Identifying and Addressing Safety Signals In Clinical Trials

November 23, 2010

Thomas R. Fleming, Ph.D.
Professor of Biostatistics
University of Washington
tfleming@u.washington.edu

Illustration: Cancer Risk with Vytorin in Slowing progression of Aortic-Valve Stenosis

- **SEAS Trial**

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>CA. Incidence</th>
<th>CA. Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vytorin</td>
<td>944</td>
<td>101</td>
<td>37</td>
</tr>
<tr>
<td>Placebo</td>
<td>929</td>
<td>65</td>
<td>20</td>
</tr>
</tbody>
</table>

Relative Risk: 1.55 1.78
95% C.I.: (1.13, 2.12) (1.03, 3.11)

Challenge:

Interpreting safety signals from exploratory analyses
<table>
<thead>
<tr>
<th>Class of Agents and Example members</th>
<th>Safety Event and Clinical Setting</th>
<th>Bkgd Rate /1K</th>
<th>Relative ↑ In Safety Risk, RR</th>
<th>Attrib Risk, #/1K PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox 2 inhibitors
Celebrex, Vioxx, Bextra</td>
<td>CV Death / Stroke / MI
RA, OA and Alzheimers</td>
<td>10</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>Long Acting β-Agonists
Salmeterol, serevant</td>
<td>Asthma-related Death
Severe Asthma</td>
<td>0.5</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Anti-psychotics
Ziprasidone</td>
<td>QTc related CV Events
Schizophrenia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Tysabri</td>
<td>Progressive Multifocal Leukoenceph
Multiple Sclerosis & Crohn’s Disease</td>
<td><0.001?</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>Rotavirus Vaccine</td>
<td>Intussusception
High Risk for Rotavirus</td>
<td>0.1</td>
<td>>10</td>
<td>>1</td>
</tr>
<tr>
<td>Muraglitazar
Rosiglitazone</td>
<td>CV Death / Stroke / MI
Type 2 Diabetes</td>
<td>20</td>
<td>1.5 - 2</td>
<td>10-20</td>
</tr>
<tr>
<td>Erythropoietin</td>
<td>Thombosis, Death
Renal Disease, Oncology</td>
<td>?</td>
<td>1.1-1.15</td>
<td>?</td>
</tr>
<tr>
<td>ADHD Psychostimulants
Adderall, Ritalin in Adults</td>
<td>CV Death / Stroke / MI
ADHD Adult Setting</td>
<td>10</td>
<td>2.5</td>
<td>15</td>
</tr>
<tr>
<td>ADHD Drugs in Pediatrics</td>
<td></td>
<td>0.12</td>
<td>2.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Primary Goal

Identifying **effective** interventions that are **safe**

⇒ An important objective:

 Obtaining a Timely & *Reliable* Assessment of *Benefit-to-Risk*

 ... Detecting **long** & short term risks...

 ... Detecting **rare** & frequent risks...

 Enabling one to *rule out*

 unacceptable increases in safety risks
Approaches to Pre- and Post-Marketing Evaluation of Safety

I Passive Surveillance Systems
II Active Surveillance Systems
III Large Randomized Clinical Trials

- Surveillance for new safety signals
- Exploration of existing signals
Passive Surveillance Systems

AERS:
(based on voluntary submission of MedWatch forms for serious AEs caregivers believe might be drug related)

+ Timely information
+ Uniformity of reporting procedure

- Not randomized; no comparator group
- Lack of denominator
- Voluntary submission ⇒ underreporting
Active Surveillance Systems

Large Prospective Cohorts & Linked Databases:

+ Information on a defined population
+ Complete numerators & denominators
+ Fast & inexpensive

– Not randomized
– Confounder information often unavailable
– Outcome sensitivity
– Outcome specificity

