The Brownian map A continuous limit for large random planar maps

Jean-François Le Gall

Université Paris-Sud Orsay and Institut universitaire de France

Seminar on Stochastic Processes 2012 Kai Lai Chung lecture

Jean-François Le Gall (Université Paris-Sud)

Outline

A planar map is just a graph drawn in the plane (or on the sphere) viewed up to continuous deformation.

It should be interpreted as a discretized model of the sphere.

Goal: To show that a large planar map chosen uniformly at random in a suitable class (*p*-angulations) and viewed as a metric space (for the graph distance) is asymptotically close to a universal limiting object :

the Brownian map

Strong analogy with random paths and Brownian motion: Brownian motion is the universal continuous limit of a variety of discrete models of random paths.

1. Statement of the main result

Definition

A planar map is a proper embedding of a connected graph into the two-dimensional sphere (considered up to orientation-preserving homeomorphisms of the sphere).

A rooted quadrangulation with 7 faces

A large triangulation of the sphere (simulation by G. Schaeffer) Can we get a continuous model out of this ?

Planar maps as metric spaces

M planar map

- V(M) = set of vertices of M
- $d_{\rm gr}$ graph distance on V(M)
- $(V(M), d_{gr})$ is a (finite) metric space

In red : distances from the root vertex

- $\mathbb{M}_n^{p} = \{ \text{rooted } p \text{angulations with } n \text{ faces} \}$
- \mathbb{M}_n^p is a finite set (finite number of possible "shapes")
- Choose M_n uniformly at random in \mathbb{M}_n^p . View $(V(M_n), d_{gr})$ as a random variable with values in

 $\mathbb{K} = \{ \text{compact metric spaces, modulo isometries} \}$

which is equipped with the Gromov-Hausdorff distance.

The Gromov-Hausdorff distance

The Hausdorff distance. K_1 , K_2 compact subsets of a metric space

 $d_{\text{Haus}}(K_1, K_2) = \inf\{\varepsilon > 0 : K_1 \subset U_{\varepsilon}(K_2) \text{ and } K_2 \subset U_{\varepsilon}(K_1)\}$

 $(U_{\varepsilon}(K_1) \text{ is the } \varepsilon \text{-enlargement of } K_1)$

Definition (Gromov-Hausdorff distance)

If (E_1, d_1) and (E_2, d_2) are two compact metric spaces,

$$\mathcal{H}_{\mathrm{GH}}(\mathcal{E}_1, \mathcal{E}_2) = \inf\{\mathcal{O}_{\mathrm{Haus}}(\psi_1(\mathcal{E}_1), \psi_2(\mathcal{E}_2))\}$$

the infimum is over all isometric embeddings $\psi_1 : E_1 \to E$ and $\psi_2 : E_2 \to E$ of E_1 and E_2 into the same metric space E.

Gromov-Hausdorff convergence of rescaled maps

Fact

If $\mathbb{K} = \{\text{isometry classes of compact metric spaces}\}$, then

 (\mathbb{K}, d_{GH}) is a separable complete metric space (Polish space)

→ If M_n is uniformly distributed over {p – angulations with n faces}, it makes sense to study the convergence in distribution of

$$(V(M_n), n^{-a}d_{\rm gr})$$

as random variables with values in \mathbb{K} .

(Problem stated for triangulations by O. Schramm [ICM06])

Choice of the rescaling parameter: a > 0 is chosen so that $\operatorname{diam}(V(M_n)) \approx n^a$.

 $\Rightarrow a = \frac{1}{4}$ [cf Chassaing-Schaeffer PTRF 2004 for quadrangulations]

(B) (A) (B) (A)

The main theorem

 $\mathbb{M}_{n}^{p} = \{ \text{rooted } p - \text{angulations with } n \text{ faces} \}$ $M_{n} \text{ uniform over } \mathbb{M}_{n}^{p}, V(M_{n}) \text{ vertex set of } M_{n}, d_{gr} \text{ graph distance} \}$

Theorem (The scaling limit of *p*-angulations)

Suppose that either p = 3 (triangulations) or $p \ge 4$ is even. Set

$$c_3 = 6^{1/4}$$
 , $c_p = \left(rac{9}{p(p-2)}
ight)^{1/4}$ if p is even.

