns. The system also should be able to rotate at a 

specified speed. 
 

 

 
                                            Figure 2. RAVEN remote surgical robot 
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3. Symbols and Units 

 
The symbols and their corresponding units used in this report are:  

Input voltage Va(t) (V)  

Current i(Amps)  

Load torque TL(t) (N-m)  

Torque constant KT (N-m/A)  

Speed constant Kv (V/(rad/sec))  

Back emf voltage e(t) (volts)  

Viscous friction Bm (N-m)  

Motor terminal resistance Rm (Ω)  

Motor terminal inductance La (H)  

Motor torque T(t) (N-m)  

Motor angle θ (rad)  

Angular velocity ω (rad/sec)  

Amplifier Gain KA  

Rotor + capstan inertia Jm (kg-m2) 
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4. Modeling 

The first step in the project was the development of the model. This was accomplished by first 

examining the system, deriving equations, developing the state space model, collecting 

parameters and then simulating the model.  
 

4.1 Equations and State Space Model 

 
The state space model was derived from the physical system by dividing the motor into two 

subsystems resulting in the equations:  

 

Electrical Equation:  

Va (t) = La di/dt + Rm i(t) + Kv ω(t)  

 

Mechanical Equation:  

TL(t) = Kt i(t) – bm ω(t) – Jm dω/dt  

 

Friction torque inside the motor is modeled by the term bm(ω)(t) which is a non-linear function of ω. 

It would be a simple linear function of ω(t) when we consider only the viscous friction model (i.e., 

bm(ω)(t) = bviscous ω(t) [2]. The non linear damping term was obtained from the motor datasheet.  

The figure below shows the state space representation of the model [3]. The matrix X is the state 

consisting of the current I, angle theta and angular velocity omega. The matrix u is the input of the 

system, the voltage v and the load torque. 

 

 
                  Figure 3. System state space model 
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4.2 System Diagram 

The figure 4 below shows a detailed description of the mechanical components of the system. The 

system can be divided into three parts, motor, capstan and a variable tension from a person holding 

the cable. Each part of the hardware is characterized by certain parameters which were included in 

the modeling in milestone two.  

 

 

 
        Figure 4. System mechanical diagram  

 

4.3 Parameters 

The parameters for the established model are for the motor on the pulley board, which is where all 

the initial testing will be conducted. The values shown below were obtained from the data sheet and 

also calculated based on measured data. The final implementation will use the information from the 

actual robot’s parameters which is shown in the Appendix A. 

 

Electrical Parameters:  

Self inductance (La) = 1280 mH  

Terminal Resistance (Rm) = 4.94 ohms  

 

Mechanical Parameters:  

Torque to Speed Ratio (Bm) = 1.1507e-3 Nm/(rad/sec)  

Plant inertia (Jm) = 85 gcm2 + 21.932 gcm2  

Torque constant (Kt) = 0.09167 Nm/Amp  

The plant inertia consists of the inertia contribute by the motor rotor and the capstan. Since the 

capstan could not be isolated the total inertia was calculated by using the rotor inertia from the data 

sheet and calculating the capstan inertia using the equation:  
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Where, h is the height of the capstan, rho(Ϸ) is the density of steel, r2 and r1 are the inner and our 

radii of the capstan.  

4.4 Model Simulation 

A simulation was done to assess the model’s response to a constant input. Simulink was used to 

create a block diagram [2] for the simulation as shown in Figure 5. The plant block consists of the 

electrical and mechanical systems. The input signal used for the simulation was a 1 volt step and a 

0.4 N-m disturbance torque. The results of the simulation are shown below in figure 7. 

 

 
           Figure 5. Simulink top level block diagram 

 

 
           Figure 6. Simulink inner plant model 

 

 

 

 

 



7 

 

The graph shown below in Figure 7 shows the position of the motor as seen from the output of the 

system. The straight line shows that the angle is changing at a constant rate as expected. 

 

 
         Figure 7. Motor angle result from simulation 

 

 

The graph below shows the motor velocity when there is a step input. 

 

 
                        Figure 8. motor velocity result from simulation 
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4.5 Controllability and Observability 

The controllability and observability of the system was assessed using a method shown in the book 

“Control Systems Engineering” [1]. The controllability was assessed by obtaining the controllability 

matrix using the A and B matrix from the state equation. A MatLab command directly calculates the 

matrix and also the rank. If the rank of the controllability matrix is the same as the order of the plant, 

then the system is controllable. The figure below shows a MAtLab screen shot of the calculation. 

 

 
                                       Figure 9. Controllability calculation 
 

Similarly the observability can be calculated from the A and C matrices. Matlab was used to 

calculate the observability matrix also and the rank was 3 which is the same as the order of the plant. 

Therefore the plant is observable. 
 

 
      Figure 10. Observability calculation 
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5. Design 

The design of the controller involved evaluating the specifications of the project and designing a 

controller that is capable of meet those requirements.  

 

5.1 Performance Specifications 

The performance specifications that were established after multiple revisions were: 
 

1. All the hardware used for the project must be from the BRL lab since that will be accessible to 

students building or re-cabling the robots. 

2. The user should be able to control the number of turns wound by the capstan and also the 

velocity of rotation. 

3. The system should be able to wind the cable in two different directions.  

4. The system should hold the position of the capstan for a specified amount of time until the cable 
can be wound around the actuator joint are brought back to attach on the other end of the shaft. 

