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A word about the title,..., in case you noticed

~_AIHE
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novl by

GRAHAM
GREENE

Not from the 1948 Novel

Title of §2.2 in E.M. Stein's famous (AMS Steele Prize winner) book
“Singular Integrals and differentiability properties of functions”




N o v
The Haar System on [0, 1]

and

Pi(x) = P(2x — k)

for j nonnegative and 0 < k < 2 — 1

/0 G (XY m(x)dx = 0, (j, k) # (1, m)

Any f can be written as (Schauder 1928)

oo 2-1

Fx)=co+ > Y cuthiu(x)

j=0 k=0



Yoo = U(x)
Yo = P(2x), P11 =1P(2x—1)
Yoo = Y(4x), Yo =1P(4x—1),
Va2 = Y(dx —2), o3 =Y(4x —3)
L oo = Yix)
N
l‘ﬂ‘n =u(2x) ‘{E"_L.L=¢’(2x—1)
L] ® HU
-1 -1
liﬂgn = y(4x) Yo = U= ) U =U(ha=2) Yos =y
T T T
-1 -1 —1‘ u —l‘ H




_________ Memagewesos
The Haar Martingales

ho(x) =1,  hi(x) =o0(x), ha(x) =v10(x), hs(x) =Y11(x),...

= Z akhk(x), a, € R

The sequence {f,} is a martingale on the probability space [0, 1].

©(h1, ..., hg) is constant whenever hy 1 is not zero, any function ¢. So,

1
/ hk+1 hl, ..,hk)dX: C/ hk+1(X)dX =0
0



Martingale transforms

Theorem (R.E.A.C. Paley 1932, Marcinkiewicz 1937)

For all ay € R real numbers and ¢ € {1,—1}, 1 < p < oo there is a constant C,
depending only p such that

n n
| o ekanh], < o S auh|
k=1 t? k=1 2

Q The unconditional constant 3, for a basis {ex} in LP is the least least
extended real number 3, with the property that for any n and any ax € R

with H Sorq akekH =1, then for any choice of signs ¢ € {1, -1}
P

n
H E €kak€kH < Bp
k=1 P
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Martingale transforms

f, a martingale with difference sequence d,, f, = 22:0 dk. {vk} be predicable
(measurable to Fi_1) taking values in [—1,1] for all k (symmetric multiplier).

n
&= Z vkdx, Martingale transform of £,
k=0

Theorem (Burkholder 1966: Paley-Marcinkiewicz holds for arbitrary martingales)

Hgan < MP||fn||p7 l<p<

Theorem (Burkholder 1984-18 years later)

||gn||p < (p" - 1)||fn||p’

x4 {p—l, 2<p<x
pf =

ﬁ, 1<p<2

and this constant (p* — 1) cannot be improved!
(The unconditional constant for the Haar system is (p* — 1))

Bafiuelos (Purdue) Martingale transforms March 28, 2014



Martingale transforms

Step 1: Boundedness on L2

Straight from martingale from orthogonality of martingale difference
sequence:

n n
lgnllz = E D Ividl* <E Y |dil* = ||all3
k=0 k=0

Step 2: Weak-type bound on L!

C
P{lgnl > A} < TE[f], for all A>0,

Step 3: Marcinkiewicz interpolation and duality
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Martingale transforms

The martingale square function

o)

Note: With our assumption that |v| < 1

N 1/2 N 1/2
Sn(g) = <Z|dek|2> < <Z|dk|2> = 5,(f)
k=0 k=0

If we knew the following “Square Function” inequality:

(%) apllf*llp < IS(A)lp < bpllf*llp, 1< p<oo (Note: trivial case p = 2)

with a, and b, depending only on p, Burkholder's 1966 inequality would follow.

Burkholder proved this inequality as a consequence of the boundedness of
martingale transforms.
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Martingale transforms

Theorem

Inequality does not hold for 0 < p < 1 but there is an Llogl inequality
(Burkholder)

Burgess Davis (1970) Inequality holds for p = 1.

Burkholder-Gundy (1970) Inequality holds for all 0 < p < oo provided the
martingales are “regular”, in particular for all martingales X;, t > 0, indexed
by continuous time for which the function

t — X, s continuous a.s. (continuous trajectories!)

B[") Brownian motion on R”

t
Xt:/ Hs - dBs
0

t 1/2
g ? o 1/2
Max Function X; = sup |X:|. "Square Function (X)t/ = </ H52d5>
0<s<t 0
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Martingale transforms

Lemma (Burkholder-Gundy 1970 (on any measure space) )

Suppose f and g non-negative satisfy: Fore > 0 and \ > 0,
p{f > 2\, g <ed} < Ce2u{f > \}.