Then,

$$(V(M_n), c_p \frac{1}{n^{1/4}} d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{(\mathrm{d})} (\mathbf{m}_{\infty}, D^*)$$

in the Gromov-Hausdorff sense. The limit $(\mathbf{m}_{\infty}, D^*)$ is a random compact metric space that does not depend on p (universality) and is called the Brownian map (after Marckert-Mokkadem).

Remarks. Alternative approach to the case p = 4: Miermont (2011) The case p = 3 solves Schramm's problem (2006)

Why study planar maps and their continuous limits ?

- combinatorics [Tutte '60, 4-color thm, ...]
- theoretical physics
 - enumeration of maps related to matrix integrals ['t Hooft 74, Brézin, Itzykson, Parisi, Zuber 78, etc.]
 - large random planar maps as models of random geometry (quantum gravity, cf Ambjørn, Durhuus, Jonsson 95, Duplantier-Sheffield 08, Sheffield 10)
- probability theory: models for a Brownian surface
 - analogy with Brownian motion as continuous limit of discrete paths
 - universality of the limit (conjectured by physicists)
 - asymptotic properties of large planar graphs
- algebraic and geometric motivations: cf Lando-Zvonkin 04 Graphs on surfaces and their applications

2. The Brownian map

The Brownian map $(\mathbf{m}_{\infty}, D^*)$ is constructed by identifying certain pairs of points in the Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, ...):

- As the scaling limit of many classes of discrete trees
- As the random real tree whose contour is a Brownian excursion.

The notion of a real tree

Definition

A real tree, or $\mathbb{R}\text{-tree},$ is a (compact) metric space $\mathcal T$ such that:

- any two points *a*, *b* ∈ *T* are joined by a unique continuous and injective path (up to re-parametrization)
- this path is isometric to a line segment
- \mathcal{T} is a rooted real tree if there is a distinguished point ρ , called the root.

Remark. A real tree can have

- infinitely many branching points
- (uncountably) infinitely many leaves

Fact. The coding of discrete trees by contour functions (Dyck paths) can be extended to real trees.

The real tree coded by a function g $g: [0,1] \rightarrow [0,\infty)$ g(s) g(0) = g(1) = 0 g(s,t)

 $d_g(s,t) = g(s) + g(t) - 2\min_{s \le r \le t} g(r)$ pseudo-metric on [0, 1] $t \sim t'$ iff $d_g(t,t') = 0$ (or equivalently $g(t) = g(t') = \min_{t \le r \le t'} g(r)$)

s

Proposition (Duquesne-LG)

 $\mathcal{T}_g := [0, 1] / \sim$ equipped with d_g is a real tree, called the tree coded by g. It is rooted at $\rho = 0$.

Remark. T_g inherits a "lexicographical order" from the coding.

Definition of the CRT

Let $\mathbf{e} = (\mathbf{e}_t)_{0 \le t \le 1}$ be a Brownian excursion with duration 1.

Definition

The CRT (T_e, d_e) is the (random) real tree coded by the Brownian excursion **e**.

A simulation of the CRT (simulation by G. Miermont)

Jean-François Le Gall (Université Paris-Sud)

The Brownian map

Assigning Brownian labels to a real tree

Let (\mathcal{T}, d) be a real tree with root ρ .

 $(Z_a)_{a \in \mathcal{T}}$: Brownian motion indexed by (\mathcal{T}, d) = centered Gaussian process such that

•
$$Z_{
ho} = 0$$

• $E[(Z_a - Z_b)^2] = d(a, b), \qquad a, b \in \mathcal{T}$

Labels evolve like Brownian motion along the branches of the tree:

- The label Z_a is the value at time d(ρ, a) of a standard Brownian motion
- Similar property for Z_b, but one uses
 - the same BM between 0 and $d(\rho, a \wedge b)$
 - An independent BM between d(ρ, a ∧ b) and d(ρ, b)