5. The controller should be able to track the specified velocity with 95%+ accuracy.  

6. The controller should detect and stop the motor in less than 1 sec if the cable gets dislodged from 
the capstan.  

5.2 Controller Design 

We started designing our controller design by writing a MATLAB script to find the motor position 

transfer function and motor velocity transfer function. After that we use root locus method in 

Sisotool (MATLAB toolbox) to find the best proportional gain (Kv_p) and integral gain (Kv_I) for 

velocity control and proportional gain (Kp) for position control. We use these values as starting 

points for our Simulink simulation. In the simulation, we used trial and error method to improve the 

results beyond what was obtained in the sisotool design to get the best possible gains. The best 

controller should have fast rising time, minimum overshoot, and no steady state error. Below shows 

the best result that we achieved using Sisotool. (See figure 11 and 12). The final values that worked 

for the system was different since the designed values did not work effectively. 
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Figure 11. Sisotool screen shot showing the design method for obtaining gains 

 

 
Figure 12. Step response results showing the performance of the controller 

 

 

5.3 Simulations 

We used simulink (program inside MATLAB) to simulate our controller. For the velocity control, we 

choose PI controller because the motor need to rotate at a constant velocity with a little steady state 

error. We did not want to add D controller because our system has a lot of noise and it would not 
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help with the performance of the controller. Adding D controller will cause our system to have even 

higher noise. The input of the velocity control need to go to pre-filter to get rid of overshoot. The 

motor controller has a saturation limit which is 24 volts. However, for safety issues, we choose the 

motor saturation limit to be 15 volts. The I controller need to have integral anti-windup to avoid the 

integral goes unstable. The blue box convert the controller output and disturbance load to the angle 

theta. Then, the result go to pseudo derivative to get rid of noises and convert angle theta (position) 

to omega (velocity). The diagram of velocity controller is shown in figure 13. 

 

 
Figure 13. Simulink block diagram showing velocity controller 

 

 

For the position control, we choose to create a position control (outer loop) outside the velocity 

control (inner loop). This design will help while transitioning between controllers since the velocity 

controller block is always part of the control loop. The diagram of position controller is shown in 

figure 14. 

 

 
Figure 14. Simulink block diagram showing position controller 
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Implementation 

The project was implemented using the following hardware and software: 

5.4 Hardware 

The hardware used for the project was limited to those available in the BioRobotics Lab as 

requested by the customer. The hardware on which the design and testing was done was based on 

the pulley board. The descriptions of each are given below:  

 

1. Motor:  

The motor is a MAXON brushless DC motor. It works with a motor controller which can also acts as 

an amplifier. The motor has a power rating of 120W with a max stall torque of 0.7 Nm. The 

remaining motor data is available in the data sheet attached in the appendix.  

2. Encoder:  

The encoder is built onto the motor and is also powered by the motor controller.  

3. Capstan and Cable:  

The capstan is a steel cylinder that is welded onto the motor shaft. The cable is a 4mm thick steel 

cable. The inertia of the capstan and cable combination was calculated based on the dimensions and 

included in the system model. 

 

               Figure 15. Photo showing various hardware 
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4. Foot pedal:  

Since under the new design the user will be cabling the capstan by hand, typing commands or using 

the keyboard during cabling is impractical. Since haptic devices used in the BRL lab use a USB foot 

pedal, we are including that into our system. The pedal is an extension of the keyboard and has three 

pedals. One pedal will be used to start rotating in one direction, second for the opposite direction and 

third for emergency stop. Figure 16 below shows a photograph of the foot pedal. 

 

 
               Figure 16. Foot pedal 

5.5 Software 

The system uses RTAI (Real Time Application Interface) that allows the computer to 

communicate to the pulley-board in the real time. First, the system needs to initialize the USB-

board and set up the communication protocol. Then, it will compute the correct values to the 

USB-board to operate the correct DC motor motion. These tasks are happen periodically every 1 

millisecond. Inside the function where it computes the correct motor motion, we program our 

controller which is proportional control for position and proportional and integral control for 

velocity.     

 

The control for the system is done in C and built onto the RTAI module on the USB I/O board. 

The velocity controller was implemented using the encoder data and making necessary 

manipulations. The position controller is switched on currently after a certain time. Once the foot 

pedal is implemented the corresponding pedals will control the switching between states. 

 

The gains of the final design were Kp = 0.02 for position control.  

For the velocity control Kp = 0.4 and Ki = 0.01. 
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5.5.1 State Machine 

Based on the need to isolate the functions of the system, a finite state machine was developed. The 

purpose of the state machine is to clearly define and separate the functions of the system into parts at 

a top level stage.  

The figure 17 below shows the state diagram. There three states named A, B and C. Each of these 

states output a certain value which either shuts off the system or activates either the velocity control 

or position control. The possibilities that are not shown in the diagram are considered as “dont 

cares”. The start command is initiated when the user presses the left pedal.  

The Emergency stop command is initiated when the user presses the right pedal. 

 

The opposite direction command is initiated by the capstan reaching the angular position specified by 

the user in the first rotational cycle.  
 

 

 
Figure 17. State Machine diagram 
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6. Experimental Data 

The data shown here are the results on the day of the report compilation. The velocity control 

and the state transitions work effectively. The foot pedal has not been implemented and the 

program required to run the USB interface is being developed. The data below shows the various 

other parts of the project. 

6.1 Velocity Controller 

The velocity control of the controller was limited to 500 deg/sec so that the user can stop the 

motor when required. This might be necessary when the cable falls into the wrong thread or if 

there is a delay before the foot pedal is pressed. The graph below in Figure 18 shows the motor 

velocity of the motor when there is no resistance. The max tension provided by the motor while 

winding is 0.5N. 

 

 
Figure 18. graph showing constant velocity for the velocity controller 

 

6.2 Position Controller 

The position controller worked effectively even though it was only a proportional control. The 

motor managed to hold the position up to a measured tension of 55N (measured using a force 

sensor). The graph below in Figure 19 shows the motor holding its position after 20secs of 

rotation. 
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Figure 19. Motor position for position control 
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7. Conclusions 

 

The purpose of the EE 449 class is to learn about real world implementation of control principles 

for an actual customer. This project was created out of necessity and provided the necessary level 

of complexity. Over the course of the quarter we successfully modeled the system. Then we 

designed a controller and implemented the controller. We learned the different ways to 

implement a controller. Also implementing a theoretical design in the real world has numerous 

challenges. Planning for obstacles and unexpected behavior should be part of the project plan. 

We also learned about effective ways to conduct technical presentations and write reports. 

 

In terms of the project, most of the parts have been implemented with the exception of the foot 

pedal. Even though the controller can be used without the foot pedal, since making cabling easier 

is the main goal of the project, the project will be complete only once the foot pedal can be 

properly used. The data from the other motors on the actual robots being built are included in the 

appendix. The next step is to complete the foot pedal information and then hand over this info to 

the BioRobotics Lab. 
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9. Appendix A 

Motor information for the motors used on the RAVEN 

 

1. Maxon Motor – 310009 motor RE30 + 166155gear GP32C 
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2. Maxon Motor – 148877 motor RE40 + 203115 gear GP42C 
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3. SERIES Z12A PWM SERVO AMPLIFIERS 
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10. Appendix B 

Code Comments 

 

pulley_board_control.c 

 
/* 

 

File: pulley_board_control.c 

Author: Hawkeye 

Created October 2008 

 

   This is the main control loop content for the pulley board. 

