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The simplest imaginable model of inheritance

A population of fixed size, N , evolving in discrete generations.

Each individual inherits its genetic type from a parent chosen
uniformly at random from the previous generation.
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Forwards in time? t 7→ t/N , N 7→ ∞

Each individual inherits its genetic type from a parent chosen
uniformly at random from the previous generation. Two types a
and A. p(t) = proportion of type a. δt = 1/N .
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dpt =
√

pt(1 − pt)dWt
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Universality

Ne = 25, 000, 000

Ne = 2, 000, 000

Ne = 20, 000 (Europe),
< 50, 000 (Whole world)

Ne < 100

Images: Escherichia coli by Rocky Mountain Laboratories NIAID; and ”Drosophila melanogaster -side (aka)” by

André Karwath, Flickr-moses namkung-The Crowd for DMB 1, ”SpottedSalamander” by Camazine at en.wikipedia,

all via Wikimedia Commons.



Selection

Relative fitness types a and A are 1 + s : 1.
If proportion of type a parents is p, each offspring (independently)
type a with probability

(1 + s)p

1 + sp
= (1 + s)p{1− sp}+O(s2) = p+ sp(1− p) +O(s2).

◮ E[∆p] = δtNsp(1− p) (selection)

◮ E[(∆p)2] = δtp(1− p) +O(sδt)

◮ E[(∆p)3] = O(δt)2

If Ns → s,

dpt = sp(1− p)dt+
√

pt(1− pt)dWt



Rapidly fluctuating environments

Gillespie:
“If fitnesses do depend on the

state of the environment, as

they surely must, then they

must just as assuredly change

in both time and space, driven

by temporal and spatial fluctu-

ations in the environment.”



Fluctuating selection

Environment state Z ∈ {−1,+1}, Z 7→ −Z at Poisson rate 1/2.
Relative fitness types a and A are 1 + Zs : 1.

If proportion of type a parents is p, each offspring (independently)
type a with probability

(1 + Zs)p

1 + Zsp
= (1+Zs)p{1−Zsp}+O(s2) = p+Zsp(1−p)+O(s2).

Assume s
√
N is O(1), so selection much stronger than before.

“dp = Z
√
Nsp(1− p)dt+

√

p(1− p)dW”



The “Kurtz trick”

“dp = Z
√
Nsp(1− p)dt+

√

p(1− p)dW”

Frequency type a characterised by a martingale problem.

f(pt, Zt)−
∫ t

0
Lf(ps, Zs)ds = f(pt, Zt)

−
∫ t

0
( Lneu

︸︷︷︸
1

2
p(1−p)fpp

+
√
N Lsel

︸︷︷︸

sZp(1−p)fp

+N Lenv

︸︷︷︸

Eπ [f(Z)]−f(z)

)f(ps, Zs)ds

is a martingale.



The “Kurtz trick” (cont.)

Suppose f depends only on p.

(f+
1√
N

Lself)(pt, Zt)−
∫ t

0
(Lneuf(ps, Zs)+

1√
N

LneuLself(ps, Zs)

+
√
NLself(ps, Zs)+LselLself(ps, Zs)+

√
NLenvLself(ps, Zs)

︸ ︷︷ ︸√
NEπ[Zp(1−p)fp]−

√
NLself

ds

≈ f(pt)−
∫ t

0

(
Lneuf(ps, Zs)+LselLself(ps, Zs)

)
ds

is a martingale.



Limiting diffusion

f(pt)−
∫ t

0

(
Lneuf(ps) + LselLself(ps, Zs)

)
ds

is a martingale (for all nice f).

LselLself(p, Z) = Lsel(Zsp(1− p)fp)

= Z2
s
2
(
p2(1− p)2fpp + p(1− p)(1− 2p)fp

)
.

Limiting diffusion satisfies

dp = s
2p(1− p)(1 − 2p)dt
︸ ︷︷ ︸

balancing selection

+
√

p(1− p)dB1
t

︸ ︷︷ ︸

genetic drift

+
√
2sp(1− p)dB2

t
︸ ︷︷ ︸

fluctuating environment

,

where B1, B2 independent Brownian motions.



