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Random walk on random subgraphs of Zd

Let G(ω) = (Zd,E(ω)) be a family of random subgraphs of Zd,
defined on (Ω,F ,P). Write d(x, y) = dω(x, y) for the graph distance
on G(ω) = (Zd,E(ω)).

Let X be the lazy SRW on G(ω): this moves to a (uniformly chosen)
neighbouring point with probability 1

2 , and stays where it is with
probability 1

2 .

Write Px
ω for the law of X started at x ∈ Zd. Let µx(ω) be the degree

of x. Quenched (discrete time) heat kernel on G:

pωn (x, y) = pωn (y, x) =
Px
ω(Xn = y)

µy
, n ∈ Z+, x, y ∈ Zd.

The annealed or averaged heat kernel is

E pωn (x, y).



Example 1: Percolation on Zd

This was introduced by Broadbent and Hammersley (1957).

Fix p ∈ [0, 1]. For each edge e = {x, y} keep the edge with probability
p, delete it with probability 1− p, independently of all the others.
Let O(ω) be the set of edges which are kept, which are called open
edges. The connected components of the graph (Zd,O) are called
(open) clusters.

There exists pc = pc(d) ∈ (0, 1) such that, with probability 1:
I if p < pc all clusters are finite (subcritical regime),
I if p > pc then there exists a unique infinite cluster, C∞

(supercritical regime),

If p = pc (critical regime) it is conjectured that all clusters are finite,
but only proved in some cases (d = 2, d ≥ 11).



Percolation



Percolation



Percolation



Percolation



Percolation



Percolation



Percolation



Percolation



Percolation



Percolation



Random walk an percolation on Zd

Subcritical case, i.e. p ∈ [0, pc). For a fixed p little interesting to say:
the random walk is trapped in a ‘small’ finite cluster and rapidly
reaches equilibrium.

Critical case (i.e. p = pc) – we know exponents in high dimensions
(Kozma & Nachmias, 2009), but little known in detail about the heat
kernel.

Supercritical case i.e. p ∈ (pc, 1]. In this case there exists a unique
infinite cluster C∞. This looks roughly like a d-dimensional net: given
a cube Λ side k, with probability about 1− e−ck the cluster C∞ has
many connected crossings between all the faces of Λ. We expect the
SRW on C∞ to behave in a similar fashion to SRW on Zd.

What is the effect on the r.w. of the small irregularities in C∞?



Supercritical percolation – quenched bounds

Theorem A. (MB, 2004). Let d ≥ 2, p > pc. There exist
(non-random) constants ci = ci(d), δ = δ(d), and r.v. Tx, x ∈ Zd with

Pp(Tx ≥ n) ≤ e−nδ

such that for x, y ∈ C∞(ω), n ≥ Tx(ω) ∨ dω(x, y),

pωn (x, y) R c1n−d/2 exp(−c2dω(x, y)2/n).

Remarks. 1. The r.v. Tx handles possible irregularities in C∞ close to
x.
2. Antal, Pisztora (1996): c|x− y| ≤ dω(x, y) ≤ c′|x− y| with
probability greater than 1− e−c|x−y|.



Supercritical percolation – averaged bounds

Why no log type oscillations in the quenched bounds?

In a box of side n, the largest irregularities in C∞ are of size (log n)c,
and heat homogenizes over these on a time scale of at most
(log n)2c � n2.

Theorem B. (MB, 2004). There exist constants ci such that for
x, y ∈ Zd, n ≥ |x− y|,

Ep
(
pωn (x, y)

∣∣x, y ∈ C∞) ≤ c1n−d/2 exp(−c2|x− y|2/n),

Ep
(
pωn (x, y)

∣∣x, y ∈ C∞) ≥ c3n−d/2 exp(−c4|x− y|2/n).



Which part of the graph affects pn(x, y)?

To calculate pn(x, y) completely we need to know about the structure
of G in the region

{z ∈ V : d(x, z) + d(z, y) ≤ n}.

However, good bounds can be obtained with less information:

- If d(x, y) ≤ n1/2 we need to know about B(x, cn1/2),

- if n ≥ R = d(x, y) ≥ n1/2 then we need to know about the ‘sausage’
width

r =
n
R

which connects x and y.



Example 2: Uniform spanning tree (UST)

On a finite graph the UST is a spanning tree (i.e. a connected
subgraph which is a tree and contains all the vertices) chosen
uniformly at random.

Pemantle (1991) defined UST on Zd as limit of UST on cubes
[−N,N]d. (One gets a forest if d ≥ 5).

Haggstrom (1995): UST is a limit as q→ 0 of the FK(p, q) random
cluster model.

Wilson (1996): algorithm for construction of UST from loop erased
random walk (LERW).