 

Inputs:  Encoder values 

Outputs: DAC values 

 

*/ 

 

 

#include "pulley_board_control.h" 

#include <rtai_fifos.h> 

#include "velocity.h" 

 

#include <stdio.h> 

 

unsigned char kb; 

//------------------Foot Pedal------------- 

//extern int input; 

//#include <string.h> 

//#include <iostream> 

//#include <sys/time.h> 

//#include <termios.h>  

//#include <stdlib.h> 

 

//--------------------------------------------------------------Foot 

Pedal---------------------------------------------- 

//static struct termios g_old_kbd_mode; 

/* 

// did somebody press somthing??? 

static int kbhit(void){ 

    struct timeval timeout; 

    fd_set read_handles; 

    int status; 

 

    // check stdin (fd 0) for activity 

    FD_ZERO(&read_handles); 

    FD_SET(0, &read_handles); 

    timeout.tv_sec = timeout.tv_usec = 0; 

    //status = select(0 + 1, &read_handles, NULL, NULL, &timeout); 
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    return status; 

} 

*/ 

/* 

// put the things as they were befor leave..!!! 

static void old_attr(void){ 

    tcsetattr(0, TCSANOW, &g_old_kbd_mode); 

} 

*/ 

 

//--------------------------------------------------------------------

-------------------------------------------------- 

//----------------------------------------- 

 

// Hack to get rid of annoying compiler warnings w/ math.h 

#ifdef __attribute_used__ 

#undef __attribute_used__ 

#endif 

#ifdef __attribute_pure__ 

#undef __attribute_pure__ 

#endif 

#ifdef __always_inline 

#undef __always_inline 

#endif 

#include <math.h> 

 

#include "../core_code/RTAI_modules/motor.h" 

#include "../core_code/RTAI_modules/t_to_DAC_val.h" 

#include "../core_code/RTAI_modules/utils.h" 

#include "defines.h" 

#include "UnscentedKalmanFilter.h" 

 

#ifndef INT_COUNT 

    int count = 1; 

#define INT_COUNT 

#endif 

int positionhold=1; 

extern unsigned long int globalTime; 

int globalNumMech = 1; 

 

struct tagDOF_type globalDOF_types[1]; 

 

 

#define I_MAX_DES7010 31.97 // Includes fudge-factor from empirical 

measurement.  Nominally 30.0 Amps 

#define I_MAX_EC40_PULLEYB 9.725 

#define I_CONT_EC40_PULLEYB 1.77 

#define GEAR_BOX_TR_PULLEYB 1 

#define T_PER_AMP_EC40_MEASURED 0.09167 

 

 

//header file with experiment settings in it 
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#include "settings.h" 

 

//place to cache the UKF's estimate of the parameter value.  The 

estimates for the state 

//variables are placed in tagDOF, but because there is no place to put 

this number there, 

//it can't be done that way. 

static double damping_estimate; 

static double stiffness_estimate; 

 

// Initialize some stuff. 

void init_pulley_board(struct tagDOF *in_j1) 

{ 

 

  //Load IMAX 

  globalDOF_types[0].currentPeakMax = I_MAX_DES7010; 

  globalDOF_types[0].currentContMax = (double)(I_CONT_EC40_PULLEYB); 

   

  //Load the torquePerAmp 

  globalDOF_types[0].tauPerAmp = (double)(T_PER_AMP_EC40_MEASURED * 

GEAR_BOX_TR_PULLEYB); 

   

  //Initialize the old positions and velocities 

  int k=0; 

  for (k = 0; k < STATE_HISTORY_LEN; k++) 

    { 

      globalDOF_types[0].stackMotorPos[k] = 0; 

      globalDOF_types[0].stackMotorPosDes[k] = 0; 

      globalDOF_types[0].stackMotorVel[k] = 0; 

      globalDOF_types[0].stackMotorVelDes[k] = 0; 

    } 

 

  //- Initialize torque to zero 

  in_j1 -> tau_d = 0; 

 

  // Initialize the Kalman filter 

  initUKF(); 

} 

 

 

 

//- sinusiod parameters 

//the actual values are defined in settings.h.  See this file 

//for more information. 

//These are used in the function pulley_board_control() and 

output_parameters(). 

#ifdef SUM_OF_SINUSOIDS 

static const int numSin   =  6; 

static const double scaleMag   =  MAGNITUDE_SCALAR; 

static const double const Mag[]    = 

 SUM_OF_SINUSOIDS_MAGNITUDES; 



25 

 

static const double const w[]      = 

 SUM_OF_SINUSOIDS_FREQUENCIES; 

#endif 

 

 

#ifdef SIMPLE_SINUSOID 

//the actual values are defined in settings.h.  See this file 

//for more information. 

static double const SingleMag   =  SIMPLE_SINUSOID_MAGNITUDE; 

static double const Singlew   =  SIMPLE_SINUSOID_FREQUENCY; 

#endif 

 

#ifdef ROTATE 

//the actual values are defined in settings.h.  See this file 

//for more information. 

static double const piToAngle   =  PI_TO_ANGLE; 

static double const rotAngle        =   ROTATION_ANGLE; 

static double const numbRotate   =  NUMBER_OF_ROTATION; 

static double const medSpeed        =   MEDIUM_SPEED; 

#endif 

 

//- This is the control code for the pulley board. 

void pulley_board_control(struct tagDOF *const j1){ 

 

 

 

  //- frequency sweep variables 

  #ifdef SWEEP 

  double freqHz   =  SWEEP_FREQUENCY; 

  const double sweepMag  =  SWEEP_MAGNITUDE; 

  #endif 

 

  //these variables are only required if low pass position 

  //filtering is being used.  See settings.h for more information. 