Space: the Wright-Malécot model

How do correlations in genetic types decay with distance?

Average one offspring per individual; location of each offspring
independent Gaussian pick around position of parent

t = 0
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Space: the Wright-Malécot model

How do correlations in genetic types decay with distance?

Average one offspring per individual; location of each offspring
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Space: the Wright-Malécot model

“The pain in the torus” Felsenstein (1975)

t = 100 t = 1000



The Λ-Fleming-Viot process

Before writing down a spatial model, need a model in which
significant proportion population can be replaced in each
reproduction event.
Donnelly & Kurtz (1999) State {ρ(t, ·) ∈ M1(K), t ≥ 0}.
Bertoin & Le Gall (2003)

◮ Poisson point process intensity dt⊗ u−2Λ(du)

◮ individual sampled at random from population

◮ proportion u of population replaced by offspring of chosen
individual

ρ(t, ·) = (1− u)ρ(t−, ·) + uδk.



The Λ-Fleming-Viot process
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The (neutral) spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈ M1(K), x ∈ R
d, t ≥ 0}.

Π Poisson point process rate dt⊗ dx⊗ ξ(dr, du) on
[0,∞) × R

d × [0,∞) × [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,
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Incorporating (fluctuating) selection

Specialise to K = {a,A}.

w(t, x) proportion of type a at the point x at time t.

Environment:

Z(t, ·) random field with

P [Z(t, x) = 1] = P [Z(t, x) = −1] =
1

2
,

E [Z(t, x)Z(t, y)] = g0(x, y).

At times t of Poisson Process Πenv, sample independent copy of Z.



Dynamics of allele frequencies

For each (t, x, r, u) ∈ Π, if

w(t−, x) =
1

|Br(x)|

∫

Br(x)
w(t−, y)dy,

◮ type K of parent of event is type a with probability

(1 + sZ(t, x))w(t−, x)

1 + sZ(t, x)w(t−, x)

otherwise it is type A.

For all y ∈ Br(x),

w(t, y) = (1− u)w(t−, y) + uδk=a.



Zooming out

Interested in large scale phenomena, so e.g. shape of events is not
important. For simplicity, radius and impact of events
deterministic.
Set

un =
u

n1/3
, sn =

s

n2/3−α
.

wn(t, x) = w
(
nt, n1/3x

)
, Zn(t, x) = Z

(
n2αt, n1/3x

)
.

Correlations in environment such that

lim
n→∞

gn
(
n1/3x, n1/3y

)
= g(x, y).

◮ Space-time scaling for w is diffusive;

◮ if selection didn’t fluctuate, would need α = 0;

◮ we assume long-range correlations in environment.



Theorem: scaling limit

Suppose wn(0, x) ⇒ w(0, x). Then wn ⇒ w where

dw =
(
κru∆w + u2s2w(1 − w)(1− 2w)

)
dt

+
√
2usVrw(1 − w)W (dt,dx)

+1d=1uVr

√

w(1− w)W(dt,dx),

where W is a coloured noise with quadratic variation given by

〈W (φ)〉t = t

∫

Rd

∫

Rd

g(x, y)φ(x)φ(y)dxdy,

and W is a space-time white noise.
c.f. non-spatial case

dp = s
2p(1− p)(1− 2p)dt+

√

p(1− p)dB1
t +

√
2sp(1− p)dB2

t .



Some remarks

What we’d really like is a way to model genealogical trees relating
individuals in the populations.
Under quite general conditions, there should be a stationary
distribution in two dimensions:

dp = s
2p(1− p)(1− 2p)dt+

√
2αsp(1− p)dB2

t

has a non-trivial stationary distribution as soon as α < 1.
Without space, there is a branching and annihilating dual...

◮ Genetic drift disappears in d ≥ 2;

◮ if follow a rare mutant, recover ‘superprocess in random
environment’ of Mytnik 1996;

◮ more generally, can write down evolution of subset of
a-individuals (‘tracer dynamics’).



Experiments with an individual based model

Population in discrete demes on a torus on Z.
Two regions with completely anticorrelated environments.
Two scenarios: (i) environment resampled on timescale on the
order of generations, (ii) environment fixed.