Wilson’s algorithm (1996)

Write LEW(x,A) for the loop-erased RW from x to A ⊂ Z2; this is
obtained by chronological erasure of the loops in a SRW started at x
and run until it hits A.

Wilson’s algorithm:
(0) Choose (zk) so that Z2 = {z0, z1, . . . }.
(1) Let T0 = {z0}.
(2) For k ≥ 1 let Tk = Tk−1 ∪ LEW(zk, Tk−1).

(3) U = ∪kTk is the UST in Z2, and the law does not depend on the
particular sequence (zk).

This implies that the geodesic path between x and y has the same law
as a LEW from x to y.



UST in two dimensions

Key estimate (Lawler (2014)). Let X(n) be SRW on Z2 run until it
first hits ∂B(0, n) and L be the loop erasure of X(n). Then
E0|L| � n5/4.

Let U be the UST in Z2. Write dU for the shortest path metric in U ,
and BU (x, r) for balls in (U , dU ). Write BE(x, r) for balls in the
Euclidean metric.
Set κ = 5/4. We should expect that very roughly

BE(x, r) ≈ BU (x, rκ).

So for the UST in Z2 one expects (and finds) that

|BU (x,R)| ≈ |BE(x,R1/κ)| � R2/κ,

Since the UST has ‘fractal’ properties, look at SRW on some simpler
fractals.



Intrinsic ball (radius 43) in UST in 50× 50 box



Example of an exact fractal graph: Sierpinski gasket

Mean number of steps to cross triangle is 5.
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Mean number of steps to cross triangle is 52.
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Mean number of steps to cross triangle is 53.



Example of an exact fractal graph: Sierpinski gasket

Mean number of steps to cross triangle is 54.



General picture for exact symmetric fractal graphs

The behaviour of the RW is described by two indices, df and dw.

The fractal dimension df is given by the geometry of the set:

c1rdf ≤ |B(x, r)| ≤ c2rdf , (or |B(x, r)| � rdf .)

The walk dimension dw gives the space/time scaling of the RW; in
time n it moves distance roughly n1/dw , and one finds that

Exd(x,Xn)2 � n2/dw (anomalous diffusion if dw 6= 2) .

In time n the SRW X moves about R = n1/dw . Since
|B(x,R)| � Rdf = ndf /dw , if the RW "mixes well" then

Px(Xn = x) � n−df /dw .

Note that df (Zd) = d and dw(Zd) = 2.



Theorem C. (MB-Perkins, Kumagai, Hambly-Kumagai, MB-Bass,
Jones ...) For various classes of exact fractal graphs one finds that

pn(x, y) R c1n−
df
dw exp

(
− c2

(d(x, y)dw

n

) 1
dw−1

)
.

Remarks. 1. These are often called sub-Gaussian estimates.
2. Taking df = d, dw = 2 gives the usual Gaussian bounds for Zd.
3. If these estimates hold on a graph then 2 ≤ dw ≤ 1 + df .
4. The SRW is recurrent if and only if df ≤ dw.
5. The proofs are much simpler if df < dw; sometimes called the
strongly recurrent case. The bounds above follow if we can prove a
‘volume’ and an ‘electrical resistance’ estimate.

Volume: |B(x, r)| � rdf for all x, r.

Resistance: Reff(x, y) � rdw−df for all x, y.



Quenched heat kernel on UST

Set

df =
2
κ
, dw =

2 + κ

κ
Φ(T,R) =

(Rdw

T

)1/(dw−1)
.

Theorem D. (MB, Masson 2012) There exist r.v Tx with
P(Tx > n) ≤ exp(−c(log n)2) such that writing

A = A(x, y, n) = (log ndω(x, y))α

one has for n ≥ Tx ∨ dω(x, y),

pωn (x, y) ≤ n−df /dwA exp(−A−1Φ(n, dω(x, y)),

pωn (x, y) ≥ n−df /dwA−1 exp(−AΦ(n, dω(x, y)).

(Bounds of the same type as for exact fractal graphs, but, so far
anyway, with log type errors. )



What about annealed bounds?

Recall

Φ(n,R) =
(Rdw

n

)1/(dw−1)
.

Since d(0, x) is roughly |x|κ we conjectured that averaging would
remove the log type errors, and we would have

Tdf /dwE pT(0, x) R exp (−c2Φ(T, |x|κ)).

(Lower bound is easy from MB-Masson.)

We tried several times to prove the upper bound...



Theorem 1. (MB, Croydon, Kumagai 2020+) There exist
0 < β2 ≤ β1 < 1 such that for x ∈ Zd, T ≥ |x|κ,

c2 exp(−c1Φ(T, |x|κ)β1)

≤ Tdf /dwE pT(0, x) ≤ c1 exp(−c2Φ(T, |x|κ)β2).

