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Kai Lai Chung 1917-2009
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Marc Yor: 1949-2014
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Donald Lyman Burkholder
January 19, 1927, Octavia, Nebraska–April 14, Urbana, Illinois, 2013
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Martingale transforms

A word about the title,. . . , in case you noticed

Not from the 1948 Novel

But from “Singular Integrals, the heart of the matter”

Title of §2.2 in E.M. Stein’s famous (AMS Steele Prize winner) book
“Singular Integrals and differentiability properties of functions”

The title borrowed from Stein with his (written) permission.
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The Haar System on [0, 1]

ψ(x) =


1, 0 ¬ x < 1

2

−1, 12 < x ¬ 1

and

ψjk(x) = ψ(2jx − k)

for j nonnegative and 0 ¬ k ¬ 2j − 1∫ 1
0
ψjk(x)ψlm(x)dx = 0, (j , k) 6= (l ,m)

Any f can be written as (Schauder 1928)

f (x) = c0 +
∞∑
j=0

2j−1∑
k=0

cjkψjk(x)
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ψ00 = ψ(x)

ψ10 = ψ(2x), ψ11 = ψ(2x − 1)

ψ20 = ψ(4x), ψ21 = ψ(4x − 1),

ψ22 = ψ(4x − 2), ψ23 = ψ(4x − 3)
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The Haar Martingales

h0(x) = 1, h1(x) = ψ00(x), h2(x) = ψ10(x), h3(x) = ψ11(x), . . .

fn(x) =
n∑

k=0

akhk(x), ak ∈ R

The sequence {fn} is a martingale on the probability space [0, 1].

ϕ(h1, . . . , hk) is constant whenever hk+1 is not zero, any function ϕ. So,∫ 1
0

hk+1(x)ϕ(h1, . . . , hk)dx = C

∫ 1
0

hk+1(x)dx = 0
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Theorem (R.E.A.C. Paley 1932, Marcinkiewicz 1937)

For all ak ∈ R real numbers and εk ∈ {1,−1}, 1 < p <∞ there is a constant Cp

depending only p such that∥∥∥ n∑
k=1

εkakhk

∥∥∥
p
¬ Cp

∥∥∥ n∑
k=1

akhk

∥∥∥
p

1 The unconditional constant βp for a basis {ek} in Lp is the least least
extended real number βp with the property that for any n and any ak ∈ R
with

∥∥∥∑n
k=1 akek

∥∥∥
p

= 1, then for any choice of signs ε ∈ {1,−1}

∥∥∥ n∑
k=1

εkakek

∥∥∥
p
¬ βp
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General Martingale Transforms

fn a martingale with difference sequence dn, fn =
∑n

k=0 dk . {vk} be predicable
(measurable to Fk−1) taking values in [−1, 1] for all k (symmetric multiplier).

gn =
n∑

k=0

vkdk , Martingale transform of fn

Theorem (Burkholder 1966: Paley–Marcinkiewicz holds for arbitrary martingales)

‖gn‖p ¬ Mp‖fn‖p, 1 < p <∞

Theorem (Burkholder 1984–18 years later)

‖gn‖p ¬ (p∗ − 1)‖fn‖p,

p∗ − 1 =

{
p − 1, 2 ¬ p <∞
1

p−1 , 1 < p ¬ 2

and this constant (p∗ − 1) cannot be improved!
(The unconditional constant for the Haar system is (p∗ − 1))
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Three steps in the 1966 paper, all rather simple (even for
the time):

Step 1: Boundedness on L2

Straight from martingale from orthogonality of martingale difference
sequence:

‖gn‖22 = E
n∑

k=0

|vkdk |2 ¬ E
n∑

k=0

|dk |2 = ‖fn‖22

Step 2: Weak-type bound on L1

P{|gn| > λ} ¬ C

λ
E|fn|, for all λ > 0,

Step 3: Marcinkiewicz interpolation and duality
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The martingale square function

Sn(f ) =

(
n∑

k=0

|dk |2
)1/2

Note: With our assumption that |vk | ¬ 1,

Sn(g) =

(
n∑

k=0

|vkdk |2
)1/2

¬

(
n∑

k=0

|dk |2
)1/2

= Sn(f )

If we knew the following “Square Function” inequality:

(∗) ap‖f ∗‖p ¬ ‖S(f )‖p ¬ bp‖f ∗‖p, 1 < p <∞ (Note: trivial case p = 2)

with ap and bp depending only on p, Burkholder’s 1966 inequality would follow.

