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Exchangeability and de Finetti’s theorem
X1, X2, . . . is exchangeable if

P{X1 ∈ Γ1, . . . , Xm ∈ Γm} = P{Xs1 ∈ Γ1, . . . , Xsm ∈ Γm}

(s1, . . . , sm) any permutation of (1, . . . ,m).

Theorem 1 (de Finetti) Let X1, X2, . . . be exchangeable. Then there exists
a random probability measure Ξ such that for every bounded, measurable g,

lim
n→∞

g(X1) + · · ·+ g(Xn)

n
=

∫
g(x)Ξ(dx)

almost surely, and

E[
m∏
k=1

gk(Xk)|Ξ] =
m∏
k=1

∫
gkdΞ
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Convergence of exchangeable systems
Kotelenez and Kurtz (2010)

Lemma 2 For n = 1, 2, . . ., let {ξn1 , . . . , ξnNn
} be exchangeable (allowing

Nn = ∞.) Let Ξn be the empirical measure (defined as a limit if Nn = ∞),
Ξn = 1

Nn

∑Nn

i=1 δξni . Assume

• Nn →∞
• For each m = 1, 2, . . ., (ξn1 , . . . , ξ

n
m)⇒ (ξ1, . . . , ξm) in Sm.

Then

{ξi} is exchangeable and setting ξni = s0 ∈ S for i > Nn, {Ξn, ξn1 , ξ
n
2 . . .} ⇒

{Ξ, ξ1, ξ2, . . .} in P(S)× S∞, where Ξ is the deFinetti measure for {ξi}.

If for eachm, {ξn1 , . . . , ξnm} → {ξ1, . . . , ξm} in probability in Sm, then Ξn →
Ξ in probability in P(S).
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Lemma 3 Let Xn = (Xn
1 , . . . , X

n
Nn

) be exchangeable families of DE[0,∞)-
valued random variables such that Nn ⇒∞ and Xn ⇒ X in DE[0,∞)∞.
Define

Ξn = 1
Nn

∑Nn

i=1 δXn
i
∈ P(DE[0,∞))

Ξ = limm→∞
1
m

∑m
i= δXi

V n(t) = 1
Nn

∑Nn

i=1 δXn
i (t)
∈ P(E)

V (t) = limm→∞
1
m

∑m
i=1 δXi(t)

Then

a) For t1, . . . , tl /∈ {t : E[Ξ{x : x(t) 6= x(t−)}] > 0}
(Ξn, V

n(t1), . . . , V
n(tl))⇒ (Ξ, V (t1), . . . , V (tl)).

b) If Xn ⇒ X in DE∞[0,∞), then V n ⇒ V in DP(E)[0,∞). If Xn → X
in probability in DE∞[0,∞), then V n → V in DP(E)[0,∞) in proba-
bility.
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From particle approximation to particle representation

Xn
i (t) = Xn

i (0) +Bi(t) +W (t) +
1

n

n∑
j=1

∫ t

0

b(Xn
i (s)−Xn

j (s))ds

= Xn
i (0) +Bi(t) +W (t) +

∫ t

0

∫
R
b(Xn

i (s)− z)V n(s, dz)ds

If b is bounded and continuous and {Xn
i (0)} ⇒ {Xi(0)}, then relative

compactness is immediate and any limit point satisfies

Xi(t) = Xi(0) +Bi(t) +W (t) +

∫ t

0

∫
R
b(Xi(s)− z)V (s, dz)ds

Assuming uniqueness for the infinite system, V n ⇒ V where V (t) is
the de Finetti measure for {Xi(t)}.
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Derivation of SPDE

Applying Itô’s formula

ϕ(Xi(t)) = ϕ(Xi(0)) +

∫ t

0

ϕ′(Xi(s))dBi(s) +

∫ t

0

ϕ′(Xi(s))dW (s)

+

∫ t

0

L(V (s))ϕ(Xi(s))ds

where
L(v)ϕ(x) = ϕ′′(x) +

∫
b(x− z)v(dz)ϕ′(x).