Then
1fllp < Gollgll,, 0<p<oo

Where C, is a constant depending on C and p.

More: There are “®"—Inequalities.
®(0) = 0, increasing, ®(2x) < CP(x) = Ed(f)| < CED(g).
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1 e >
— P — = = p—1
2p||f||p HZHp p/o MNP u{f > 2A}dA

< p/ MNP7L{f > 20, g <edldh + p/ N7 lu{g > eX}dA
0 0
< C€2p/ NP > Abdh + p/ N u{g > eA}dA
0 0
< c@fle+ S llgle
= Pt ocp P

The pairs (X, (X)¥/?), ((X)}/?, X*) satisfy the good-) principle.

A major achievement of the these inequalities in analysis was the Burkholder,
Gundy and Silverstein solution in 1971 of a 1930 problem of Hardy and

Littlewood: The Hardy spaces HP are characterize by the integrability of the
maximal function of its real part. The birth of huge activity in analysis which

lasted many years.



The sharper the good-\, the better its applications.

Foralle >0, A>0and 1 <4,

P{X; > 6A, (X)1/2 <eA} < 2exp <_( 252) >1p>{xt > A}

72 (62 — 1)
8 g2

P{(X)/? > 6), X; <eM} < Cexp (- )P{<x>1/2 > A}

and these are best possible.




Martingale transforms

Sharp good-A: R.B. 1987 but known to Burkholder earlier
Foralle >0, A>0and 1 <4,

§—1
P{X; > 6, <X>1/2<6A}<2exp( ( = 2) >]P’{X* > A}

2 (52
P{(X)}/* > 6A, X} <eA} < Cexp (“(5 = 1))P{<x>1/2 > A}

and these are best possible.

|

Corollary: There are positive constants Ci, G, C3, G4 such that

X*
(Classic) C; < limsup £

t—oo /(X) ¢ loglog((X):) < &y am o (P4 S el

oelo O\ 2
(Chung) G < Iitrli)r;f <|g|<i(><tx>)> X < G, a.s. on {(X) =00}

Martingale transforms
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Martingale transforms

R ={(x,y) : x €R",y > 0}
ML) ={(xy) eR{™ : [x = X| < ay,0 < y < 1},

Niu(x)= sup |u(x,y)|, non-tangential maximal function
(*:¥)ETG(x)

1/2
Al u(x) = </ Y Vu(x, y)|Pdx dy> , Lusin square (area) function
ra ()

Theorem (Privalov (1916), Marcinkiewicz—Zygmund (1938), Spencer (1943),

Calderdn (1950, 1951), Stein (1961): Except for sets of Lebesgue measure zero)

{xeRY: ALu(x) <00} = {xeR?: Nu(x) < oo}
= {xeR9: ( I)ln? ) u(y, t) exists and is finite}.
Y t)—(x,
(v,t)€rL, (x)
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Martingale transforms

Burkholder-Gundy 1972

The pairs (A, N) and (N, A) have the good-\ principle.

The good-)\ inequalities imply Privalov et al . ..

Question (Richard Gundy (1970's))
Does the LIL hold for harmonic functions, X* replace by N, (X)/? replaced by A?

Bafiuelos (Purdue) Martingale transforms March 28, 2014



Martingale transforms

Burkholder-Gundy 1972

The pairs (A, N) and (N, A) have the good-\ principle.

The good-)\ inequalities imply Privalov et al . ..

Question (Richard Gundy (1970's))
Does the LIL hold for harmonic functions, X* replace by N, (X)/? replaced by A?

R.B, C. Moore and I|. Klemes, 1986-1994: The answer is yes

O Kolmogorov-type LIL holds
Q Chung-type LIL holds
© Kensten-type LIL holds

limsup's, liminf’s between constants a.e. on the complement of Privalov et al set.

Need sharp (Gaussian) good-A's (like the martingale above). More: need them on
Lipschitz domains. Proved via an “invariance principle” for harmonic functions.
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Martingale transforms

Burkholder, Ann of Prob. 1981. For a Banach space B TFAE

Q B is (-convex: There exist a biconvex function ¢ : B x B — R such that
€(0,0) >0 and ¢(x,y) < |[x +y|, if [x| =1=|y|.

Q B € UMD: Martingale transforms of B valued martingales are bounded on
LP, 1< p<oo.

(1) Burkholder (1981): Boundedness of martingale transforms = boundedness of

Hilbert transform.
(2) Bourgain (1983): Boundedness of Hilbert transform = boundedness of

martingale transforms.