Burkholder proved this inequality as a consequence of the boundedness of
martingale transforms.
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Many questions arose from ap‖f ∗‖p ¬ ‖S(f )‖p ¬ bp‖f ∗‖p, 1 < p <∞

Theorem

I Inequality does not hold for 0 < p < 1 but there is an LlogL inequality
(Burkholder)

I Burgess Davis (1970) Inequality holds for p = 1.

I Burkholder-Gundy (1970) Inequality holds for all 0 < p <∞ provided the
martingales are “regular”, in particular for all martingales Xt , t ­ 0, indexed
by continuous time for which the function

t → Xt , is continuous a.s. (continuous trajectories!)

Bt = (B1t ,B
2
t , . . . ,B

n
t ) Brownian motion on Rn

Xt =

∫ t

0
Hs · dBs

Max Function X ∗t = sup
0¬s¬t

|Xt |. “Square Function” 〈X 〉1/2t =

(∫ t

0
|Hs |2ds

)1/2
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“Burkholder-Gundy good-λ principle” (widely used even
now in norm comparison problems).

Lemma (Burkholder-Gundy 1970 (on any measure space) )

Suppose f and g non-negative satisfy: For ε > 0 and λ > 0,

µ{f > 2λ, g ¬ ελ} ¬ Cε2µ{f > λ}.

Then
‖f ‖p ¬ Cp‖g‖p, 0 < p <∞

Where Cp is a constant depending on C and p.

More: There are “Φ”–Inequalities.

Φ(0) = 0, increasing, Φ(2x) ¬ CΦ(x) ⇒ EΦ(f )| ¬ CEΦ(g).
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1
2p
‖f ‖pp =

∥∥∥ f
2

∥∥∥p
p

= p

∫ ∞
0

λp−1µ{f > 2λ}dλ

¬ p

∫ ∞
0

λp−1µ{f > 2λ, g ¬ ελ}dλ+ p

∫ ∞
0

λp−1µ{g > ελ}dλ

¬ Cε2p

∫ ∞
0

λp−1µ{f > λ}dλ+ p

∫ ∞
0

λp−1µ{g > ελ}dλ

¬ Cε2‖f ‖pp +
1
εp
‖g‖pp

Theorem (Burkholder-Gundy, Acta Math (1970))

The pairs (X ∗t , 〈X 〉
1/2
t ), (〈X 〉1/2t ,X ∗t ) satisfy the good-λ principle.

A major achievement of the these inequalities in analysis was the Burkholder,
Gundy and Silverstein solution in 1971 of a 1930 problem of Hardy and
Littlewood: The Hardy spaces Hp are characterize by the integrability of the
maximal function of its real part. The birth of huge activity in analysis which
lasted many years.
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The sharper the good-λ, the better its applications.

Sharp good-λ: R.B. 1987 but known to Burkholder earlier

For all ε > 0, λ > 0 and 1 < δ,

P{X ∗t > δλ, 〈X 〉1/2t ¬ ελ} ¬ 2 exp
(
− (δ − 1)2

2ε2

)
P{X ∗t > λ}

P{〈X 〉1/2t > δλ, X ∗t ¬ ελ} ¬ C exp
(
−π
2

8
(δ2 − 1)

ε2

)
P{〈X 〉1/2t > λ}

and these are best possible.

Corollary: There are positive constants C1,C2,C3,C4 such that

(Classic) C1 ¬ lim sup
t→∞

X ∗t√
〈X 〉t log log(〈X 〉t)

¬ C2, a.s. on {〈X 〉 =∞}

(Chung) C3 ¬ lim inf
t→∞

(
log log(〈X 〉t)
〈X 〉t

)1/2
X ∗t ¬ C4, a.s. on {〈X 〉 =∞}
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P{X ∗t > δλ, 〈X 〉1/2t ¬ ελ} ¬ 2 exp
(
− (δ − 1)2

2ε2

)
P{X ∗t > λ}

P{〈X 〉1/2t > δλ, X ∗t ¬ ελ} ¬ C exp
(
−π
2

8
(δ2 − 1)

ε2

)
P{〈X 〉1/2t > λ}

and these are best possible.