- A TE N - A TE N

The definition of the Brownian map

 (\mathcal{T}_{e}, d_{e}) is the CRT, $(Z_{a})_{a \in \mathcal{T}_{e}}$ Brownian motion indexed by the CRT Set, for every $a, b \in \mathcal{T}_{e}$,

$$D^0(a,b) = Z_a + Z_b - 2 \max\left(\min_{c \in [a,b]} Z_c, \min_{c \in [b,a]} Z_c
ight)$$

where [a, b] is the "lexicographical interval" from *a* to *b* in \mathcal{T}_{e} (vertices visited when going from *a* to *b* in clockwise order around the tree). Then set

$$D^*(a,b) = \inf_{a_0=a,a_1,...,a_{k-1},a_k=b} \sum_{i=1}^{k} D^0(a_{i-1},a_i),$$

 $a \approx b$ if and only if $D^*(a, b) = 0$ (equivalent to $D^0(a, b) = 0$).

Definition

The Brownian map \mathbf{m}_{∞} is the quotient space $\mathbf{m}_{\infty} := \mathcal{T}_{\mathbf{e}} / \approx$, which is equipped with the distance induced by D^* .

Jean-François Le Gall (Université Paris-Sud)

Interpretation

Starting from the CRT \mathcal{T}_{e} , with Brownian labels $Z_{a}, a \in \mathcal{T}_{e}$, \rightarrow Identify two vertices $a, b \in \mathcal{T}_{e}$ if:

- they have the same label $Z_a = Z_b$,
- one can go from *a* to *b* around the tree (in clockwise or in counterclockwise order) visiting only vertices with label greater than or equal to $Z_a = Z_b$.

Remark. Not many vertices are identified:

- A "typical" equivalence class is a singleton.
- Equivalence classes may contain at most 3 points.

Still these identifications drastically change the topology.

Two theorems about the Brownian map

Theorem (Hausdorff dimension)

$$\dim(\mathbf{m}_{\infty}, D^*) = 4$$
 a.s.

(Already "known" in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, $(\mathbf{m}_{\infty}, D^*)$ is homeomorphic to the 2-sphere \mathbb{S}^2 .

Consequence: for a planar map M_n with *n* vertices, no separating cycle of size $o(n^{1/4})$ in M_n , such that both sides have diameter $> \varepsilon n^{1/4}$

< ロ > < 同 > < 回 > < 回 >

3. The main tool: Bijections between maps and trees

A planar tree $\tau = \{ \emptyset, 1, 2, 11, ... \}$

(rooted ordered tree)

the lexicographical order on vertices will play an important role in what follows A well-labeled tree $(\tau, (\ell_v)_{v \in \tau})$ Properties of labels:

121

122

•
$$\ell_{\varnothing} = 1$$

11

•
$$\ell_{v} \in \{1, 2, 3, ...\}, \forall v$$

• $|\ell_{m{v}}-\ell_{m{v}'}|\leq$ 1, if $m{v},m{v}'$ neighbors

Coding maps with trees, the case of quadrangulations

 $\mathbb{T}_n = \{ \text{well-labeled trees with } n \text{ edges} \}$ $\mathbb{M}_n^4 = \{ \text{rooted quadrangulations with } n \text{ faces} \}$

Theorem (Cori-Vauquelin, Schaeffer)

There is a bijection $\Phi : \mathbb{T}_n \longrightarrow \mathbb{M}_n^4$ such that, if $M = \Phi(\tau, (\ell_v)_{v \in \tau})$, then

 $V(M) = \tau \cup \{\partial\} \qquad (\partial \text{ is the root vertex of } M)$ $d_{gr}(\partial, v) = \ell_v \quad , \forall v \in \tau$

Key facts.

- Vertices of τ become vertices of M
- The label in the tree becomes the distance from the root in the map.

Coding of more general maps: Bouttier, Di Francesco, Guitter (2004)

Jean-François Le Gall (Université Paris-Sud)

The Brownian map

Rules.

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

H N

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

Rules.

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

12 N A 12

- add extra vertex
 ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

Rules.

