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Logistic Regression for Subgroup 
Analyses of Multiple Events
 Start from a Set of Medically Related Events to Study

• Set of ad-hoc events, or all events within a MedDRA SOC

 Fit Logistic Regressions to each AE as a Response
• Use exactly the same predictor model for each AE

– Age, gender, concomitant medication, medical history, etc.

• Include treatment and interactions with treatment as predictors
• Generate parameter estimates for predictors and interactions

 Empirical Bayes Shrinkage of Estimated Coefficients
• Coefficients of each predictor borrow strength across AEs
• Overall treatment and interaction effects shrink toward 0
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Multiple Medically Related Events
 Consider Ten MedDRA PTs

• Anuria Dry mouth     Hyperkalaemia Micturition urgency
Nocturia Pollakiuria Polydipsia Polyuria Thirst
Urine output increased

• All seemed somewhat Treatment related in 2x2 analyses

 Want Ten Separate Estimates of Treatment Effect
• But some or many of them may have a common cause

– Common side effects of diuretics 

• Analyze them with a common statistical model
• Do they have similar responses to various predictor variables?
• Let the data decide how much they should “borrow strength 

from each other
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Multivariate Bayesian Logistic 
Regression (MBLR)
 Use the Same Covariates to Predict all 10 Responses

(in Addition to Treatment vs. Placebo Estimates)
• Sex (F, M)
• Race (Black, White, Other)
• Age Group (< 55,  55 to 65,  65 to 75,  > 75)
• Indication (4 Trials w/ Indication 1, 4 Trials with Indication 2)

– We could have used Trial itself as a predictor instead of Indication

• Renal Medical History (Yes, No)

 Five Covariates Need 8 Degrees of Freedom
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Rationale for Use of Covariates
 Since all Trials Were Randomized, Why Adjust for 

Covariates?  Won’t They all Balance Out Anyway?
• Depending on sample sizes, will not be perfect balance
• If covariates have strong effects, adjustment for them will 

reduce residual variance and therefore Treatment effect 
uncertainty

• Less focus on a single pre-specified model for safety analyses 
than for efficacy analyses

 Main Rationale—Treatment by Covariate Interactions
• Estimating Treatment x Covariate interactions in a safety 

analysis is equivalent to searching for vulnerable subgroups
• MBLR– cross every covariate with the Treatment effect
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Rationale for EB Model Across Events
 Coping with Fine Granularity of Adverse Event Data

• Compare T vs. C on 10 varieties of renal or dehydration issues
• Approach 1—separate analyses of all 10 events

– Small counts lead to non significant comparisons
– Adjustment for multiple comparisons further reduces sensitivity

• Approach 2—define a single event as union of the 10 events
– Significant differences may be washed out by the pooling
– Even if significant, little information about original 10 differences

 Compromise Approach—EB Hierarchical Model
• 10 individual estimates that “borrow strength” from each other
• Estimate separate vector of coefficients for each AE

– But a prior distribution shrinks corresponding coefficients 
across AEs toward each other

– The amount of shrinkage is controlled by certain prior variances
that are also estimated from the data

– Treatment-Covariate interaction effects, which are apriori less likely,
are also shrunk toward the null hypothesis value of 0
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Defining Regression Effect Estimates

 Include every Treatment by Covariate Interaction

 Statistical Model for Pik = Prob(Event k in ith Patient)
• Xig = gth covariate;    Ti = Treatment arm indicator
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Bayesian Shrinkage Models
 Statistical Validity of Searching for Extreme Differences

• Most significant adverse event or patient subgroup

 Classical Approach to Post-Hoc Interval Estimates
• Maintain centers of CI at observed differences
• Expand widths of every CI 
• Expansion is greater the more differences you look at

– If you look at too many, the CI’s are too wide to be useful

 Bayesian Approach 
• Requires a prior distribution for differences

– Can estimate it from the multiple observed differences available
• Centers of CI’s are “shrunk” toward average or null difference

– High-variance differences shrink the most
• Widths of CI’s usually shrink a little too

– The more you look at, the better you can model the prior dist.
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Prior Distributions for Coefficients
 Two-Stage Hierarchical Model

• Covariate main effects αgk shrink toward means across issues
• Treatment main effects β0k shrink toward each other 
• Treatment interactions βgk also shrink toward 0
• Four prior standard deviations control amount of shrinkage