Corollary: There are positive constants C1,C2,C3,C4 such that

(Classic) C1 ¬ lim sup
t→∞

X ∗t√
〈X 〉t log log(〈X 〉t)

¬ C2, a.s. on {〈X 〉 =∞}

(Chung) C3 ¬ lim inf
t→∞

(
log log(〈X 〉t)
〈X 〉t

)1/2
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u harmonic functions in upper-half space of Rd

Rd+1
+ = {(x , y) : x ∈ Rn, y > 0}

Γ1α(x) = {(x̄ , y) ∈ Rd+1
+ : |x − x̄ | < αy , 0 < y < 1},

N1αu(x) = sup
(x̄,y)∈Γ1α(x)

|u(x̄ , y)|, non-tangential maximal function

A1αu(x) =

(∫
Γ1α(x)

y1−n|∇u(x̄ , y)|2dx̄ dy

)1/2
, Lusin square (area) function

Theorem (Privalov (1916), Marcinkiewicz–Zygmund (1938), Spencer (1943),
Calderón (1950, 1951), Stein (1961): Except for sets of Lebesgue measure zero)

{x ∈ Rd : A1αu(x) <∞} = {x ∈ Rd : N1αu(x) <∞}
= {x ∈ Rd : lim

(y,t)→(x,0)

(y,t)∈Γ1α(x)

u(y , t) exists and is finite}.

Bañuelos (Purdue) Martingale transforms March 28, 2014



Martingale transforms

Burkholder-Gundy 1972

I The pairs (A, N) and (N, A) have the good-λ principle.

I The good-λ inequalities imply Privalov et al . . .

Question (Richard Gundy (1970’s))

Does the LIL hold for harmonic functions, X ∗ replace by N, 〈X 〉1/2 replaced by A?

R.B, C. Moore and I. Klemeš, 1986–1994: The answer is yes

1 Kolmogorov-type LIL holds

2 Chung-type LIL holds

3 Kensten-type LIL holds

limsup′s, liminf ′s between constants a.e. on the complement of Privalov et al set.

Need sharp (Gaussian) good-λ’s (like the martingale above). More: need them on
Lipschitz domains. Proved via an “invariance principle” for harmonic functions.
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The 1984 paper: The story began in 1981.
Burkholder, Ann of Prob. 1981. For a Banach space B TFAE

1 B is ζ-convex: There exist a biconvex function ζ : B × B → R such that
ζ(0, 0) > 0 and ζ(x , y) ¬ |x + y |, if |x | = 1 = |y |.

2 B ∈ UMD: Martingale transforms of B valued martingales are bounded on
Lp, 1 < p <∞.

(1) Burkholder (1981): Boundedness of martingale transforms ⇒ boundedness of
Hilbert transform.
(2) Bourgain (1983): Boundedness of Hilbert transform ⇒ boundedness of
martingale transforms.

A geometric characterization of such Banach spaces had been pondered by many

I Maurey, Pisier mid 70’s introduced the acronym UMD (unconditionality of
martingale difference sequences) and raised the question of characterizing
the Banach spaces with this property. Aldous, Lindenstrauss, Pelczyński, . . .

I Hilbert transform. S. Bochner and A.E. Taylor (1938) raised the question
and many investigated it: Schwartz, Benedek, Calderón, Panzone, Stein,
Vagi, . . .
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Gilles Pisier (2012) in “Selected works of D.L. Burkholder” writes:

“One of the main sobering features of zeta-convex is that it is not easy
to find the ζ-function directly. Actually, at first only the Hilbert space
case was available (ζ(x , y) = 1 + 〈x , y〉) and even the Lp-case with
p 6= 2 was elusive”. But later on, in an analytic tour the force,
Burkholder managed to identify the ζ-function for B = Lp as a solution
to non-linear PDE.”
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Theorem (Burkholder (1984) Ann. of Prob. “Special Invited Paper”)

For the B = R case: Let V (x , y) = |y |p − (p∗ − 1)p|x |p. There is a U such that

(i) V (x , y) ¬ U(x , y),

(ii) EU(fn, gn) ¬ EU(fn−1, gn−1) ¬ . . . ¬ EU(f0, g0) ¬ 0.

He show the existence of such a U by solving the non-linear PDE

(p − 1)[yFy − xFx ]Fyy − [(p − 1)Fy − xFxy ]2 + x2FxxFyy = 0

with suitable boundary conditions in certain domains of R2. The solutions to such
equation leads to a system of several nonlinear differential inequalities with
boundary conditions. From this system, a function u(x , y , t) is constructed in the
domain

Ω =
{

(x , y , t) ∈ R3 :
∣∣∣x − y

2

∣∣∣p < t
}

with certain convexity properties for which

u(0, 0, 1)‖gn‖pp ¬ ‖fn‖pp
for 1 < p ¬ 2. Burkholder then shows u(0, 0, 1) = (p − 1)p.