… is stated event truly an event?
<table>
<thead>
<tr>
<th>Class of Agents and Example members</th>
<th>Safety Event and Clinical Setting</th>
<th>Bkgd Rate /1K</th>
<th>Relative ↑ In Safety Risk, RR</th>
<th>Attrib Risk, #/1K PY</th>
</tr>
</thead>
</table>
| **Cox 2 inhibitors**
Celebrix, Vioxx, Bextra | CV Death / Stroke / MI RA, OA and Alzheimers | 10 | 1.5 | 5 |
| **Long Acting β-Agonists**
Salmeterol, serevant | Asthma-related Death Severe Asthma | 0.5 | 4 | 1.5 |
| **Anti-psychotics**
Ziprasidone | QTc related CV Events Schizophrenia | ? | ? | ? |
| **Tysabri** | Progressive Multifocal Leukoenceph Multiple Sclerosis & Crohn’s Dis. | <0.001? | 1000 | 1 |
| **Rotavirus Vaccine** | Intussusception High Risk for Rotavirus | 0.1 | >10 | >1 |
| Muraglitazar Rosiglitazone | CV Death / Stroke / MI Type 2 Diabetes | 20 | 1.5 - 2 | 10-20 |
| Erythropoietin | Thrombosis, Death Renal Disease, Oncology | ? | 1.1-1.15 | ? |
| **ADHD Psychostimulants**
Adderall, Ritalin in Adults | CV Death / Stroke / MI ADHD Adult Setting | 10 | 2.5 | 15 |
<p>| ADHD Drugs in Pediatrics | ADHD Pediatric Setting | 0.12 | 2.5 | 0.2 |</p>
<table>
<thead>
<tr>
<th>Class of Agents and Example members</th>
<th>Safety Event and Clinical Setting</th>
<th>Bkgd Rate /1K</th>
<th>Relative ↑ In Safety Risk, RR</th>
<th>Attrib Risk, #/1K PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox 2 inhibitors
 Celebrex, Vioxx, Bextra</td>
<td>CV Death / Stroke / MI
 RA, OA and Alzheimers</td>
<td>10</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>Long Acting β-Agonists
 Salmeterol, serevant</td>
<td>Asthma-related Death
 Severe Asthma</td>
<td>0.5</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Anti-psychotics
 Ziprasidone</td>
<td>QTc related CV Events
 Schizophrenia</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Tysabri</td>
<td>Progressive Multifocal Leukoenceph
 Multiple Sclerosis & Crohn’s Disease</td>
<td><0.001?</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>Rotavirus Vaccine</td>
<td>Intussusception
 High Risk for Rotavirus</td>
<td>0.1</td>
<td>>10</td>
<td>>1</td>
</tr>
<tr>
<td>Muraglitazar
 Rosiglitazone</td>
<td>CV Death / Stroke / MI
 Type 2 Diabetes</td>
<td>20</td>
<td>1.5 - 2</td>
<td>10-20</td>
</tr>
<tr>
<td>Erythropoietin</td>
<td>Thrombosis, Death
 Renal Disease, Oncology</td>
<td>?</td>
<td>1.1-1.15</td>
<td>?</td>
</tr>
<tr>
<td>ADHD Psychostimulants
 Adderall, Ritalin (Adults)</td>
<td>CV Death / Stroke / MI
 ADHD Adult Setting</td>
<td>10</td>
<td>2.5</td>
<td>15</td>
</tr>
<tr>
<td>ADHD Drugs in Pediatrics</td>
<td>ADHD Pediatric Setting</td>
<td>0.12</td>
<td>2.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Safety Assessments: Advantages provided by Randomized Prospective Cohorts

- Randomization removes systematically occurring imbalances in baseline characteristics
 ~ Pts/caregivers don’t start/stop treatments “at random”
 ~ Known & recorded covariates are the “tip of iceberg”

- Need to conduct an ITT evaluation
 ⇒ Need ability to define a time 0 cohort
 ~ Assess risk over specified time interval, even if intervention is stopped earlier in time
 ~ Risk cannot be assumed to be independent of duration of exposure
Illustration: Cancer Risk with Vytorin in Slowing progression of Aortic-Valve Stenosis

- **SEAS Trial**

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>CA. Incidence</th>
<th>CA. Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vytorin</td>
<td>944</td>
<td>101</td>
<td>37</td>
</tr>
<tr>
<td>Placebo</td>
<td>929</td>
<td>65</td>
<td>20</td>
</tr>
</tbody>
</table>

Relative Risk: 1.55
95% C.I.: (1.13, 2.12)

Challenge:

Interpreting safety signals from exploratory analyses

...Hypothesis Confirmation vs. Hypothesis Generation, keeping in mind “random high” type bias
Can Efficacy or Safety Signals Discovered in Exploratory Analyses Be Viewed to be Reliable Results?

