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Growth-fragmentation equations

The growth-fragmentation equation is a linear evolution equation
that describes a system of growing and dividing particles (cells,
bacteria, ...)
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Represent the concentration of particles with size y > 0 at time
t ≥ 0 by a measure

µxt (dy),

assuming for simplicity that one starts at time t = 0 from a unit
concentration of particles of size x > 0,

µx0 = δx .

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Introduction
Background on asymptotic behavior of semigroups
Feynman-Kac representation

The kernel µxt (dy) yields the operator

Tt f (x) = 〈µxt , f 〉 =

∫ ∞
0

f (y)µxt (dy),

and the growth-fragmentation equation has the form

dTt f

dt
= ATt f .
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In words, the operators (Tt)t≥0 form a semigroup with
infinitesimal generator

Af (x) = c(x)f ′(x) +

∫ x

0
f (y)k(x , y)dy − K (x)f (x).

c is the growth rate of particles,

k(x , y) is the rate of creation of y > 0 by dislocation of x > y ,

Conservation of mass during dislocation

xK (x) =

∫ x

0
yk(x , y)dy .
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Usually the semigroup cannot be found explicit in terms of the
infinitesimal generator.

Nonetheless information about its large time behavior has be
obtained using spectral techniques for operators by many authors
in the PDE community and over many years.

(See e.g. Perthame & Ryzhik, Doumic and Gabriel, Cáceres,
Cañizo & Mischler, Doumic & Escobedo, ...)
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Background on asymptotic behavior of semigroups

Let (Tt)t≥0 be a strongly continuous semigroup of positive linear
operators (not necessarily contractions) :

TsTt = Ts+t

with infinitesimal generator A:

lim
t→0+

Tt f − f

t
= Af for f ∈ DA.

Informally,
Tt = etA.
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Perron-Frobenius / Krein-Rutman paradigm:

Under appropriate assumptions, there exists a principal
eigenvalue λ ∈ R for both A and the dual operator A′.
The eigenfunctions h and m

Ah = λh A′m = λm

can be chosen positive and normalized such that 〈m, h〉 = 1.

Then
lim
t→∞

e−λtTt f (x) = h(x)〈m, f 〉.

Convergence is exponentially fast when there is a spectral
gap.
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For contraction semigroups (‖Tt f ‖ ≤ ‖f ‖), one can associate
a Markov process (Xt)t≥0 such that

Tt f (x) = Ex(f (Xt)).

When X is irreducible positive recurrent, there is a unique
stationary law m, i.e.

mTt = m and 〈m, 1〉 = 1.

If X is further aperiodic, convergence to equilibrium holds:

lim
t→∞

Ex(f (Xt)) = 〈m, f 〉.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Introduction
Background on asymptotic behavior of semigroups
Feynman-Kac representation

For contraction semigroups (‖Tt f ‖ ≤ ‖f ‖), one can associate
a Markov process (Xt)t≥0 such that

Tt f (x) = Ex(f (Xt)).

When X is irreducible positive recurrent, there is a unique
stationary law m, i.e.

mTt = m and 〈m, 1〉 = 1.

If X is further aperiodic, convergence to equilibrium holds:

lim
t→∞

Ex(f (Xt)) = 〈m, f 〉.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Introduction
Background on asymptotic behavior of semigroups
Feynman-Kac representation

For contraction semigroups (‖Tt f ‖ ≤ ‖f ‖), one can associate
a Markov process (Xt)t≥0 such that

Tt f (x) = Ex(f (Xt)).

When X is irreducible positive recurrent, there is a unique
stationary law m, i.e.

mTt = m and 〈m, 1〉 = 1.

If X is further aperiodic, convergence to equilibrium holds:

lim
t→∞

Ex(f (Xt)) = 〈m, f 〉.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Introduction
Background on asymptotic behavior of semigroups
Feynman-Kac representation

This is merely a probabilistic reformulation of the asymptotic
behavior of the semigroup with

λ = 0 , h(x) ≡ 1 , Ah = 0 , A′m = 0.

The probabilistic approach provides criteria (Foster-Lyapunov)
for ergodicity or exponential ergodicity of X , and stochastic
representations of the stationary law m (ergodic average, or
via the occupation measure of the excursion).
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Feynman-Kac representation

The growth-fragmentation semigroup (Tt)t≥0 is not contractive.