  #ifdef LPF_POS 

  //arrays used to store previous filtered and unfiltered encoder 

  //positions 

  static float enc_in[3] = {0,0,0}; 

  static float enc_out[3] = {0,0,0}; 

  #endif 

 

  //- Coefficients for position LPF 

  //coefficient values are defined in settings.h 

  #ifdef LPF_POS 

  static const float const B[] = LPF_IN_COEFFS; 

  static const float const A[] = LPF_OUT_COEFFS; 

  #endif 

 

  double xhk[N]; // State estimate 

 //Changed to N so that it is compatible with the new 

 //Kalman filter  --Cooper 
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  //- Get time in seconds 

  const double secs = (double)(globalTime) / 1000; 

 

  //-  LPF for position  

  float enc_cur = (float)j1->enc_val; 

   

  #ifdef LPF_POS 

  float filt_enc = (B[0]*enc_cur +   

       B[1]*enc_in[0] +  

       B[2]*enc_in[1] +  

       B[3]*enc_in[2] +  

       A[1]*enc_out[0] +  

       A[2]*enc_out[1] +  

       A[3]*enc_out[2] ); 

  #endif 

 

 

  //LPF_POS can be defined to enable position filtering in 

  //settings.h.  See this file for more information. 

  #ifdef LPF_POS 

    //- calculate motor angle from filtered position 

    j1->mpos = (float)filt_enc * (2 * PI) /ENC_PER_REV; 

  #else 

    //- calculate motor angle from un-filtered position 

    j1->mpos = (float)enc_cur * (2 * PI) /ENC_PER_REV; 

    printk("unfilt\n"); 

  #endif 

 

  

  //- update old values for position LPF filter 

  #ifdef LPF_POS 

  enc_in[2]  = enc_in[1]; 

  enc_in[1]  = enc_in[0]; 

  enc_in[0]  = enc_cur; 

  enc_out[2] = enc_out[1]; 

  enc_out[1] = enc_out[0]; 

  enc_out[0] = filt_enc; 

  #endif 

 

  //- Apply unscented kalman filter 

  if ( -1 == doUKF(xhk,  

     (float)enc_cur * (2 * PI) / ENC_PER_REV,  

     ( -1 * j1->tau_d ) ) ){ 

    printk("UKF estimation failed. (-1)\n"); 

  } 

   

  //- save kalman estimates to data structure 

  j1->jpos   = xhk[0];   // estimated motor angle  

  j1->jpos_d = xhk[1];   // estimated link angle; 

  j1->jvel   = xhk[2];   // estimated motor velocity; 

  j1->jvel_d = xhk[3];   // link velocity; 
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  stiffness_estimate = xhk[4]; //cache it so that it can be output as 

data 

  damping_estimate = xhk[5]; //cache it so that it can be output as 

data 

 

  //The following compilation is contingent on a #define in 

  //settings.h.  See this file for more information. 

  #ifdef SWEEP 

    //- Generate frequency sweep 

    freqHz = floor(secs / 10) + 1; 

    if (freqHz > 50) freqHz = 1; 

    j1->mpos_d = sweepMag * sin( freqHz * 2 * PI * secs); 

  #else 

  #ifdef SUM_OF_SINUSOIDS 

    //- Generate sin wave 

    //- desired position = a Sin (w*t) 

 

    j1->mpos_d = 0; 

    int i=0; 

    for (i=0; i<numSin; i++){ 

      j1->mpos_d += Mag[i] * scaleMag * sin( w[i] *2*PI * secs ); 

    } 

  #else 

  #ifdef SIMPLE_SINUSOID 

    //- Generate sin wave 

    //- desired position = a Sin (w*t) 

 

    j1->mpos_d = SingleMag * sin( Singlew *2*PI * secs ); 

  #else 

  #ifdef STEP 

    //- Generate step input 

    //-   Stay at zero for 5 sec.  Then step to 90 degrees 

    if (secs < 5.0){ 

      j1->mpos_d = 0; 

    } else { 

      j1->mpos_d = PI / 2; 

    } 

  #else 

  #ifdef SQUARE_WAVE 

    //- Generate square wave input 

    if (secs < 2.0){ 

      j1->mpos_d = 0; 

    }  

    else if ( ((int)floor(secs) % 4) < 2 ) { 

      j1->mpos_d = PI / 4; 

    } 

    else if ( ((int)floor(secs) % 4) < 4 ) { 

      j1->mpos_d = -1 * PI / 4; 

    } 

    else if (secs < 8) { 

      j1->mpos_d = 0; 

    } 
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    else { 

      j1->mpos_d = 0; 

    } 

  #else 

  //#ifdef ZERO 

  //  //- desired position = 0; 

  //  j1->mpos_d = 0; 

  //#else 

  #ifdef ROTATE 

    // rotate from 0 to desire position 

    //j1->mpos = 0; 

    //double lastSec = 0; 

/*   int YES = 0; 

  

if (YES == 0) { 

    char ch; 

    //static char init; 

    struct termios new_kbd_mode; 

 

    //if(init) 

    //    return; 

    // put keyboard (stdin, actually) in raw, unbuffered mode 

    tcgetattr(1, &g_old_kbd_mode); 

    memcpy(&new_kbd_mode, &g_old_kbd_mode, sizeof(struct termios)); 

     

    new_kbd_mode.c_lflag &= ~(ICANON | ECHO); 

    new_kbd_mode.c_cc[VTIME] = 0; 

    new_kbd_mode.c_cc[VMIN] = 1; 

    tcsetattr(1, TCSANOW, &new_kbd_mode); 

    atexit(old_atr); 

    YES = 1;    

} 

*/ 

 

//    while (!kbhit()){ 

        //char ch1; 

//while (1) {   

        // getting the pressed key... 