- add extra vertex
 - ∂ labeled 0
- follow the contour of the tree, connect each vertex to the last visited vertex with smaller label

well-labeled tree q

quadrangulation

The label in the tree becomes the distance from ∂ in the graph

Interpretation of the equivalence relation \approx

In Schaeffer's bijection: \exists edge between *u* and *v* if

•
$$\ell_u = \ell_v - 1$$

•
$$\ell_{w} \geq \ell_{v}$$
, $\forall w \in]u, v]$

Explains why in the continuous limit

 $Z_a = Z_b = \min_{c \in [a,b]} Z_c$ $\Rightarrow a \text{ and } b \text{ are identified}$

Key points of the proof of the main theorem:

- Prove the converse (no other pair of points are identified)
- Obtain the formula for the limiting distance D*

A property of distances in the Brownian map

Let ρ_* be the (unique) vertex of $\mathcal{T}_{\mathbf{e}}$ such that

$$Z_{
ho_*} = \min_{m{c}\in\mathcal{T}_{e}} Z_{m{c}}$$

Then, for every $a \in \mathcal{T}_{e}$,

$$D^*(\rho_*, a) = Z_a - \min Z.$$

("follows" from the analogous property in the discrete setting) No such simple expression for $D^*(a, b)$ in terms of labels, but

$$D^*(a,b) \leq D^0(a,b) = Z_a + Z_b - 2 \max \Big(\min_{c \in [a,b]} Z_c, \min_{c \in [b,a]} Z_c \Big)$$

(also easy to interpret from the discrete setting) *D*^{*} is the maximal metric that satisfies this inequality

4. Geodesics in the Brownian map

Geodesics in quadrangulations

Use Schaeffer's bijection between quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂ :

- Look for the last visited vertex (before v) with label l_v 1. Call it v'.
- Proceed in the same way from v' to get a vertex v".
- And so on.
- Eventually one reaches the root ∂ .

Simple geodesics in the Brownian map

Brownian map: $\mathbf{m}_{\infty} = \mathcal{T}_{\mathbf{e}} / \approx$ $\mathcal{T}_{\mathbf{e}}$ is re-rooted at ρ_* vertex with minimal label \prec lexicographical order on $\mathcal{T}_{\mathbf{e}}$

Recall $D^*(\rho_*, a) = \overline{Z}_a := Z_a - \min Z$. Fix $a \in \mathcal{T}_e$ and for $t \in [0, \overline{Z}_a]$, set $\varphi_a(t) = \sup\{b \prec a : \overline{Z}_b = t\}$ (same formula as in the discrete case !)

Then $(\varphi_a(t))_{0 \le t \le \overline{Z}_a}$ is a geodesic from ρ_* to *a* (called a simple geodesic)

Fact

Simple geodesics visit only leaves of \mathcal{T}_{e} (except possibly at the endpoint)

イロト 不得 トイヨト イヨト

How many simple geodesics from a given point ?

- If a is a leaf of T_e, there is a unique simple geodesic from ρ_{*} to a
- Otherwise, there are
 - 2 distinct simple geodesics if a is a simple point
 - 3 distinct simple geodesics if a is a branching point

(3 is the maximal multiplicity in \mathcal{T}_e)

Proposition (key result)

All geodesics from the root are simple geodesics.

The main result about geodesics

Define the skeleton of \mathcal{T}_e by $\mathrm{Sk}(\mathcal{T}_e)=\mathcal{T}_e\backslash\{\text{leaves of }\mathcal{T}_e\}$ and set

Skel = $\pi(Sk(\mathcal{T}_e))$ ($\pi: \mathcal{T}_e \to \mathcal{T}_e / \approx = \mathbf{m}_{\infty}$ canonical projection)

Then

- the restriction of π to $Sk(\mathcal{T}_e)$ is a homeomorphism onto Skel
- $\dim(\text{Skel}) = 2$ (recall $\dim(\mathbf{m}_{\infty}) = 4$)

Theorem (Geodesics from the root)

Let $x \in \mathbf{m}_{\infty}$. Then,

- if $x \notin \text{Skel}$, there is a unique geodesic from ρ_* to x
- if x ∈ Skel, the number of distinct geodesics from ρ_{*} to x is the multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

Remarks

- Skel is the cut-locus of **m**_∞ relative to ρ_{*}: cf classical Riemannian geometry [Poincaré, Myers, ...], where the cut-locus is a tree.
- same results if ρ_* replaced by a point chosen "at random" in \mathbf{m}_{∞}

Confluence property of geodesics

Fact: Two simple geodesics coincide near ρ_* . (easy from the definition)

Corollary

Given $\delta > 0$, there exists $\varepsilon > 0$ s.t.

