

### Nutrition Biomarkers in Chronic Disease Prevention Research

### Laurence Freedman Gertner Institute for Epidemiology, Tel Hashomer, Israel



### Acknowledgments

### ❑ Statisticians:

Victor Kipnis Raymond Carroll Douglas Midthune Kevin Dodd Janet Tooze

Epidemiologists/Nutritionists: Arthur Schatzkin Amy Subar Nancy Potischman Natasa Tasevska Julie Mares Lesley Tinker



### Content

- Brief overview
- Effects of measurement error in selfreport instruments
- Validation studies with recovery biomarkers and their implications
- Combining self-reports and biomarkers

### Background I

- Interest in measuring dietary intake and relating this to health outcomes
- Main studies in chronic disease prevention have been:
  - **Case-control studies**
  - Cohort studies
  - Randomized dietary intervention trials

### Background II

The role of dietary intake measurement is very different in these studies:

- <u>Case-control studies & Cohort studies</u>:
  Primary role, since it is the main exposure measure
- <u>Randomized dietary intervention trials</u>
  Secondary role, since it is a measure of compliance and a potential mediator

### Background III

 Dietary intake has mainly been measured through self-report instruments

e.g., Food Frequency Questionnaire (FFQ)

- Inconsistent results across studies, and failure to find evidence for apparently strong hypotheses (e.g. fat and breast cancer)
- Consequent doubts about the accuracy of measurements from such instruments
- Search for biomarkers of dietary intake

### Background III

Role of nutrition biomarkers

(i) Assessment of compliance in randomized trials

(ii) Mediation analyses in randomized trials

- (iii) Validation of self-report instruments for cohort studies
- (iv) Adjusting for the bias in estimated risks in cohort studies

(v) Recovering lost power in cohort studies

**Background IV** 

Types of nutrition biomarker

### Recovery biomarkers

Give an essentially unbiased estimate of intake over a given period:

(i) Doubly labelled water – energy intake

- (iii) 24 hour urinary nitrogen protein intake
- (iv) 24 hour urinary potassium potassium intake

Useful for validation of self-report instruments. Very expensive or difficult to collect. **Background V** 

Types of nutrition biomarker II

### Concentration biomarkers

Subject to complex metabolic pathways in their regulation: correlated to intake but not an unbiased measure:

e.g., serum carotenoids, lipids, vitamins, etc.

Less useful for validation, but could be useful for prediction of some dietary intakes.

Often less expensive and easier to collect.

### **Dietary measurement error I**

Setting: Cohort study of diet and disease Exposure: Usual dietary intake, X Outcome: Disease (often quite rare), Y Interest: To estimate the relationship between X and Y

$$h(E(Y)) = \alpha_0 + \alpha_1 X$$

Problem: We observe not X, but a self-report, W, that has some error  $\delta$ :  $W = X + \delta$ 

### **Dietary measurement error II**

The measurement error in W causes two major problems:

Bias in the estimated relationship

Loss of statistical power to detect the relationship

### **Dietary measurement error III**

### Example: classical measurement error model $W = X + \delta$ $E(\delta) = 0$ $\delta \perp X$

Then,

 $E(\hat{\alpha}_{1W}) = \lambda \alpha_1$ 

### where

 $\lambda = \operatorname{var}(X) / \operatorname{var}(W) < 1$ 

### so the estimated coefficient is attenuated

### **Statistical power**

The effective sample size is reduced from **n** to  $\rho^2 n$ , where  $\rho$  is the correlation between W and X.

Validation studies with recovery biomarkers allow us to estimate  $\lambda$  and  $\rho$ , and thereby gauge how serious is the problem.

# The first large validation study with recovery biomarkers

### The OPEN Study

- Conducted by the National Cancer Institute, 1999- 2000
- □ 261 men, 223 women
- Dietary instruments: 24HR (twice), FFQ (twice)

Biomarkers: Doubly Labeled Water (for Energy) Urinary Nitrogen (for Protein) Urinary Potassium (for Potassium)

These biomarkers have been shown in previous studies to give unbiased measures of these intakes

### How serious are the problems? I

### **Biased Estimation**

## FFQ attenuation factors, $\lambda$ , for selected nutrients (OPEN ):

| Nutrient        | Men  | Women |
|-----------------|------|-------|
| Energy          | 0.08 | 0.04  |
| Protein         | 0.16 | 0.14  |
| Protein Density | 0.40 | 0.32  |