        //int a = 'a' + 13; 

        //int s = 's' + 13; 

        //int d = 'd' + 13; 

        //ch1 = getchar(); 

        //delay(100); 

         //char inp[2]; 

         int input = 1; 

   

/* 

    while (strcmp (inp,"ex") != 0 ) { 

         //puts ("Enter text: ab, cd, or ef"); 

         scanf("%s", inp); 

         printf("Inp is: %s \n", inp); 

         if ( strcmp(inp,"ab") ==0){ 
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            input = 1; 

         } 

         else if ( strcmp(inp,"cd") ==0){ 

            input = 2; 

         } 

         else if ( strcmp(inp,"ef") ==0){ 

            input = 3; 

         } 

         else { 

            input = 3; 

         } 

         printf("Input is: %d \n", input); 

    }  

*/ 

/* 

    if ( kb == 'a' ){ 

        input = 1; 

    } 

    else if ( kb == 's' ){ 

        input = 2; 

    } 

    else if ( kb == 'd'){ 

        input = 3; 

    } 

    else { 

        input = 2; 

    } 

*/ 

if (secs < numbRotate){ 

        // rotate right to left  

        if( input == 1 ){ 

                j1->mpos = rotAngle * piToAngle * secs; 

                j1->mpos_d = (rotAngle * piToAngle * secs) - medSpeed; 

        } 

        // stop 

        else if ( input == 2) { 

              j1->mpos_d = rotAngle * piToAngle * numbRotate; 

        }  

        // rotate left to right 

        else if ( input == 3 ){ 

              j1->mpos = rotAngle * piToAngle * secs; 

              j1->mpos_d = (rotAngle * piToAngle * secs) + medSpeed; 

        } 

        else{ 

             j1->mpos_d = 0; 

        }  

} 

   

//    } 

     

//    } 
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if (secs > numbRotate){ 

        // get rid of j1->mpos (how to do that) 

        j1->mpos = ((float)enc_cur * (2 * PI) / ENC_PER_REV);         

 

 if(positionhold==1){ 

      j1->mpos_d = j1->mpos;//((float)((int)(j1->mpos/(2*PI))))*2*PI; 

      positionhold=0; 

} 

 

        //- update old values for position LPF filter 

        enc_in[2]  = enc_in[1]; 

        enc_in[1]  = enc_in[0]; 

        enc_in[0]  = enc_cur; 

        enc_out[2] = enc_out[1]; 

        enc_out[1] = enc_out[0]; 

        enc_out[0] = filt_enc; 

     

  #else 

 

    //no reference signal was chosen--compilation will fail with 

message 

    #error no reference signal defined in settings.h 

 

  //Nesting implements "elif"-style structure; only one reference 

signal is compiled. 

  #endif 

  #endif 

  #endif 

  #endif 

  #endif 

  #endif 

 

 

   

 

  //- Calculate motor velocity 

  //- This should be done after calculating desired trajectory to 

determine mvel_d 

 

 

  //The following four function calls invoke code in velocity.c 

  GetJointVelocity( j1, VEL_DESIRED); 

  GetJointVelocity( j1, VEL_ACTUAL); 

  // NOTE: These two lines of code above are correct in that the same 

function is called 

  // twice with a different second parameter.  The first time the 

desired velocity is 

  // computed based on past desired motor positions, and cached in the 

mvel_d field. 

  // The second time the actual velocity is computed based on past 

actual motor positions, 

  // and cached in the mvel field.  --Cooper 



31 

 

  PushPos(j1); 

  PushVel(j1); 

 

    //- compute torque 

    // mvel stores actuals 

    // jvel stores UKF estimates 

 

 //The following compilation is contingent on a #define in 

 //settings.h.  KP and KD are also defined there.  See this 

 //file for more information. 

    #ifdef P_CONTROL 

        j1->tau_d = KP * (j1->mpos - j1->mpos_d); //- P-control 

        //#error P_CONTROL not implemented!!! 

    #else 

 

    #ifdef PI_CONTROL 

      

     if (secs < numbRotate) { 

            j1->tau_d = KPV * (j1->mpos - j1->mpos_d) + KI * (j1->mvel 

- j1->mvel_d);  //- V-control 

        } 

     else{     

            j1->tau_d = KP * (j1->mpos - j1->mpos_d);// - j1->jpos);  

//- P-control 

        } 

        //if (secs > numbRotate){ 

            //j1->mpos = 0; 

            //j1->mpos_d = 0; 

        //    j1->tau_d = j1->tau_d - (j1->tau_d - 0.01); 

        //} 

    #else 

     

    #ifdef PD_TRAJECTORY_FOLLOWING 

      j1->tau_d = ((KP) * (j1->mpos - j1->mpos_d) + (KD) * (j1->mvel - 

j1->mvel_d) );  //- PD control 

    #else 

 

    #ifdef PD_STEP_FOLLOWING 

      j1->tau_d = ((KP) * (j1->mpos - j1->mpos_d) + (KD) * (j1->mvel - 

0) );  //- PD control 

    #else 

 

    #ifdef D_CONTROL 

      // j1->tau_d =  KD * (j1->mvel - j1->mvel_d);  //- D-control 

      #error D_CONTROL not implemented!!! 

    #else 

 

    #ifdef ZERO_CONTROL 

      //  j1->tau_d = 0;  // Zero-control 

      #error ZERO_CONTROL not implemented!!! 

    #else 
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    #ifdef PD_TRAJECTORY_MOTOR_ESTIMATE 

      j1->tau_d = ((KP) * (j1->jpos - j1->mpos_d) + (KD) * (j1->jvel - 

j1->mvel_d) );  //- PD control with motor estimates 

    #else 

 

    #ifdef PD_STEP_MOTOR_ESTIMATE 

      j1->tau_d = ((KP) * (j1->jpos - j1->mpos_d) + (KD) * (j1->jvel - 

0) );  //- PD control with motor estimates relative to static target 

    #else 

 

      #error no control type defined in settings.h 

 

    //Nesting implements "elif"-style structure; only one control type 

is compiled. 

    #endif 

    #endif 

    #endif 

    #endif 

    #endif 

    #endif 

    #endif 

    #endif 

 

  //- Set constant torque 

  //  j1->tau_d = 0.1623; 

 

  //- Calculate a DAC value from the desired torque 

  j1->current_cmd = DACFromTorque(j1); 

 

  // print state 

  if (globalTime % 99 == 0){ 

    printk("mpos: (%d),\tmpos_d: (%d),\tmvel: (%d), \tjpos: (%d), 

\tjpos_d: (%d), \tdac:( %d / %d )\n\n",  

    (int)( j1->mpos   * 180 / M_PI * 1e2),  

    (int)( j1->mpos_d * 180 / M_PI * 1e2),  

    (int)( j1->enc_val  * 180 / M_PI * 1e2), 

       (int)( j1->jpos ), 

       (int)( j1->jpos_d   * 180 / M_PI * 1e2), 

    (int)(100*j1->tau_d) ,  

    j1->current_cmd ); //+ ZERO_DAC); 

   

  } 

} 

 

//void output_parameters(int out); 

 

void pulley_board_output(struct tagDOF *j1, int out){ 

 

  char foo[400]; 

 

#ifdef PRINT_ASCII 
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//only if the option is selected to print the header, 

//otherwise don't do this 

#ifdef PRINT_OUTPUT_HEADER 

  static int first_time = 1; 

 

  if (first_time){ 

    //this header information wasn't really that useful... 