Remark. Our value of β2 is poor, but we have

β1 =
dw − 1
κdw − 1

,

and we conjecture that this is the right exponent, i.e. that the upper
bound also holds with this value of β2.



Main ideas for proofs

Our proofs use Wilson’s algorithm to construct exceptional events for
the UST, which then force exceptional behaviour of the heat kernel.

To show that the averaged bound Epn(0, x) is larger than our
(incorrect) conjectured value, one looks for an event F such that on F
the graph distance dω(0, x) is much smaller than the ‘usual’ value of
|x|κ.



Short paths in the UST

By Wilson’s algorithm d(0, x) and |LEW(0, {x})| have the same law.

Theorem 2. (MB, Croydon, Kumagai 2019+) For λ ≥ 1

exp(−c1λ
4) ≤ P

(
|LEW(0, {x})| ≤ |x|

κ

λ

)
≤ exp(−c2λ

4).

Upper bound. A bound with exponent λ4/5−ε was obtained by MB
and Masson (2011). Small changes give the much better estimate
above.

The 4 here is actually 1/(κ− 1); recall that κ = 5/4.



Sketch for lower bound.

Choose m ∈ N, let N ≥ 1 and for simplicity take x = (mN, 0). Tile
Z2 with boxes side m and centres in mZ2.
Let z0 = 0, zj = (jm, 0) for 1 ≤ j ≤ N and write Qj for the box side m
centre zj.

Run WA with the initial part of the sequence being {z0, z1, . . . , zN}.
Recall that at stage k ≥ 1 we take Szk to be a SRW started at zk and
killed on its first hit on Tk−1, and set

LEW(zk,Tk−1) = LE(Szk), Tk = Tk−1 ∪ LEW(zk,Tk−1).

We declare stage k a success if Szk hits Tk−1 before it leaves
Qk ∪ Qk−1, and

|LEW(zk,Tk−1)| ≤ mκ.
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Sketch for lower bound II

For k ≥ 1 the probability of success, given that the previous stages
have all been successful, is at least p = e−a1 > 0. (Independent of m.)
Let F be the event that all N stages are successful, so that

P(F) ≥ e−a1N .

On F we have d(0, x) ≤ Nmκ, while |x| = Nm. So

d(0, x)

|x|κ
≤ Nmκ

Nκmκ
=

1
Nκ−1 =

1
N1/4 .

Set λ = N1/4 to obtain the lower bound.



Averaged heat kernel lower bounds

Let x ∈ Z2, R = |x|κ and let Rdw � T � R. Recall that

Φ(T,R) =
(Rdw

T

)1/(dw−1)
.

We expect that for most ω

pωT (0, x) ≈ T−df /dw exp(−cΦ(T, dω(0, x))).

Let λ� 1 and F = Fλ = {ω : dω(0, x) ≤ λ−1|x|κ} so

P(F) ≥ exp(−cλ1/(κ−1)).

Then
EpT(0, x) ≥ E(1FpT(0, x)).



We can hope that on F since dω(0, x) ≤ R/λ, we will have

Tdf /dwpωT (0, x) ≥ c exp(−cΦ(T, λ−1R)). (∗)

If so then

Tdf /dwE(1FpT(0, x)) ≥ exp(−cλ
1

(κ−1) ) exp(−cΦ(T, λ−1R)).

(Minus) the term in the exponential is

λ1/(κ−1) +
( Rdw

λdwT

)1/(dw−1)
,

and optimizing over λ one obtains(Rdw

T

)1/(κdw−1)
= Φ(T,R)(dw−1)/(κdw−1).



Remarks

1. We have the ‘usual’ heat kernel lower bound

pωT (0, x) ≥ c′T−df /dw exp(−cΦ(T, dω(0, x)))

on typical environments, but we have conditioned ω to be in an
atypical set F ⊂ Ω which has very small probability.
So we need ‘separation of scales’: we want U conditioned on F to be
well behaved over Euclidean distances of order m, and the
conditioning only to have an effect on scales of order km with k� 1.

This is proved by first requiring an unusual event F in the early stages
of WA, but then making sure that the later stages behave as expected.

2. The lower bound on the probability of having d(0, x) small uses
boxes of side m1, and the chaining argument to obtain the heat kernel
lower bound uses boxes of side m2. Fortunately m1 � m2.



3. What about supercritical percolation?

Recall for the UST one gets for x with R = |x|κ,

E pT(0, x) ≥ cT−df /dw exp
(
−
(Rdw

T

)1/(κdw−1))
.

For supercritical percolation one has

P(dω(0, x) > c|x|) ≤ e−c′|x|

so the index κ = 1.
Since dw = 2, df = d the formula above does give Gaussian lower
bounds.