Averaging gives

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0

〈V (s), ϕ′〉dW (s) +

∫
〈V (s), L(V (s))ϕ(·)〉ds
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Gaussian white noise

W (du×ds) will denote Gaussian white noise on U×[0,∞) with mean
zero and variance measure µ(du)ds.

For example, W (C× [0, t]), t ≥ 0, is Brownian motion with mean zero
and variance µ(C).

For appropriately adapted and integrable Z,

MZ(t) =

∫
U×[0,t]

Z(u, s)W (du× ds)

is a square integrable martingale with quadratic variation

[MZ ]t =

∫
U×[0,t]

Z(u, s)2µ(du)ds.
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Coupling through the center of mass

Let X(t) = limn→∞
1
n

∑n
i=1Xi(t) for

Xi(t) = Xi(0) +

∫ t

0

σ(Xi(s), X(s))dBi(s) +

∫ t

0

b(Xi(s), X(s))ds

+

∫
U×[0,t]

α(Xi(s), X(s), u)W (du× ds)

Setting a(x, y) = σ(x, y)σ(x, y)T +
∫
α(x, y, u)α(x, y, u)µ(du)

and Lϕ(x, y) = 1
2

∑
i,j a(x, y)∂i∂jϕ(x) + b(x, y) · ∇ϕ(x)

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫
U×[0,t]

〈V (s), α(·, X(s), u) · ∇ϕ(·)〉W (du× ds)

+

∫ t

0

〈V (s), Lϕ(·, X(s))〉ds

where V (t) = limk→∞
1
k

∑k
i=1 δXi(t) and X(t) =

∫
zV (t, dz).



 

•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 12

Stochastic Allen-Cahn equation
Consider a family of SPDEs of the form

dv = ∆vdt+ F (v)dt+ noise,
v(0, x) = h(x), x ∈ D,
v(t, x) = g(x), x ∈ ∂D, t > 0,

where F (v) = G(v)v and G is bounded above. For example,

F (v) = v − v3 = (1− v2)v.
To be specific, in weak form the equation is

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0

〈V (s),∆ϕ〉ds+

∫ t

0

〈V (s), ϕG(v(s, ·))〉ds

+

∫
U×[0,t]

∫
D

ϕ(x)ρ(x, u)dxW (du× ds),

for ϕ ∈ C2
c (D).

cf. Bertini, Brassesco, and Buttà (2009)
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Is it a nail?
{Xi} independent, stationary, reflecting Brownian motions in D.

dAi(t) = G(v(t,Xi(t))dt+

∫
U
ρ(Xi(t), u)W (du× dt)

Ai(0) = h(Xi(0)

If Xi hits the boundary at time t, Ai(t) is reset to g(Xi(t)).

V (t) = limk→∞
1
k

∑k
i=1Ai(t)δXi(t)

〈V (t), ϕ〉 =
∫
D ϕ(x)v(t, x)π(dx) where π is the stationary distribution

for Xi (normalized Lebesgue measure on D).
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Particle representation
More generally, let B be the generator of a reflecting diffusion X in
D and assume that X is ergodic with stationary distribution π. Let
{Xi, i ≥ 1} be independent, stationary diffusion with generator B.

Assume that the boundary of D is regular for both Xi and the time
reversal of Xi. Let τi(t) = 0 ∨ sup{s < t : Xi(s) ∈ ∂D, and

Ai(t) = g(Xi(τi(t)))1{τi(t)>0} + h(Xi(0))1{τi(t)=0} (1)

+

∫ t

τi(t)

G(v(s,Xi(s)), Xi(s))Ai(s)ds+

∫ t

τi(t)

b(Xi(s))ds

+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du× ds),

where

〈V (t), ϕ〉 = lim
n→∞

1

n

n∑
i=1

ϕ(Xi(t))Ai(t) =

∫
ϕ(x)v(t, x)π(dx).
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Corresponding SPDE

Define Mϕ,i(t) = ϕ(Xi(t))−
∫ t
0 Bϕ(Xi(s))ds.