Nonetheless, under the assumption that the growth rate is
sublinear:

sup
x>0

c(x)/x <∞,

it can be related to a Markov process

X = (Xt)t≥0.
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Specifically,

Gf (x) = c(x)f ′(x) +

∫ x

0
(f (y)− f (x))

y

x
k(x , y)dy ,

is the infinitesimal generator of a Markov process that describes
the evolution of a ‘distinguished’ particle:

At each dislocation event, the child particle is selected in its sibling
by random size-biased sampling.
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Writing f̄ (x) = xf (x), we have

x−1Af̄ (x) = Gf (x) +
c(x)

x
f (x).

The growth-fragmentation semigroup has the Feynman-Kac
representation:

Tt f (x) = xEx

(
f (Xt)

Xt
Et
)

with

Et = exp

(∫ t

0

c(Xs)

Xs
ds

)
.
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The Feynman-Kac solution is given in terms of the location Xt of
the Markov process at time t, and the weight Et that depends on
the whole trajectory of (Xs : 0 ≤ s ≤ t).

In the framework of branching processes, this would be called a
many-to-one formula: it expresses the expectation of a linear
functional of the particle system in terms the trajectory of a
distinguished particle.
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Overview of results

The asymptotic behavior of (Tt) can be studied via
regeneration for passage times at a given state.

Introduce the first hitting time of x > 0 by X

H(x) := inf {t > 0 : Xt = x} .

When X0 = x , H(x) is the duration of the first excursion
away from x .
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The Laplace transform

Lx ,y (q) := Ex

(
e−qH(y)EH(y),H(y) <∞

)
, q ∈ R.

plays a fundamental role.

For every x , y fixed, Lx ,y : R→ (0,∞] is a convex non-increasing
and right-continuous function with

lim
q→+∞

Lx ,y (q) = 0 and lim
q→−∞

Lx ,y (q) = +∞.
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The Malthus exponent is then defined as:

λ := inf{q ∈ R : Lx ,x(q) < 1}

(does not depend on x > 0).

We next fix x0 > 0 arbitrarily, and set

`(x) = Lx ,x0(λ) , ¯̀(x) := x`(x).
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Theorem (Malthusian behavior)

Assume
Lx0,x0(λ) = 1 and L′x0,x0(λ) > −∞. (1)

Then for every f ∈ C+K ,

lim
t→∞

e−λtTt f (x) = ¯̀(x)〈m, f 〉,

with

m(dy) :=
dy

c(y)¯̀(y)|L′y ,y (λ)|
, y > 0.

Conversely, (1) is always fulfilled when the Malthusian behavior
holds even in some weak sense.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Ingredients
Malthusian behavior and spectral gap
Strong results

By stochastic calculus, one can check that ¯̀ is an eigenfunction
with eigenvalue λ of (some extension of) A:

A¯̀ = λ¯̀.

Under some mild technical assumptions, one can also check that
m is an eigenmeasure with eigenvalue λ for the dual operator A′:

〈A′m, f 〉 = 〈m,Af 〉 = λ〈m, f 〉 , f ∈ DA.
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Theorem (exponential ergodicity)

Assume

Lx0,x0(q) ∈ (1,∞) for some q ∈ R. (2)

Then (1) holds and there exists η > 0 such that

e−λtTt f (x) = ¯̀(x)〈m, f 〉+ o(e−ηt).

In turn, (2) holds whenever

lim sup
x→0+

c(x)/x < λ and lim sup
x→∞

c(x)/x < λ. (3)
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Thanks to (3), fully explicit criteria can now be given in terms of
the coefficients.

Notably, exponential ergodicity holds provided that X is recurrent
and

lim
x→0+

c(x)/x = lim
x→∞

c(x)/x = inf
x>0

c(x)/x ,

(because then λ > infx>0 c(x)/x).
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We now turn our attention to growth-fragmentation processes,
which is the stochastic version of growth-fragmentation
semigroups.

Specifically, we consider a branching process Z = (Zt)t≥0 where
individuals have a mass that grows continuously with rate c and
break randomly inducing the fragmentation kernel k(x , y).
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The relation between the deterministic and the stochastic model is
given

Tt f (x) = Ex [〈Zt , f 〉] ,

where Ex refers to the mathematical expectation when the
branching process Z starts at time 0 from a single ancestor with
mass x > 0.

In the line of several classical results in branching theory (Nerman,
Jagers, Biggins, ...), one obtains the following strong version of the
previous theorems.
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Theorem

Assume

lim sup
x→0+

c(x)/x < λ and lim sup
x→∞

c(x)/x < λ.