 

    ///sprintf(foo,"%% new data collection\n\n"); 

    ///rtf_put(out, foo, strlen(foo)); 

 

    //sprintf(foo, "\n%% globalTime (ms), mpos (deg * 100), mpos_d 

(deg * 100), j1->mvel (deg/sec * 100), tau_d (torque*100), DAC val, 

enc_val (motor), enc_val(link)"); 

    //rtf_put(out, foo, strlen(foo)); 

    //sprintf(foo, "(9)mpos(est), linkAngle(est), mvel(est), 

linkVel(est)\n"); 

    //rtf_put(out, foo, strlen(foo)); 

 

    //try this header instead 

    //macro to send line to FIFO 

    #define out_to_fifo(...) \ 

 sprintf(foo, __VA_ARGS__);  \ 

 rtf_put(out, foo, strlen(foo))  \ 

 

 //basically, print the comment made below 

 out_to_fifo("\tThe output format is as follows:\n"); 

 out_to_fifo("\n"); 

 out_to_fifo("\tcolumn  1 -- Time elapsed in milliseconds\n"); 

 out_to_fifo("\tcolumn  2 -- Motor position as determined from 

motor encoder\n"); 

 out_to_fifo("\t  in degrees * 100 (centidegrees?).  This 

may\n"); 

 out_to_fifo("\t  have been low-pass filtered first\n"); 

 out_to_fifo("\tcolumn  3 -- Reference signal in angle units 

in\n"); 

 out_to_fifo("\t  degrees * 100 (centidegrees?)\n"); 

 out_to_fifo("\tcolumn  4 -- Motor velocity computed from previous 

motor\n"); 

 out_to_fifo("\t  positions.  This is done in 

velocity.c.\n"); 

 out_to_fifo("\t  Units are degrees/sec * 100 

(centidegrees/sec?)\n"); 

 out_to_fifo("\tcolumn  5 -- Torque values sent to motor 

(units?)\n"); 

 out_to_fifo("\tcolumn  6 -- Integer value sent to USB board to 

effect desired\n"); 

 out_to_fifo("\t  torque\n"); 

 out_to_fifo("\tcolumn  7 -- Some encoder value, don't know 

which\n"); 

 out_to_fifo("\tcolumn  8 -- Some encoder value, don't know 

which\n"); 
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 out_to_fifo("\tcolumn  9 -- Estimated motor angle from Kalman 

filter\n"); 

 out_to_fifo("\t  in degrees * 100 (centidegrees?)\n"); 

 out_to_fifo("\tcolumn 10 -- Estimated link angle from Kaman 

filter\n"); 

 out_to_fifo("\t  in degrees * 100 (centidegrees?)\n"); 

 out_to_fifo("\tcolumn 11 -- Estimated motor velocity from Kalman 

filter\n"); 

 out_to_fifo("\t  in degrees/sec * 100 

(centidegrees/sec?)\n"); 

 out_to_fifo("\tcolumn 12 -- Estimated link velocity from Kalman 

filter\n"); 

 out_to_fifo("\t  in degrees/sec * 100 

(centidegrees/sec?)\n"); 

 out_to_fifo("\tcolumn 13 -- Experimental column used for parameter 

estimation.\n"); 

 out_to_fifo("\t  Currently parameter being estimated is\n"); 

 out_to_fifo("\t  transmission damping in Ns/m * 100\n"); 

 out_to_fifo("\n"); 

 

    --first_time; 

  } 

#endif //PRINT_OUTPUT_HEADER 

 

 

//////////////////////////////////////////////////////////////////////

///////// 

// 

// The output format is as follows: 

// 

// column  1 -- Time elapsed in milliseconds 

// column  2 -- Motor position as determined from motor encoder 

//   in degrees * 100 (centidegrees?).  This may 

//   have been low-pass filtered first 

// column  3 -- Reference signal in angle units in 

//   degrees * 100 (centidegrees?) 

// column  4 -- Motor velocity computed from previous motor 

//   positions.  This is done in velocity.c. 

//   Units are degrees/sec * 100 (centidegrees/sec?) 

// column  5 -- Torque values sent to motor (units?) 

// column  6 -- Integer value sent to USB board to effect desired 

//   torque 

// column  7 -- Some encoder value, don't know which 

// column  8 -- Some encoder value, don't know which 

// column  9 -- Estimated motor angle from Kalman filter 

//   in degrees * 100 (centidegrees?) 

// column 10 -- Estimated link angle from Kaman filter 

//   in degrees * 100 (centidegrees?) 

// column 11 -- Estimated motor velocity from Kalman filter 

//   in degrees/sec * 100 (centidegrees/sec?) 

// column 12 -- Estimated link velocity from Kalman filter 

//   in degrees/sec * 100 (centidegrees/sec?) 
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// column 13 -- Experimental column used for parameter 

estimation. 

//   Currently parameter being estimated is 

//   transmission damping in Ns/m * 100 

// 

//////////////////////////////////////////////////////////////////////

///////// 

 

   

  sprintf(foo, "%d,\t%d,\t%d,\t%d,\t%d,\t%d,\t%d,\t%d,\t",  

   globalTime, 

   (int)( j1->mpos   * 180 / M_PI * 1e2), // 

   (int)( j1->mpos_d * 180 / M_PI * 1e2),  

   (int)( j1->mvel   * 180 / M_PI * 1e2), 

   (int)(1e5 * j1->tau_d) ,  

   j1->current_cmd + ZERO_DAC, 

   j1->enc_val, 

   j1->enc_offset 

   ); 

  rtf_put(out, foo, strlen(foo)); 

 

//old, without parameter estimation 

 

//  sprintf(foo, "%d,\t%d,\t%d,\t%d\n",  

//   (int)( j1->jpos    * 180 / M_PI * 1e2),  // estimated motor 

angle  

//   (int)( j1->jpos_d  * 180 / M_PI * 1e2),  // estimated link 

angle; 