Then

ϕ(Xi(t))Ai(t) = ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))dAi(s)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

Bϕ(Xi(s))Ai(s)ds

= ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))G(v(s,Xi(s)), Xi(s))Ai(s)ds

+

∫ t

0

ϕ(Xi(s))b(Xi(s))ds

+

∫
U×[0,t]

ϕ(Xi(s))ρ(Xi(s), u)W (du× ds)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

Bϕ(Xi(s))Ai(s)ds
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Averaging

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0

〈V (s), ϕG(v(s, ·), ·)〉ds+

∫ t

0

∫
bϕdπds

+

∫
U×[0,t]

∫
D

ϕ(x)ρ(x, u)π(dx)W (du× ds) +

∫ t

0

〈V (s), Bϕ〉ds

which is the weak form of

v(t, x) = v(0, x) +

∫ t

0

(G(v(s, x), x)v(s, x) + b(x))ds

+

∫
U×[0,t]

ρ(x, u)W (du× ds) +

∫ t

0

B∗v(x, s)ds,

where B∗ is the adjoint determined by
∫
gBfdπ =

∫
fB∗gdπ.
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Approximating systems
Let ψ be an L1(π)-valued stochastic process that is compatible with
W , and assume (W,ψ) is independent of {Xi} Define Aψ

i to be the
solution of

Aψ
i (t) = g(Xi(τi(t)))1{τi(t)>0} + h(Xi(0))1{τi(t)=0}

+

∫ t

τi(t)

G(ψ(s,Xi(s)), Xi(s))A
ψ
i (s)ds+

∫ t

τi(t)

b(Xi(s))ds

+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du× ds).

The {Aψ
i } will be exchangeable, so we can define Φψ(t, x) to be the

density of the signed measure determined by

〈ΦΨ(t), ϕ〉 ≡
∫
D

ϕ(x)Φψ(t, x)π(dx) = lim
N→∞

1

N

N∑
i=1

Aψ
i (t)ϕ(Xi(t)).
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Apriori bounds
Assume

K1 ≡ sup
x,D
|b(x)| <∞

K2 ≡ sup
x∈D

∫
ρ(x, u)2µ(du) <∞

K3 ≡ sup
v∈R,x∈D

G(v, x) <∞.

Lemma 4 Let

Hi(t) =

∫
U×[0,t]

ρ(Xi(s), u)W (du×ds) = Bi(

∫ t

0

∫
U
ρ(Xi(s), u)2µ(du)ds).

Then

|Aψ
i (t)| ≤ (‖g‖ ∨ ‖h‖+K1(t− τi(t)) + sup

τi(t)≤r≤t
|Hi(t)−Hi(r)|)eK3(t−τi(t))

≤ (‖g‖ ∨ ‖h‖+K1t+ sup
0≤s≤t

|Hi(t)−Hi(s)|)eK3t ≡ Γi(t).
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Lemma 5 Suppose that (W,ψ) is independent of {Xi}. Then Φψ is {FW,ψ
t }-

adapted and for each i,

E[Aψ
i (t)|W,ψ,Xi(t)] = Φψ(t,Xi(t))

so
Φψ(t,Xi(t)) ≤ E[Γi(t)|W,ψ,Xi(t)]

Remark 6 Let GXi
t = σ(Xi(r) : r ≥ t). Then the Markov property and the

independence of (W,ψ) and Xi imply

Φψ(t,Xi(t)) = E[Aψ
i (t)|W,ψ,Xi(t)] = E[Aψ

i (t)|σ(W,ψ) ∨ GXi
t ].

The properties of reverse martingales and Doob’s inequality give

E[ sup
0≤t≤T

|Φψ(t,Xi(t))|2] ≤ 4E[ sup
0≤t≤T

|Aψ
i (t)|2] ≤ 4E[ sup

0≤t≤T
Γi(t)

2]
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Proof. By exchangeability,

E[Aψ
i (t)ϕ(Xi(t))F (W,ψ)] = E[

∫
ϕ(x)ΦΨ(t, dx)F (W,ψ)]

= E[

∫
ϕ(x)Φψ(t, x)π(dx)F (W,ψ)]

= E[ϕ(Xi(t))Φψ(t,Xi(t))F (W,ψ)].