The process
Wt = e−λt〈Zt , ¯̀〉, t ≥ 0

is a martingale bounded in L2(Px) for every x > 0, and for every
continuous function f with compact support, we have

lim
t→∞

e−λt〈Zt , f 〉 = 〈m, f 〉W∞, in L1(Px).
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Elements of proofs

The cornerstone of the proof consists in observing that

Mt := `(Xt)e
−λtEt

is a martingale, and then using it for changing the probability
measure into the law of a new process Y :

Ex (Φ(Ys : 0 ≤ s ≤ t)) =
1

`(x)
Ex (Φ(Xs : 0 ≤ s ≤ t)Mt) .
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The Feynman-Kac formula for the growth-fragmentation
semigroup then takes the simpler form

Tt f (x) = xEx

(
f (Xt)

Xt
Et
)

= eλt ¯̀(x)Ex

(
f (Yt)
¯̀(Yt)

)
.

So the study of its asymptotic behavior boils down to establishing
convergence to equilibrium for the process Y .
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The process Y is again Markovian with infinitesimal generator

GY g(x) =
1

`(x)
G(g`)(x) + (c(x)/x − λ)g(x).

We thus simply need to prove that Y is (exponentially) ergodic
and then compute its stationary law.
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Let
HY (x) = inf{t > 0 : Yt = x}

be the first hitting time of x by Y . Then

Ex(e−qHY (x)) = Lx ,x(λ+ q).

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

In particular:

L′x ,x(λ) > −∞ iff Ex(HY (x)) <∞ (Y positive recurrent),

Lx ,x(λ− ε) <∞ for some ε > 0 iff Y is exponentially recurrent.

Then the (normalized) occupation measure of the excursion of Y
away from x0, say ν, is known to be a stationary law for Y .
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HY (x0)

Excursion of Y
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One finds

ν(dy) =
dy

c(y)|L′y ,y (λ)|
, y > 0

and conclude the proof by convergence to equilibrium, i.e.

lim
t→∞

Ex(f (Yt)) = 〈ν, f 〉.
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Summary of the results

We have obtained expressions in terms of a certain Markov
process X , whose infinitesimal generator G bears a simple
relation to the growth-fragmentation operator A, for:

the growth-fragmentation semigroup Tt ,

the Malthus exponent λ (i.e. principal eigenvalue),

the corresponding eigenfunction h and dual eigenmeasure ν,

conditions for the existence of a spectral gap,

strong versions for the stochastic model.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Summary of the results

We have obtained expressions in terms of a certain Markov
process X , whose infinitesimal generator G bears a simple
relation to the growth-fragmentation operator A, for:

the growth-fragmentation semigroup Tt ,

the Malthus exponent λ (i.e. principal eigenvalue),

the corresponding eigenfunction h and dual eigenmeasure ν,

conditions for the existence of a spectral gap,

strong versions for the stochastic model.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Summary of the results

We have obtained expressions in terms of a certain Markov
process X , whose infinitesimal generator G bears a simple
relation to the growth-fragmentation operator A, for:

the growth-fragmentation semigroup Tt ,

the Malthus exponent λ (i.e. principal eigenvalue),

the corresponding eigenfunction h and dual eigenmeasure ν,

conditions for the existence of a spectral gap,

strong versions for the stochastic model.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Summary of the results

We have obtained expressions in terms of a certain Markov
process X , whose infinitesimal generator G bears a simple
relation to the growth-fragmentation operator A, for:

the growth-fragmentation semigroup Tt ,

the Malthus exponent λ (i.e. principal eigenvalue),

the corresponding eigenfunction h and dual eigenmeasure ν,

conditions for the existence of a spectral gap,

strong versions for the stochastic model.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Summary of the results

We have obtained expressions in terms of a certain Markov
process X , whose infinitesimal generator G bears a simple
relation to the growth-fragmentation operator A, for:

the growth-fragmentation semigroup Tt ,

the Malthus exponent λ (i.e. principal eigenvalue),

the corresponding eigenfunction h and dual eigenmeasure ν,

conditions for the existence of a spectral gap,

strong versions for the stochastic model.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Summary of the results

We have obtained expressions in terms of a certain Markov
process X , whose infinitesimal generator G bears a simple
relation to the growth-fragmentation operator A, for:

the growth-fragmentation semigroup Tt ,

the Malthus exponent λ (i.e. principal eigenvalue),

the corresponding eigenfunction h and dual eigenmeasure ν,

conditions for the existence of a spectral gap,

strong versions for the stochastic model.

Jean Bertoin Probabilistic views on growth-fragmentation equations



Growth-fragmentation equations
Overview of results
Elements of proofs

Summary

Thank you !
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