A geometric characterization of such Banach spaces had been pondered by many

Maurey, Pisier mid 70's introduced the acronym UMD (unconditionality of
martingale difference sequences) and raised the question of characterizing
the Banach spaces with this property. Aldous, Lindenstrauss, Pelczynski, . ..

Hilbert transform. S. Bochner and A.E. Taylor (1938) raised the question
and many investigated it: Schwartz, Benedek, Calderén, Panzone, Stein,
Vagi, ...
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“One of the main sobering features of zeta-convex is that it is not easy
to find the (-function directly. Actually, at first only the Hilbert space
case was available (((x,y) = 1+ (x,y)) and even the LP-case with

p # 2 was elusive”. But later on, in an analytic tour the force,
Burkholder managed to identify the (-function for B = LP as a solution
to non-linear PDE."”




Martingale transforms

Theorem (Burkholder (1984) Ann. of Prob. “Special Invited Paper")

For the B =R case: Let V(x,y) = |y|P — (p* — 1)P|x|P. There is a U such that

(i) V(x,y) < U(x,y),

(i) EU(f, 8n) <EU(fo-1,8n-1) < ... <EU(f, &) < 0.
He show the existence of such a U by solving the non-linear PDE
(p—1)vFy —xF]Fyy = [(P—1)Fy — Xny]2 + X2FxxFyy =0

with suitable boundary conditions in certain domains of R2. The solutions to such
equation leads to a system of several nonlinear differential inequalities with

boundary conditions. From this system, a function u(x, y, t) is constructed in the
domain

—yP
Qz{(xm,t)éﬂ@:‘%‘ <t}
with certain convexity properties for which
u(0,0,1)llgnlly < lIall7
for 1 < p < 2. Burkholder then shows u(0,0,1) = (p — 1)~.
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Martingale transforms

1986 Burkholder wrote the function down, removing all difficulties. (Not exactly!)

U(x,y) = ap(ly| = (p* — 1)Ix)(Ix| + |y)P~*
ap = p(1—1/p )P

x and y can be in a Hilbert space.

Theorem (Burkholder 1986)

{ex}, {dk} Hilbert space H-valued martingale difference sequences with
lex(@)llre < llde(@)ll,  Yw € Q k> 0. gn =3¢ g€k fo= 3k dk

lglle < (p* = )lIfll,,

Corollary

H Ze’(’kakth (p—1) H Zakth (Conjectured by Petczynski )

With this function one can use It6 calculus to get sharp martingale inequalities
that have applications to Fourier analysis (R. B. & G. Wang 1995.)
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Martingale transforms

Definition
m:R? — C in L™ produces the Fourier multiplier operator M,

— o~

M f(€) = m(€) F(€), with M, : L>(RY) — L[*(RY)

Question

When do such operators have extensions to LP, 1 < p < oo?

Theorem (Hérmander 1960: If m is smooth "enough” with)

an(X)‘}—C<oo

ox“

Then
Mnfllp < Cpllfllp, 1<p<oo

with C, depending on C, d and p.

Theorem (C. Fefferman 1971-"The Multiplier Problem for the Ball")

If m = xg where B is the unit ball in RY d > 1, then M, is an LP—multiplier if
and only if p = 2.
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N o v
Lévy measure v > 0 on R9. So, v({0}) = 0 and

/Rd min(jz[2, 1)du(z) < oo
Let 1 > 0 be a finite Borel measure on the unit sphere S ¢ RY, and
0 :RY—=C, ¢:S—=C, ¢1el>®C)
Consider the “Lévy multiplier”
o (1= cosez)p (2) du(2) + [ [€-0P (0) du(0)
- Jgd (1 - cosf~z)d1/(z) + J51€-612dp(0)

Note that ||m||cc < Mmax{||®|lco; [|%]loo }-

m(

Jra (1 - Cos£-z>cp (z2)dv(z) + A¢ - €
Js (1 - cos§-z) dv(z) + B¢ - €
"~ Bafiuelos (Purdue)  Martingale transforms ~~ March 28,2014

m(§) =



Martingale transforms

A_[ /899(9)9"9"‘1“’(9)},7,-1...@/ and IB%_[ /S e;e,-du(e)led

with both A and B symmetric and B non—negative definite.

The Lévy—Khintchine Formula
{X:} a Lévy process in R". The Lévy-Khintchine formula: E [e’f'xf] = etr(®)

p(§)

b€ =Be-g+ [ [ 1= i€ 1) e ()] v(e)

Roe) = B¢+ [ eos(€-y) = 11u(e).

