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Outline

A planar map is just a graph drawn in the plane (or on the sphere)
viewed up to continuous deformation.
It should be interpreted as a discretized model of the sphere.

Goal: To show that a large planar map chosen uniformly at random in
a suitable class (p-angulations) and viewed as a metric space (for the
graph distance) is asymptotically close to a universal limiting object :

the Brownian map

Strong analogy with random paths and Brownian motion: Brownian
motion is the universal continuous limit of a variety of discrete models
of random paths.
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1. Statement of the main result

Definition
A planar map is a proper embedding of a connected graph into the
two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).
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root
vertex

root
edge

Faces = connected components of the
complement of edges

p-angulation:
each face has p adjacent edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished oriented edge

A rooted quadrangulation
with 7 faces
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A large triangulation of the sphere (simulation by G. Schaeffer)
Can we get a continuous model out of this ?
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Planar maps as metric spaces

M planar map
V (M) = set of vertices of M
dgr graph distance on V (M)

(V (M),dgr) is a (finite) metric space
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In red : distances from
the root vertex

Mp
n = {rooted p − angulations with n faces}

Mp
n is a finite set (finite number of possible “shapes”)

Choose Mn uniformly at random in Mp
n.

View (V (Mn),dgr) as a random variable with values in

K = {compact metric spaces, modulo isometries}

which is equipped with the Gromov-Hausdorff distance.
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The Gromov-Hausdorff distance
The Hausdorff distance. K1, K2 compact subsets of a metric space

dHaus(K1,K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}
(Uε(K1) is the ε-enlargement of K1)

Definition (Gromov-Hausdorff distance)
If (E1,d1) and (E2,d2) are two compact metric spaces,

dGH(E1,E2) = inf{dHaus(ψ1(E1), ψ2(E2))}
the infimum is over all isometric embeddings ψ1 : E1 → E and
ψ2 : E2 → E of E1 and E2 into the same metric space E .

ψ2

E2E1

ψ1
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Gromov-Hausdorff convergence of rescaled maps

Fact
If K = {isometry classes of compact metric spaces}, then

(K,dGH) is a separable complete metric space (Polish space)

→ If Mn is uniformly distributed over {p − angulations with n faces},
it makes sense to study the convergence in distribution of

(V (Mn),n−adgr)

as random variables with values in K.
(Problem stated for triangulations by O. Schramm [ICM06])

Choice of the rescaling parameter: a > 0 is chosen so that
diam(V (Mn)) ≈ na.

⇒ a = 1
4 [cf Chassaing-Schaeffer PTRF 2004 for quadrangulations]
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The main theorem
Mp

n = {rooted p − angulations with n faces}
Mn uniform over Mp

n, V (Mn) vertex set of Mn, dgr graph distance

Theorem (The scaling limit of p-angulations)
Suppose that either p = 3 (triangulations) or p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9

p(p − 2)

)1/4
if p is even.

Then,

(V (Mn), cp
1

n1/4 dgr)
(d)−→

n→∞
(m∞,D∗)

in the Gromov-Hausdorff sense. The limit (m∞,D∗) is a random
compact metric space that does not depend on p (universality) and is
called the Brownian map (after Marckert-Mokkadem).

Remarks. Alternative approach to the case p = 4: Miermont (2011)
The case p = 3 solves Schramm’s problem (2006)
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Why study planar maps and their continuous limits ?

combinatorics [Tutte ’60, 4-color thm, ...]
theoretical physics

I enumeration of maps related to matrix integrals [’t Hooft 74, Brézin,
Itzykson, Parisi, Zuber 78, etc.]

I large random planar maps as models of random geometry
(quantum gravity, cf Ambjørn, Durhuus, Jonsson 95,
Duplantier-Sheffield 08, Sheffield 10)

probability theory: models for a Brownian surface
I analogy with Brownian motion as continuous limit of discrete paths
I universality of the limit (conjectured by physicists)
I asymptotic properties of large planar graphs

algebraic and geometric motivations: cf Lando-Zvonkin 04 Graphs
on surfaces and their applications
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2. The Brownian map
The Brownian map (m∞,D∗) is constructed by identifying certain pairs
of points in the Brownian continuum random tree (CRT).

Constructions of the CRT (Aldous, ...):
As the scaling limit of many classes of discrete trees
As the random real tree whose contour is a Brownian excursion.
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A discrete tree and its contour function.
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The notion of a real tree

Definition
A real tree, or R-tree, is a (compact) metric space
T such that:

any two points a,b ∈ T are joined by a
unique continuous and injective path (up to
re-parametrization)
this path is isometric to a line segment

T is a rooted real tree if there is a distinguished
point ρ, called the root.

a
b

ρ

Remark. A real tree can have
infinitely many branching points
(uncountably) infinitely many leaves

Fact. The coding of discrete trees by contour functions (Dyck paths)
can be extended to real trees.
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The real tree coded by a function g

g : [0,1] −→ [0,∞)
continuous,
g(0) = g(1) = 0

mg(s,t)

g(s)

g(t)

s t ′t 1

dg(s, t) = g(s) + g(t)− 2 mins≤r≤t g(r) pseudo-metric on [0,1]

t ∼ t ′ iff dg(t , t ′) = 0 (or equivalently g(t) = g(t ′) = mint≤r≤t ′ g(r))

Proposition (Duquesne-LG)
Tg := [0,1]/∼ equipped with dg is a real tree, called the tree coded by
g. It is rooted at ρ = 0.