The last equality follows by the independence of Xi(t) and (W,ψ),
and the lemma follows by the definition of conditional expectation.
�
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Boundary conditions
Recall Φψ(t, x) is the density of the signed measure determined by

〈ΦΨ(t), ϕ〉 = lim
N→∞

1

N

N∑
i=1

Aψ
i (t)ϕ(Xi(t)).

If Xi(t) is close to ∂D, then by the regularity assumption, with high
probability t − τi(t) is small and Aψ

i (t) ≈ g(Xi(τi(t))). Consequently,
for y ∈ ∂D

Φψ(t, y) = lim
ε→0

ΦΨ(Bε(y))

π(Bε(y))
= g(y).
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Tightness in D of approximations

Aψ
i (t) = g(Xi(τi(t)))1{τi(t)>0} + h(Xi(0))1{τi(t)=0}

+

∫ t

τi(t)

G(ψ(s,Xi(s)), Xi(s))A
ψ
i (s)ds+

∫ t

τi(t)

b(Xi(s))ds

+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du× ds).

Let

Zψ
i (t) = −g(Xi(t)) +

∫ t

0

G(ψ(s,Xi(s)), Xi(s))A
ψ
i (s)ds

+

∫ t

0

b(Xi(s))ds+

∫
U×[0,t]

ρ(Xi(s), u)W (du× ds).

Then

Aψ
i (t) = g(Xi(t)) + Zψ

i (t)− Zψ
i (τi(t)) + (h(Xi(0))− g(Xi(0)))1{τi(t)=0}.
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Estimates on modulus of continuity

The Skorohod modulus of continuity of Aψ
i can be bounded in terms

of the ordinary modulus of continuity of Zψ
i .

Lemma 7 Define γ0i = inf{t : Xi(t) ∈ ∂D}. Then with probability one,
γ0i > 0, and for δ < γ0i ,

w′(Aψ
i , δ, T ) ≤ w(g ◦Xi, 4δ, T ) + 2w(Zψ

i , 4δ, T ). (2)

The relative compactness for {Aψ
i } for fixed i then follows from the relative

compactness of {Zψ
i } in CRd[0,∞).
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Uniqueness
L1 ≡ supv,x∈D

|G(v,x)|
1+|v|2 <∞.

L2 ≡ supv1,v2,x∈D
|G(v1,x)−G(v2,x)|
|v1−v2|(|v1|+|v2|) <∞.

|Av1i (t)− Av2i (t)| ≤
∫ t

τi(t)

|G(v1(s,Xi(s)), Xi(s))A
v1
i (s)−G(v2(s,Xi(s)), Xi(s))A

v2
i (s)|ds

≤
∫ t

τi(t)

L1(1 + E[Γi(s)|W,Xi(s)]
2)|Av1i (s)− Av2i (s)|ds

+

∫ t

τi(t)

2L2E[Γi(s)|W,Xi(s)]Γi(s)|v1(s,Xi(s))− v2(s,Xi(s))|ds

≤
∫ t

0

L1(1 + C2)|Av1i (s)− Av2i (s)|ds

+

∫ t

0

2L2C
2|v1(s,Xi(s))− v2(s,Xi(s))|ds

+

∫ t

0

1{Γi(s)>C}∪{E[Γi(s)|W,Xi(s)]>C}Γi(s)L3(1 + E[Γi(s)|W,Xi(s)]
2)ds
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Abstract
Particle representations for stochastic partial differential equations

Stochastic partial differential equations arise naturally as limits of finite systems of weighted interacting parti-
cles. For a variety of purposes, it is useful to keep the particles in the limit obtaining an infinite exchangeable
system of stochastic differential equations for the particle locations and weights. The corresponding de Finetti
measure then gives the solution of the SPDE. These representations frequently simplify existence, uniqueness
and convergence results. The talk will focus on situations where the particle locations are given by an iid fam-
ily of diffusion processes, and the weights are chosen to obtain a nonlinear driving term and to match given
boundary conditions for the SPDE. (Recent results are joint work with Dan Crisan.)