%p(s)zb'w/ [sin (€ y) = (€ ¥) Iy jeny (v) ] (dy)-

n
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Martingale transforms

Theorem
[¢lloe & [Plloe <1 = [Mmfllp < (p* = DlIfllp, 1<p<oo,

1<p<?2,

The constant is best possible.

Q Proved in a series of papers: R.B & P. Hernandez-Méndez (2003),
R.B & K. Bogdan (2007), R.B., A. Bielaszewski & K. Bogdan (2010)

Q These multiplier include many classical multiplier.
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Martingale transforms

Theorem (R.B. & A. Osekowski—2011)

Suppose @, 1 take values in [b, B] for some —oo < b < B < co. Then M, with
Lévy multipler

_ Jre (1 —cos&-2) p(2) dv(2) + [5|€-01*¢ (6) dpu(0)

m () T (1= cos€-z) du(z) + [x |€-0]7du(9)

= [Mnfllp < Cob,allfllp 1< p<oo.

and the inequality is sharp.

Here C, p g is the best constant in the martingale transform inequality

1" vidillo < Cool S dillps v € [b,B]
k=0 k

Of particular interest are the one-sided, non-symmetric, multipliers where b = 0.

There are versions of the above sharp bounds on Manifolds and sub—elliptic
Laplacians (R.B. & F. Baoudoin, 2013) Lie groups (R.B. & Applebaum 2013),
and for the Ornstein-Uhlenbeck operator (R. B. & Osekowski, 2013-14).
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Martingale transforms

Conjecture of T. lwaneic 1982:
10flp < (p* = D)IIOF|lp, , f € C5°(C)

With V(z,w) = |w|P — (p* — 1)P|z|P same as

(%) /CV(Ef,af)dm(z) <0, fee(C).

R.B. & G. Wang-1995,
(*) holds with 49f.

Conjecture (R.B. G. Wang (1995))
For all f € C§°(C)

U(Bf, 8 )dm(z) < 0. (1)
JC
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C. Morrey (1952): “Quasi—convexity and lower semicontinuity of multiple
integrals.” F : R4 - R,

I(f) = / F (ﬁ x)> dx, f:QCR"—=R" fecWH"(QR").
Q Ox;

v

I is (weakly) lower semicontinuous <= F quasi-convex

v

The Euler equations I’(f) = 0 are elliptic <= F is rank—one convex

v

Quasi-convexity: F: RY*9 — R for each A € R9%? each bounded
D C RY, each compactly supported Lipschitz function f: D — R”,

1 of;
F(A <—/FA+—’
(A) A ( axj)

» Rank-one convexity: F: R¥*9 - R A BecRY¥? rank B=1,

h(t) = F(A+tB) is convex



Martingale transforms

d = 1, quasi-convex or rank—one convex <=> CONVex.

If d > 2, convexity = quasi—convexity = rank—one convexity.

Conjecture (Morrey 1952:)

Rank—one convexity does not imply quasi—convexity.

Sverak 1992: Morrey is correct for d > 3. Case d = 2, open.

Enter the Burkholder function: For all ¥V z, w, h, k € C, |k| < |h|,

h(t) = —U(z + th, w + tk) is convex

Define I:R?*2 CxC by r<j Z)(Z,W)
z=(a+d)+i(c—b), w=(a—d)+i(c+b)

Fy=—UoT, isrank-one convex—(R.B-Lindeman 1997).
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Martingale transforms

_ ofi\  fux wuy B ) -
f:C—-C, (8>g>_[vx V_y:l’ f=u+ive GrC)
of; —

F, = — f, Of).

“(axj) U (3¢, of)

Quasiconvexity of Fy at 0 € R?*? «—

0=Fu0) < [ FU<8ﬂ> -~ [ ur. on
supp f an supp f

Question (The “Win-Win Question”-R.B. Wang 1995, R.B. Lindeman 1997)

Is Fy quasiconvex?
Q If true: Iwaniec’s conjecture follows

If false: Morrey’s conjecture follows.

Q

O Astala, Iwaniec, Prause, Saksman, “Burkholder integrals, Morrey’s problem
and quasiconformal mappings,” J. Amer. Math. Soc. 25 (2012).

Q

Astala, lwaniec, Prause, Saksman, Bilipschitz and quasiconformal rotation,

stretching and multifractal spectra, 2014 preprint.
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If we have seen a little further it is not because we have such
good sight but because we have been standing on the shoulders
of giants.

John of Salisbury (12th Century English Theologian)

THANK YOU! )