– Let φ = (σA, σ0, σB, τ) ; prior distributions uniform (0, d = 1.5)

• {α0k , Ag , B0} have uniform priors (-∞, +∞)

• Remaining parameters have prior distributions:



Computational Approach
 Prefer Not To Use MCMC Methodology

• Commercial software designed for non-statistician users
• Convergence and non-exact-repeatability are issues
• Scale-up problem: several hundred regression parameters

 Approximate Posterior Distributions
• Discrete approximation of posterior of φ = (σA, σ0, σB, τ) 

– {πs , φs s = 1, …, S} defines S-point discrete distribution, Σs πs = 1

• Normal approximation to P(θ | data, φ) 
– θ = (A1, …, AG, B0, …, BG, α01, …, αGK, β01, …, βGK)
– Can use modified logistic regression likelihood for P(θ | data, φ) 
– Log P(θ |data, φs) concave and easy to maximize, ~ N(θs, Vs)

 Posterior of θ Approximately N(µ, V)
• µ = Σs πs θs V = Σs πs [Vs +  (θs – µ)(θs – µ)t]
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Computing {πs , φs s = 1, …, S} 

 Density P(φs |data) ≈ g(φs) ∝ P(data | φs, θs ) det(Vs)1/2 

• Maximized likelihood × (approx. factor for integrating out θ)

 Steepest Ascent (Numerical Derivs) to Maximize g(φ)

 Construct Response Surface Design Around Maximum
• 16 point central composite design at each of two radii
• Fit 4-D quadratic response surface model (rsm) to log g(φ)
• Use fitted surface to rescale the 33-point design and refit rsm

 Adjust Final 33 Values of πs so that Means and Variances 
of Discrete Dist. Match Continuous Estimates from RSM

• Minimize K-L = Σs g(φs) log(g(φs)/πs) subject to constraints

 Complete Estimation ≈10 Seconds if θ Has 200 Elements
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Comparing MBLR to “Standard” LR
 Logistic Regression on Rare Events with Several 

Covariates and Interactions Can Often Fail to Get 
Reasonable Answers

• Certain combinations of covariates seem to predict perfectly, 
leading to coefficient estimates that diverge to + or – infinity

• Related terms: Separation, Sparsity, Nonidentifiability
• Gelman et al (2008 Annals of Applied Statistics)

– Suggests using a very weak prior distribution on the coefficients
to get more reasonable answers and prevent divergence

– Calls method Regularized Logistic Regression (RLR)

 Comparisons of MBLR to RLR
• RLR: same model as MBLR except that σA = σ0 = σB = τ = 5
• Typically, MBLR estimates of prior standard deviations < 1
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Back to the Example

Statistics for 10 Issues Related to Dehydration/Renal Function
for a Pool of 8 Trials 
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Covariate Patient Counts

Distribution of Patients by Covariates and Treatment Arm



Treatment Effects: RLR vs MBLR
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Robustness to Post-Hoc Selection
 Simulation Study of Bayesian Estimation

• Draw “true parameters” from the prior distributions 1000 times
• Estimate main and interaction effects each time

– Get both MBLR and RLR estimates

 Focus on Estimating the “Most Significant” Interaction
• 80 Interactions (8 covariates x 10 response events)
• For each simulation, select βgk that has largest bgk/segk

• Compare accuracy of estimates and confidence limits

SIM.COEF SD.SIMC    BIAS    RMSE  Z.SCORE  CI.05  CI.95
MBLR   1.7651  0.6094  0.0005  0.2923  -0.0052  0.067  0.056
RLR    1.7445  0.5981  0.2184  0.4330   0.5794  0.008  0.135
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Safety Analyses of Clinical Data
 Analysis of Drug Trial Adverse Event Data Is Challenging

• Small event counts since trials are sized for efficacy
• Multiple comparisons issues

 Combined Analyses of Multiple Trials Is Important
• CDISC data standards make pooling data easier
• This is a form of pooled-data meta-analysis

 Multivariate Bayesian Logistic Regression (MBLR)
• Multivariate estimation of many possibly medically related AEs
• Borrowing strength as a solution to the granularity problem
• Search for vulnerable subgroups involves post-hoc selection
• Bayesian shrinkage provides multiple-comparisons robustness
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