- if $D^*(\rho_*, \mathbf{x}) \geq \delta$, $D^*(\rho_*, \mathbf{y}) \geq \delta$
- if γ is any geodesic from ρ_* to x
- if γ' is any geodesic from ρ_* to y then

 $\gamma(t) = \gamma'(t)$ for all $t \leq \varepsilon$

"Only one way" of leaving ρ_* along a geodesic. (also true if ρ_* is replaced by a typical point of \mathbf{m}_{∞})

Uniqueness of geodesics in discrete maps

 M_n uniform distributed over $\mathbb{M}_n^{2p} = \{2p - \text{angulations with } n \text{ faces}\}$ $V(M_n)$ set of vertices of M_n , ∂ root vertex of M_n , d_{gr} graph distance

For $v \in V(M_n)$, $\operatorname{Geo}(\partial \to v) = \{ \text{geodesics from } \partial \text{ to } v \}$

If γ , γ' are two discrete paths (with the same length)

$$d(\gamma,\gamma') = \max_{i} d_{\rm gr}(\gamma(i),\gamma'(i))$$

Corollary

Let $\delta > 0$. Then,

$$\frac{1}{n} \# \{ \mathbf{v} \in V(M_n) : \exists \gamma, \gamma' \in \operatorname{Geo}(\partial \to \mathbf{v}), \ \mathbf{d}(\gamma, \gamma') \geq \delta n^{1/4} \} \underset{n \to \infty}{\longrightarrow} \mathbf{0}$$

Macroscopic uniqueness of geodesics, also true for "approximate geodesics"= paths with length $d_{gr}(\partial, v) + o(n^{1/4})$

5. Canonical embeddings: Open problems

Recall that a planar map is defined up to (orientation-preserving) homeomorphisms of the sphere.

It is possible to choose a particular (canonical) embedding of the graph satisfying conformal invariance properties, and this choice is unique (at least up to the Möbius transformations, which are the conformal transformations of the sphere \mathbb{S}^2).

Question

Applying this canonical embedding to M_n (uniform over p-angulations with n faces), can one let n tend to infinity and get a random metric Δ on the sphere \mathbb{S}^2 satisfying conformal invariance properties, and such that

 $(\mathbb{S}^2,\Delta) \stackrel{(\mathrm{d})}{=} (\mathbf{m}_{\infty}, D^*)$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Canonical embeddings via circle packings 1

From a circle packing,

construct a graph M:

- V(M) = {centers of circles}
- edge between *a* and *b* if the corresponding circles are tangent.

A triangulation (without loops or multiple edges) can always be represented in this way.

Representation unique up to Möbius transformations.

< ロ > < 同 > < 回 > < 回 >

Figure by Nicolas Curien

Canonical embeddings via circle packings 2

Apply to M_n uniform over {triangulations with *n* faces}. Let $n \to \infty$. Expect to get

 Random metric △ on S² (with conformal invariance properties) such that

$$(\mathbb{S}^2,\Delta)=(\mathbf{m}_\infty,D^*)$$

 Random volume measure on S²

Connections with the Gaussian free field and Liouville quantum gravity ? (cf Duplantier-Sheffield).

Figure by Nicolas Curien

A few references

- BENJAMINI: Random planar metrics. Proc. ICM 2010
- BOUTTIER, DI FRANCESCO, GUITTER: Planar maps as labeled mobiles. *Electr. J. Combinatorics* (2004)
- DUPLANTIER, SHEFFIELD: Liouville quantum gravity and KPZ. *Invent. Math.* (2011)
- LE GALL: The topological structure of scaling limits of large planar maps. *Invent. Math.* (2007)
- LE GALL: Geodesics in large planar maps and in the Brownian map. *Acta Math.* (2010)
- LE GALL: Uniqueness and universality of the Brownian map. Preprint. LE GALL, PAULIN: Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. *GAFA* (2008)
- MARCKERT, MOKKADEM: Limit of normalized quadrangulations: The Brownian map. *Ann. Probab.* (2006)
- MIERMONT: The Brownian map is the scaling limit of uniform random plane quadrangulations. Preprint.
- SCHRAMM: Conformally invariant scaling limits. Proc. ICM 2006.