Bañuelos (Purdue) Martingale transforms March 28, 2014



Martingale transforms

1986 Burkholder wrote the function down, removing all difficulties. (Not exactly!)

U(x , y) = αp(|y | − (p∗ − 1)|x |)(|x |+ |y |)p−1,

αp = p(1− 1/p∗)p−1.

x and y can be in a Hilbert space.

Theorem (Burkholder 1986)

{ek}, {dk} Hilbert space H-valued martingale difference sequences with
‖ek(ω)‖H ¬ ‖dk(ω)‖H, ∀ω ∈ Ω, k ­ 0. gn =

∑n
k=0 ek , fn =

∑n
k=0 dk

‖g‖p ¬ (p∗ − 1)‖f ‖p,

Corollary∥∥∥ ∞∑
k=0

e iθkakhk

∥∥∥
p
¬ (p∗ − 1)

∥∥∥ ∞∑
k=0

akhk

∥∥∥
p
(Conjectured by Pełczynśki )

With this function one can use Itô calculus to get sharp martingale inequalities
that have applications to Fourier analysis (R. B. & G. Wang 1995.)
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Definition

m : Rd → C in L∞ produces the Fourier multiplier operator Mm

M̂mf (ξ) = m(ξ) f̂ (ξ), with Mm : L2(Rd)→ L2(Rd)

Question

When do such operators have extensions to Lp, 1 < p <∞?

Theorem (Hörmander 1960: If m is smooth ”enough” with)

sup
x∈Rd

{
|x ||α|

∣∣∣∂αm(x)

∂xα

∣∣∣} = C <∞

Then
‖Mmf ‖p ¬ Cp‖f ‖p, 1 < p <∞

with Cp depending on C , d and p.

Theorem (C. Fefferman 1971–“The Multiplier Problem for the Ball”)

If m = χB where B is the unit ball in Rd , d > 1, then Mm is an Lp–multiplier if
and only if p = 2.
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Lévy measure ν ­ 0 on Rd . So, ν({0}) = 0 and∫
Rd

min(|z |2, 1)dν(z) <∞

Let µ ­ 0 be a finite Borel measure on the unit sphere S ⊂ Rd , and

ϕ : Rd → C, ψ : S→ C, ϕ, ψ ∈ L∞(C)

Consider the “Lévy multiplier”

m (ξ) =

∫
Rd

(
1− cos ξ ·z

)
ϕ (z) dν(z) +

∫
S |ξ ·θ|2ψ (θ) dµ(θ)∫

Rd

(
1− cos ξ ·z

)
dν(z) +

∫
S |ξ ·θ|2dµ(θ)

,

Note that ‖m‖∞ ¬ max{‖φ‖∞, ‖ψ‖∞}.

m (ξ) =

∫
Rd

(
1− cos ξ ·z

)
ϕ (z) dν(z) + Aξ · ξ∫

Rd

(
1− cos ξ ·z

)
dν(z) + Bξ · ξ

,
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A =

[∫
S
ϕ (θ) θiθj dµ(θ)

]
i,j=1...d

and B =

[∫
S
θiθj dµ(θ)

]
i,j=1...d

with both A and B symmetric and B non–negative definite.

The Lévy–Khintchine Formula

{Xt} a Lévy process in Rn. The Lévy-Khintchine formula: E
[
e iξ·Xt

]
= etρ(ξ)

ρ(ξ) = ib · ξ − Bξ · ξ +

∫
Rn

[
e i ξ·y − 1− i(ξ · y) I{|y |<1}(y)

]
ν(dy)

= <ρ(ξ) + i=ρ(ξ)

<ρ(ξ) = −Bξ · ξ +

∫
Rn

[ cos (ξ · y)− 1 ] ν(dy),

=ρ(ξ) = b · ξ +

∫
Rn

[
sin (ξ · y)− (ξ · y) I{|y |<1}(y)

]
ν(dy).
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Theorem

‖φ‖∞ & ‖ψ‖∞ ¬ 1⇒ ‖Mmf ‖p ¬ (p∗ − 1)‖f ‖p, 1 < p <∞,

p∗ − 1 =


1

p−1 , 1 < p ¬ 2,

p − 1, 2 ¬ p <∞.

The constant is best possible.

1 Proved in a series of papers: R.B & P. Hernández-Méndez (2003),
R.B & K. Bogdan (2007), R.B., A. Bielaszewski & K. Bogdan (2010)

2 These multiplier include many classical multiplier.
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Theorem (R.B. & A. Osȩkowski–2011)

Suppose ϕ, ψ take values in [b,B] for some −∞ < b < B <∞. Then Mm with
Lévy multipler

m (ξ) =

∫
Rd (1− cos ξ ·z)ϕ (z) dν(z) +

∫
S |ξ ·θ|

2ψ (θ) dµ(θ)∫
Rd (1− cos ξ ·z) dν(z) +

∫
S |ξ ·θ|2dµ(θ)

⇒ ‖Mmf ‖p ¬ Cp,b,B‖f ‖p, 1 < p <∞.

and the inequality is sharp.