• Criteria to be simultaneously satisfied:

✓ << P-values (e.g., Tysabri & PML)

✓ Biologically plausible effect

 ➢ Ezetimibe blocks the absorption of phytosterols and other phytonutrients linked to protection against cancer, which provides some biologic plausibility that the drug could have an effect on the growth of cancer cells

✓ Confirmed by external results
Illustration: Cancer Risk with Vytorin in Slowing progression of Aortic-Valve Stenosis

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>CA. Incidence</th>
<th>CA. Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAS Trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vytorin</td>
<td>944</td>
<td>101</td>
<td>37</td>
</tr>
<tr>
<td>Placebo</td>
<td>929</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>Relative Risk:</td>
<td></td>
<td>1.55</td>
<td>1.78</td>
</tr>
<tr>
<td>95% C.I.:</td>
<td></td>
<td>(1.13, 2.12)</td>
<td>(1.03, 3.11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>CA. Incidence</th>
<th>CA. Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPROVE-IT & SHARP Trials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vytorin</td>
<td>10,391</td>
<td>313</td>
<td>97</td>
</tr>
<tr>
<td>Control</td>
<td>10,298</td>
<td>326</td>
<td>72</td>
</tr>
<tr>
<td>Relative Risk:</td>
<td></td>
<td>0.96</td>
<td>1.34</td>
</tr>
<tr>
<td>95% C.I.:</td>
<td></td>
<td>(0.82, 1.12)</td>
<td>(0.98, 1.84)</td>
</tr>
</tbody>
</table>
Interpreting the SEAS, IMPROVE-IT & SHARP Trials Regarding Cancer Risk with Vytorin

✔ Peto et. al. (NEJM, 2008)
 “The available results from these 3 trials do not provide credible evidence of any adverse effect of ezetimibe on rates of cancer.”

✔ However, safety is established by ruling out unacceptable increases in safety risks…
 …i.e. by what you can say, not what you can’t say…
 Fleming (NEJM, 2008)
Illustration: Cancer Risk with Vytorin in Slowing progression of Aortic-Valve Stenosis

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>CA. Incidence</th>
<th>CA. Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAS Trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vytorin</td>
<td>944</td>
<td>101</td>
<td>37</td>
</tr>
<tr>
<td>Placebo</td>
<td>929</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>Relative Risk:</td>
<td></td>
<td>1.55</td>
<td>1.78</td>
</tr>
<tr>
<td>95% C.I.:</td>
<td></td>
<td>(1.13, 2.12)</td>
<td>(1.03, 3.11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPROVE-IT & SHARP Trials</th>
<th>N</th>
<th>CA. Incidence</th>
<th>CA. Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vytorin</td>
<td>10,391</td>
<td>313</td>
<td>97</td>
</tr>
<tr>
<td>Control</td>
<td>10,298</td>
<td>326</td>
<td>72</td>
</tr>
<tr>
<td>Relative Risk:</td>
<td></td>
<td>0.96</td>
<td>1.34</td>
</tr>
<tr>
<td>95% C.I.:</td>
<td></td>
<td>(0.82, 1.12)</td>
<td>(0.98, 1.84)</td>
</tr>
</tbody>
</table>
Issues in interpreting the IMPROVE-IT & SHARP Trials Regarding Cancer Risk with Vytorin

- A relative increase of as much as 84% in cancer deaths with the use of Vytorin cannot be excluded
- IMPROVE-IT and SHARP are ongoing trials:
 - Reduced reliability of interim nature of data
 - The Integrity of these two trials can be disturbed by the release of interim data on safety or efficacy
 - Full access to peer-reviewed summaries of data from the two trials is required to address whether performance standards for safety trials have been met
- An important safety signal has been identified for Vytorin ...evidence of efficacy is limited to effects on biomarkers
<table>
<thead>
<tr>
<th>Class of Agents and Example members</th>
<th>Safety Event and Clinical Setting</th>
<th>Bkgd Rate /1K</th>
<th>Relative ↑ In Safety Risk, RR</th>
<th>Attrib Risk, #/1K PY</th>
</tr>
</thead>
</table>
| Cox 2 inhibitors
Celebrex, Vioxx, Bextra | CV Death / Stroke / MI
RA, OA and Alzheimers | 10 | 1.5 | 5 |
| Long Acting β-Agonists
Salmeterol, serevant | Asthma-related Death
Severe Asthma | 0.5 | 4 | 1.5 |
| Anti-psychotics
Ziprasidone | QTc related CV Events
Schizophrenia | ? | ? | ? |
| Tysabri | Progressive Multifocal Leukoenceph
Multiple Sclerosis & Crohn’s Disease | <0.001? | 1000 | 1 |
| Rotavirus Vaccine | Intussusception
High Risk for Rotavirus | 0.1 | >10 | >1 |
| Muraglitazar
Rosiglitazone | CV Death / Stroke / MI
Type 2 Diabetes | 20 | 1.5 - 2 | 10-20 |
| Erythropoietin | Thrombosis, Death
Renal Disease, Oncology | ? | 1.1-1.15 | ? |
| ADHD Psychostimulants
Adderall, Ritalin in Adults | CV Death / Stroke / MI
ADHD Adult Setting | 10 | 2.5 | 15 |
| ADHD Drugs in Pediatrics | CV Death / Stroke / MI
ADHD Pediatric Setting | 0.12 | 2.5 | 0.2 |
The PRECISION Trial:
Ruling out Excess Rates of
CV Death / Stroke / MI