//   (int)( j1->jvel    * 180 / M_PI * 1e2),  // estimated motor 

velocity; 

//   (int)( j1->jvel_d  * 180 / M_PI * 1e2)   // link velocity; 

//   ); 

 // rtf_put(out, foo, strlen(foo)); 

 

 

//new, with parameter estimation 

 

  sprintf(foo, "%d,\t%d,\t%d,\t%d,\t%d,\t%d\n",  

   (int)( j1->jpos    * 180 / M_PI * 1e2),  // estimated motor 

angle  

   (int)( j1->jpos_d  * 180 / M_PI * 1e2),  // estimated link 

angle; 

   (int)( j1->jvel    * 180 / M_PI * 1e2),  // estimated motor 

velocity; 

   (int)( j1->jvel_d  * 180 / M_PI * 1e2),   // link velocity; 

   (int)( stiffness_estimate  * 1e2),   // parameter; 

   (int)( damping_estimate  * 1e2)   // parameter; 

   ); 

  rtf_put(out, foo, strlen(foo)); 

 

#else //PRINT_ASCII not defined, output binary 
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  rtf_put(out, &globalTime, sizeof(unsigned long int)); // 1 

  rtf_put(out, &j1->mpos, sizeof(float)); // 2 

  rtf_put(out, &j1->mpos_d, sizeof(float)); // 3 

  rtf_put(out, &j1->mvel, sizeof(float)); // 4 

  rtf_put(out, &j1->tau_d, sizeof(float)); // 5 

  rtf_put(out, &j1->current_cmd, sizeof(s_16)); // 6 

  rtf_put(out, &j1->enc_val, sizeof(s_24)); // 7 

  rtf_put(out, &j1->enc_offset, sizeof(int)); 

  rtf_put(out, &j1->jpos, sizeof(float)); 

  rtf_put(out, &j1->jpos_d, sizeof(float)); 

  rtf_put(out, &j1->jvel, sizeof(float)); 

  rtf_put(out, &j1->jvel_d, sizeof(float)); 

  rtf_put(out, &stiffness_estimate, sizeof(double)); 

  rtf_put(out, &damping_estimate, sizeof(double)); 

 

#endif //PRINT_ASCII 

 

 

} 

 

------------------------------------------------------------------- 

Settings.h 

/*********************************************************************

**************** 

 * settings.h is a header file designed to contain experiments 

settings 

 * used in pulley_board_control.c 

 * 

 * Cooper Clauson   February 25, 2010 

 * 

 

**********************************************************************

***************/ 

 

 

#ifndef _SETTINGS_H__ 

#define _SETTINGS_H__ 

 

/*********************************************************************

***************** 

 * 

 * REFERENCE SIGNAL TYPE 

 * 

 * One of the following reference signal types should be defined: 

 * -ZERO 

 * -STEP 

 * -SWEEP 

 * -SUM_OF_SINUSOIDS 

 * -SIMPLE_SINUSOID 

 * -SQUARE_WAVE 

 * 

 * If more than one is defined, the program behavior is indeterminate. 
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 * 

 

**********************************************************************

****************/ 

 

/*One of these should be uncommented, the rest should be commented:*/ 

//#define ZERO 

//#define STEP 

//#define SWEEP 

//#define SUM_OF_SINUSOIDS 

//#define SIMPLE_SINUSOID 

//#define SQUARE_WAVE 

#define ROTATE 

/*********************************************************************

******************* 

 * 

 * SUM OF SINUSOIDS PARAMETERS 

 * 

 * The following parameters control the SUM_OF_SINUSOIDS reference 

signal. 

 * Both SUM_OF_SINUSOIDS_MAGNITUDES and SUM_OF_SINUSOIDS_FREQUENCIES 

are six element 

 * float array literals of the form "{XXX, XXX, XXX, XXX, XXX, XXX}", 

where each XXX 

 * is a floating point number.  MAGNITUDE_SCALAR is a floating point 

number. 

 * 

 * SUM_OF_SINUSOIDS_MAGNITUDES contains the magnitudes of the various 

component sinusoids 

 * (units?), while MAGNITUDE_SCALAR is a premultiplier that multiplies 

each of them. 

 * SUM_OF_SINUSOIDS_FREQUENCIES is the frequency of each sinusoid in 

herz. 

 * 

 

**********************************************************************

******************/ 

 

#ifdef SUM_OF_SINUSOIDS 

  #define SUM_OF_SINUSOIDS_MAGNITUDES {1,  -0.7,    0.5,    0.8,  -

0.2,  0.1} 

  #define MAGNITUDE_SCALAR 0.5 

  #define SUM_OF_SINUSOIDS_FREQUENCIES {1./3,   1.5/3,    2./3,      

2.5/3,    3./3,   3.5/3} 

#endif 

 

/*********************************************************************

******************* 

 * 

 * SIMPLE SINUSOID PARAMETERS 

 * 



38 

 

 * The following parameters control the SIMPLE_SINUSOID reference 

signal. 

 * Both SIMPLE_SINUSOID_MAGNITUDE and SIMPLE_SINUSOID_FREQUENCY are 

floating point numbers. 

 * SIMPLE_SINUSOID_MAGNITUDE is the magnitude of the signal (units?), 

and SIMPLE_SINUSOID_FREQUENCY 

 * is the frequency in herz. 

 * 

 

**********************************************************************

******************/ 

 

#ifdef SIMPLE_SINUSOID 

  #define SIMPLE_SINUSOID_MAGNITUDE 1 

  #define SIMPLE_SINUSOID_FREQUENCY 0.5 

#endif 

 

/*********************************************************************

******************** 

 * 

 * SWEEP PARAMETERS 

 * 

 * These parameters are relevant to the SWEEP reference signal. 

 * 

 * ????? 

 * 

 

**********************************************************************

*******************/ 

 

#ifdef SWEEP 

 #define SWEEP_FREQUENCY 1.0 

 #define SWEEP_MAGNITUDE PI / 3 

#endif 

 

/*********************************************************************

******************** 

 * 

 * ROTATE PARAMETERS 

 * 

 * These parameters are relevant to the ROTATE reference signal. 

 * 

 * ????? 