Here Cp,b,B is the best constant in the martingale transform inequality

‖
m∑

k=0

vkdk‖p ¬ Cp,b,B‖
n∑
k

dk‖p, vk ∈ [b,B]

Of particular interest are the one-sided, non-symmetric, multipliers where b = 0.

There are versions of the above sharp bounds on Manifolds and sub–elliptic
Laplacians (R.B. & F. Baoudoin, 2013) Lie groups (R.B. & Applebaum 2013),
and for the Ornstein-Uhlenbeck operator (R. B. & Osȩkowski, 2013-14).
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C. Morrey (1952), T. Iwaniec (1982), D. Burkholder (1986)

Conjecture of T. Iwaneic 1982:

‖∂f ‖p ¬ (p∗ − 1)‖∂f ‖p, , f ∈ C∞0 (C)

With V (z ,w) = |w |p − (p∗ − 1)p|z |p same as

(∗)
∫
C
V (∂f , ∂f )dm(z) ¬ 0, f ∈ C∞0 (C).

R.B. & G. Wang–1995.

(*) holds with 4∂f .

Conjecture (R.B. G. Wang (1995))

For all f ∈ C∞0 (C) ∫
C
U(∂f , ∂f )dm(z) ¬ 0. (1)
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C. Morrey (1952): “Quasi–convexity and lower semicontinuity of multiple
integrals.” F : Rd×d → R,

I (f ) =

∫
Ω

F

(
∂fi
∂xj

(x)

)
dx , f : Ω ⊂ Rn → Rn, f ∈W 1,p(Ω,Rn).

I I is (weakly) lower semicontinuous ⇐⇒ F quasi-convex

I The Euler equations I ′(f ) = 0 are elliptic ⇐⇒ F is rank–one convex

I Quasi-convexity: F : Rd×d → R for each A ∈ Rd×d , each bounded
D ⊂ Rd , each compactly supported Lipschitz function f : D → Rn,

F (A) ¬ 1
|D|

∫
D

F (A +
∂fi
∂xj

)

I Rank-one convexity: F : Rd×d → R, A, B ∈ Rd×d , rank B = 1,

h(t) = F (A + tB) is convex
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I d = 1, quasi-convex or rank–one convex ⇐⇒ convex.

I If d ­ 2, convexity =⇒ quasi–convexity =⇒ rank–one convexity.

Conjecture (Morrey 1952:)

Rank–one convexity does not imply quasi–convexity.

Šverak 1992: Morrey is correct for d ­ 3. Case d = 2, open.

Enter the Burkholder function: For all ∀ z , w , h, k ∈ C, |k| ¬ |h|,

h(t) = −U(z + th, w + tk) is convex

Define Γ: R2×2 → C× C by Γ

(
a b
c d

)
= (z ,w),

z = (a + d) + i(c − b), w = (a− d) + i(c + b)

FU = −U ◦ Γ, is rank–one convex–(R.B–Lindeman 1997).
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f : C→ C,
(
∂fi
∂xj

)
=

[
ux uy
vx vy

]
, f = u + iv ∈ C∞0 (C)

FU

(
∂fi
∂xj

)
= −U

(
∂f , ∂f

)
.

Quasiconvexity of FU at 0 ∈ R2×2 ⇐⇒

0 = FU(0) ¬
∫
supp f

FU

(
∂fi
∂xj

)
= −

∫
supp f

U
(
∂f , ∂f

)
Question (The “Win-Win Question”–R.B. Wang 1995, R.B. Lindeman 1997)

Is FU quasiconvex?

1 If true: Iwaniec’s conjecture follows

2 If false: Morrey’s conjecture follows.

1 Astala, Iwaniec, Prause, Saksman,“Burkholder integrals, Morrey’s problem
and quasiconformal mappings,” J. Amer. Math. Soc. 25 (2012).

2 Astala, Iwaniec, Prause, Saksman, Bilipschitz and quasiconformal rotation,
stretching and multifractal spectra, 2014 preprint.
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Martingale transforms

If we have seen a little further it is not because we have such
good sight but because we have been standing on the shoulders
of giants.

John of Salisbury (12th Century English Theologian)

THANK YOU!
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