### Note:

The attenuation improves after adjustment for energy

### How serious are these problems? II

### Average estimated RRs when true RR = 2:

| Nutrient        | Men  | Women |
|-----------------|------|-------|
| Energy          | 1.06 | 1.03  |
| Protein         | 1.12 | 1.10  |
| Protein Density | 1.32 | 1.25  |

### Note:

It is generally thought that uncontrolled confounding precludes reliably detecting RRs <1.25 in a cohort study

### How serious are these problems? IV

FFQ correlations with true usual intake, ρ, for selected nutrients (OPEN ):

| Nutrient        | Men  | Women |
|-----------------|------|-------|
| Energy          | 0.08 | 0.04  |
| Protein         | 0.16 | 0.14  |
| Protein Density | 0.40 | 0.32  |

### **Conclusions from the OPEN Study**

- 1. Even after adjustment for energy there is serious attenuation of estimated RRs due to the measurement error in a FFQ.
- 2. There is also serious loss of power to detect dietdisease relationships.

**Caveat:** OPEN and similar studies can examine only protein, energy and potassium. We can only extrapolate to other nutrients and foods.

## Traditional remedy to the problem of RR attenuation

Regression Calibration:

Y = disease; X = true dietary intake; W = self-reported intake

Instead of regressing Y on W (leading to bias) we can regress Y on E(X|W).

(How we determine E(X|W) is another story!)

This leads to (nearly) unbiased estimates, but no gain in power

## Remedy to these problems using (concentration) biomarkers

### Enhanced Regression Calibration: We also have a biomarker M for X;

So regress Y on E(X|W,M) instead of E(X|W)

Under certain circumstances, we can obtain unbiased estimates and **gains in power**.

Predicted sample size reduction is by factor: var(E(X | W) / var(E(X | W,M)

### Remedy to these problems using markers

### Example:

Carotenoids and Eye Disease Study (CAREDS)

Relation between dietary lutein/zeaxanthin and eye cataracts

□ X = log (true usual lutein/zeaxanthin intake)

- □ Self-report instrument, W = log (FFQ)
- □ Biomarker, M = log (serum lutein/zeaxanthin)
- Outcome, Y = Eye cataracts (yes/no)

Analysis = logistic regression of Y on explanatory variables Models: 1: W

> 2: E(X|W) 3: E(X|W, M)

### **Remedy to these problems using markers**

### Example:

To evaluate E(X|W) and E(X|W, M), we need a measurement error model relating these measures to true intake.

We developed such a model based on feeding studies and validation studies reported in the literature (Freedman et al, Epidemiol Persp Innov, 2010):

 $W = 0.35 + 0.71 X + \varepsilon_W; \operatorname{var}(\varepsilon_W) = 0.36$  $M = 5.29 + 0.60 X + \varepsilon_M; \operatorname{var}(\varepsilon_M) = 0.15$  $\operatorname{var}(X) = 0.25$ 

var(E(X | W)) / var(E(X | W,M)) = 0.53

### **Combining self-report with biomarker**

### Carotenoids in Eye Disease Study (WHI) Analysis of relationship between dietary lutein and eye cataracts

| Model      | log OR* | (SE)    | z-value | Sample size<br>ratio |
|------------|---------|---------|---------|----------------------|
| W=log(FFQ) | -0.165  | (0.080) | -2.07   | 1.00                 |
| E(X W)     | -0.464  | (0.225) | -2.07   | 1.00                 |
| E(X W,M)   | -0.506  | (0.161) | -3.15   | 0.43                 |

\* Adjusted for age and smoking

### **Combining self-report with biomarker**

### Caveats

- Using E(X|W,M), although the Wald test is valid, the log OR estimate (-0.506) is biased (inflated). However, there is a way to obtain an unbiased estimate.
- 2. There is always the lurking danger of unknown **confounders** that are involved in the complex metabolic pathways that determine the biomarker level and are also associated with the disease.

### **Future**

- 1. Prentice et al (Stat Biosci, 2009)
- □ Large feeding study (150 women)
- Provided with a personalized diet for several weeks
- Measure many biomarkers in blood and urine at end of period
- Develop regression prediction equations for true intakes based on the array of biomarkers
- Use these in place of reported intake
- 2. Challenge: to incorporate self-report into these prediction equations

### Summary

- 1. Dietary biomarkers have proved extraordinarily useful in quantifying the extent of the problems caused by measurement error in self-reports.
- 2. The time has now come to invest in developing their use to solve the problems.
- 3. This development should go hand-in-hand with attempts to improve self-report instruments for cohort studies.