Pain Medications in Patients with
Osteoarthritis & Rheumatoid Arthritis
With or at Hi Risk for CV Disease

Celecoxib
Ibuprofen
Naproxen
Using the Proportional Hazards Model for the rate of “CV Death/Stroke/MI”

Naproxen : $\lambda_0(t)$
Celecoxib : $\lambda_1(t) = \lambda_0(t)r$

Note: With 10 events / 1000 p.y. in the control arm, then $r = 1.333 \Rightarrow 3.33$ add’l events / 1000 p.y., offsetting ↓ in GI ulceration & ↑ analgesic effects

Then $L = 508$ events are required, if one sets:

✓ $H_0 : r = 1.333$ & $H_1 : r = 1.00$
✓ (one-sided) 2.5% false positive error rate, and
✓ 10% false negative error rate (i.e., 90% power)
“CV Death / MI / Stroke” Events

Celecoxib compared with Naproxen

- **Celecoxib better**
- **Naproxen better**

<table>
<thead>
<tr>
<th>Hazard Ratio (Celecoxib / Naproxen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>1.12</td>
</tr>
<tr>
<td>1.19</td>
</tr>
<tr>
<td>1.333</td>
</tr>
</tbody>
</table>

Based on analysis at \(L = 508 \) Events

- **A** CEL: superior
- **B** CEL: ruling out unacceptably inferior
- **C** CEL: neither ruling out to be unacceptably inferior, nor establishing as inferior
- **D** CEL: inferior
Performance Standards in Non-inferiority Safety Trials

- **Enrollment Rate**
 - need timely result

- **Target Population / Ineligibility Rate / Event Rate**
 - need to address settings where excess risk is most plausible
 - need sufficiently high risk to achieve targeted number of events

- **Adherence**
 - must at least match adherence in prior trials with safety signal
 - include frequency/timing of withdrawal from rand. treatment

- **Cross-ins**
 - minimize by: careful screening; educating caregivers & patients
 …Very challenging in a post-marketing setting...

- **Retention**
 - critical to maintaining integrity of randomization
Issues in interpreting the IMPROVE-IT & SHARP Trials Regarding Cancer Risk with Vytorin

- A relative increase of as much as 84% in cancer deaths with the use of Vytorin cannot be excluded
- IMPROVE-IT and SHARP are ongoing trials:
 - Reduced reliability of interim nature of data
 - The Integrity of these two trials can be disturbed by the release of interim data on safety or efficacy
 - Full access to peer-reviewed summaries of data from the two trials is required to address whether performance standards for safety trials have been met
- An important safety signal has been identified for Vytorin
 …evidence of efficacy is limited to effects on biomarkers
Consequences of Reliance on Surrogate Endpoints For Accelerated or Full Regulatory Approval

- Less reliable evidence regarding Efficacy
- Less reliable evidence regarding Safety

...The stronger the efficacy evidence, the greater the resilience regarding uncertainties about safety...

Recent Experiences:

- Tysabri: PML in Crohns Disease & Multiple Sclerosis
- Erythropoiesis Stimulating Agents: Chemo-Induced Anemia & Hemodialysis in CHF
- Muraglitazar & Rosiglitazone: Type 2 Diabetes
- Simvastatin/Ezetimibe (Vytorin): Aortic Stenosis
Conclusions

An important objective:
Obtaining a Timely & Reliable Assessment of the Benefit-to-Risk Profile...

✓ ...establishing substantial evidence of efficacy
✓ ...enabling one to rule out unacceptable increases in safety risks

“Absence of Evidence is not Evidence of Absence”