 * 

 

**********************************************************************

*******************/ 

 

#ifdef ROTATE 

 #define PI_TO_ANGLE PI / 180 

 #define ROTATION_ANGLE 5 

 #define NUMBER_OF_ROTATION 0.28 * (360 / ROTATION_ANGLE)   



39 

 

 #define MEDIUM_SPEED 0.035       

#endif 

 

/*********************************************************************

************* 

 * 

 * CONTROL TYPE 

 * 

 * One of the following control types should be defined: 

 * -P_CONTROL 

 * -PD_TRAJECTORY_FOLLOWING 

 * -PD_STEP_FOLLOWING 

 * -D_CONTROL 

 * -ZERO_CONTROL 

 * -PD_TRAJECTORY_MOTOR_ESTIMATE 

 * -PD_STEP_MOTOR_ESTIMATE 

 * 

 * If more than one is defined, the program behavior is indeterminate. 

 * 

 

**********************************************************************

************/ 

 

/*One of these should be uncommented, the rest should be commented:*/ 

//#define P_CONTROL   //In P control, the torque is 

proportional between the 

     //desired motor position and the current 

motor position 

//#define PD_TRAJECTORY_FOLLOWING //NOTE: This one tends not to 

result in vibrations. 

//#define PD_STEP_FOLLOWING        

//#define D_CONTROL            //NOTE: Not currently 

implemented      

//#define ZERO_CONTROL             //NOTE: Not currently 

implemented 

//#define PD_TRAJECTORY_MOTOR_ESTIMATE   

//#define PD_STEP_MOTOR_ESTIMATE          //NOTE: This is the one 

that tends to cause vibrations. 

#define PI_CONTROL 

/*********************************************************************

**************** 

 * 

 * CONTROL GAIN 

 * 

 * A number of the control types depend on the parameters KP and KD.  

KP is the gain 

 * related to the position error.  KD is the gain related to the 

velocity error. 

 * 

 

**********************************************************************

***************/ 
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#define KPV 0.4           // Proportional for Velocity 

#define KP 0.02           //       0.7 // Proportional for Position 

#define KD 0.01      //  0.006 

#define KI 0.01           // Integral for Velocity 

 

// NOTE: 

// 0.7 / 0.001 was unstable on 25-Sep-09 without UKF 

// 0.4 / 0.005 was stable on 25-Sep-09 without UKF, unless excited 

// 0.4 / 0.005 was totally stable on 25-Sep-09 with UKF 

// 0.6 / 0.014 was totally stable on 28-Sep-09 with UKF 

 

/*********************************************************************

********** 

 * 

 * POSITION LOW PASS FILTERING 

 * 

 * To enable low pass filtering of position, define LPF_POS.  

Otherwise, leave 

 * it undefined. 

 * 

 

**********************************************************************

**********/ 

 

/*uncomment to enable, comment to disable*/ 

#define LPF_POS 

 

/*********************************************************************

*********** 

 * 

 * POSITION LOW PASS FILTERING PARAMETERS 

 * 

 * The following parameters are coefficients used to "weigh" previous 

values of 

 * the filtered and unfiltered position. 

 * 

 * Each should be a four element float array literal of the form 

"{XXX, XXX, XXX, XXX}", 

 * where each XXX represents a floating point number. 

 * 

 * The first value in each array multiplies the most recent position 

value, and the 

 * last value multiplies the oldest.  LPF_IN_COEFFS[0] multiplies the 

current encoder 

 * value.  LPF_OUT_COEFFS[0] doesn't multiply anything--its value 

doesn't matter. 

 * 

 

**********************************************************************

************/ 
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#ifdef LPF_POS 

  #define LPF_IN_COEFFS {0.0029,  0.0087,  0.0087,  0.0029} 

  #define LPF_OUT_COEFFS {1.0000,  2.3741, -1.9294,  0.5321} 

#endif 

 

/*********************************************************************

************ 

 * 

 * VELOCITY FILTERING 

 * 

 * If FILTER_VELOCITY is defined, then velocities are computed as a 

linear combination 

 * of previous velocities and previous positions.  This applies both 

to the computation 

 * of desired velocities from desired positions, and actual velocities 

from actual 

 * positions. 

 * 

 * This impacts code in velocity.c 

 * 

 

**********************************************************************

************/ 

 

//comment this line out to disable filtering 

#define FILTER_VELOCITY 

 

/*********************************************************************

*********** 

 * 

 * VELOCITY FILTERING PARAMETERS 

 * 

 * The following parameters are coefficients used to "weigh" previous 

values of 

 * the velocity and position. 

 * 

 * Each should be a four element float array literal of the form 

"{XXX, XXX, XXX, XXX}", 

 * where each XXX represents a floating point number. 

 * 

 * The first value in the position coefficient array multiplies the 

current position, 

 * the second value the last position, the third the position before 

that, and so on. 

 * The second value in the velocity coefficient array multiplies the 

last velocity,  

 * the third the velocity before that, etc.  The first value in the 

velocity coefficient 

 * array does nothing, so it can be anything. 

 * 

 * Note that these parameters do nothing if velocity filtering is 

disabled. 
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 * 

 

**********************************************************************

************/ 

 

#ifdef FILTER_VELOCITY 

 

  // When importing coefficients from Matlab: 

  // 

  //  *** CHANGE THE SIGN OF A TERMS *** 

  // 

 

  // 100Hz 

  #define VF_POSITION_COEFFS {0,66.1659,-30.8672,-35.2987} 

  #define VF_VELOCITY_COEFFS {1.0, 1.6005, -0.8538, 0.1518} 

 

 

  // 50Hz 

//  #define VF_POSITION_COEFFS {0, 11.3235, -3.0528, -8.2707} 

//  #define VF_VELOCITY_COEFFS {1, 2.1912, -1.6005, 0.3897} 

 

  // 10Hz 

  //Poles Zeros configured for triple pole at w = 10Hz 

//  #define K_10HZ 0.056517 

//  #define VF_POSITION_COEFFS {K_10HZ, K_10HZ, - K_10HZ, - K_10HZ} 

//  #define VF_VELOCITY_COEFFS {1, 2.8172, -2.6456, 0.8282} 

 

#endif 

 

#define PRINT_ASCII 

#define PRINT_OUTPUT_HEADER 

 

#endif //_SETTINGS_H__ 

 

 

 

 