Remark. Tg inherits a “lexicographical order” from the coding.
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Definition of the CRT
Let e = (et )0≤t≤1 be a Brownian excursion with duration 1.

Definition
The CRT (Te,de) is the (random) real tree coded by the Brownian
excursion e.

1
t

et

ρ

tree Te
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yzI
w
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A simulation of the CRT (simulation by G. Miermont)
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Assigning Brownian labels to a real tree
Let (T ,d) be a real tree with root ρ.

(Za)a∈T : Brownian motion indexed by (T ,d)
= centered Gaussian process such that

Zρ = 0
E [(Za − Zb)2] = d(a,b), a,b ∈ T

ρ

a
b

a∧b

Labels evolve like Brownian motion along the
branches of the tree:

The label Za is the value at time d(ρ,a) of a
standard Brownian motion
Similar property for Zb, but one uses

I the same BM between 0 and d(ρ,a ∧ b)
I an independent BM between d(ρ,a ∧ b) and

d(ρ,b)
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The definition of the Brownian map
(Te,de) is the CRT, (Za)a∈Te Brownian motion indexed by the CRT
Set, for every a,b ∈ Te,

D0(a,b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc , min
c∈[b,a]

Zc

)
where [a,b] is the “lexicographical interval” from a to b in Te (vertices
visited when going from a to b in clockwise order around the tree).
Then set

D∗(a,b) = inf
a0=a,a1,...,ak−1,ak=b

k∑
i=1

D0(ai−1,ai),

a ≈ b if and only if D∗(a,b) = 0 (equivalent to D0(a,b) = 0).

Definition
The Brownian map m∞ is the quotient space m∞ := Te/ ≈, which is
equipped with the distance induced by D∗.

Jean-François Le Gall (Université Paris-Sud) The Brownian map Lawrence, March 2012 16 / 41



Interpretation

Starting from the CRT Te, with Brownian labels Za,a ∈ Te,
→ Identify two vertices a,b ∈ Te if:

they have the same label Za = Zb,
one can go from a to b around the tree (in clockwise or in
counterclockwise order) visiting only vertices with label greater
than or equal to Za = Zb.

Remark. Not many vertices are identified:
A “typical” equivalence class is a singleton.
Equivalence classes may contain at most 3 points.

Still these identifications drastically change the topology.

Jean-François Le Gall (Université Paris-Sud) The Brownian map Lawrence, March 2012 17 / 41



Two theorems about the Brownian map

Theorem (Hausdorff dimension)

dim(m∞,D∗) = 4 a.s.

(Already “known” in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, (m∞,D∗) is homeomorphic to the 2-sphere S2.

Consequence: for a planar
map Mn with n vertices,
no separating cycle of size
o(n1/4) in Mn,
such that both sides have
diameter ≥ εn1/4
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3. The main tool: Bijections between maps and trees
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A planar tree τ = {∅,1,2,11, . . .}
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A well-labeled tree (τ, (`v )v∈τ )

(rooted ordered tree)

the lexicographical order on
vertices will play an important role
in what follows

Properties of labels:
`∅ = 1
`v ∈ {1,2,3, . . .}, ∀v
|`v − `v ′ | ≤ 1, if v , v ′ neighbors
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Coding maps with trees, the case of quadrangulations

Tn = {well-labeled trees with n edges}
M4

n = {rooted quadrangulations with n faces}

Theorem (Cori-Vauquelin, Schaeffer)

There is a bijection Φ : Tn −→M4
n such that, if M = Φ(τ, (`v )v∈τ ), then

V (M) = τ ∪ {∂} (∂ is the root vertex of M)

dgr(∂, v) = `v , ∀v ∈ τ

Key facts.
Vertices of τ become vertices of M
The label in the tree becomes the distance from the root in the
map.

Coding of more general maps: Bouttier, Di Francesco, Guitter (2004)
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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well-labeled tree quadrangulation
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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follow the
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well-labeled tree quadrangulation

The label in the tree becomes the distance from ∂ in the graph
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Interpretation of the equivalence relation ≈

In Schaeffer’s bijection:
∃ edge between u and v if

`u = `v − 1
`w ≥ `v , ∀w ∈]u, v ]

Explains why in the continuous limit

Za = Zb = minc∈[a,b] Zc

⇒ a and b are identified v
v

v
v v v

v

v
v

1

1
2

32
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u

v

Key points of the proof of the main theorem:

Prove the converse (no other pair of points are identified)
Obtain the formula for the limiting distance D∗
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A property of distances in the Brownian map

Let ρ∗ be the (unique) vertex of Te such that

Zρ∗ = min
c∈Te

Zc

Then, for every a ∈ Te,

D∗(ρ∗,a) = Za −min Z .

(“follows” from the analogous property in the discrete setting)

No such simple expression for D∗(a,b) in terms of labels, but

D∗(a,b) ≤ D0(a,b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc , min
c∈[b,a]

Zc

)
(also easy to interpret from the discrete setting)
D∗ is the maximal metric that satisfies this inequality
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4. Geodesics in the Brownian map

Geodesics in quadrangulations

Use Schaeffer’s bijection between
quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂:
Look for the last visited vertex (before
v ) with label `v − 1. Call it v ′.
Proceed in the same way from v ′ to
get a vertex v ′′.
And so on.
Eventually one reaches the root ∂. u

u
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uuuu
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u
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vv ′
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Simple geodesics in the Brownian map

Brownian map: m∞ = Te/≈
Te is re-rooted at ρ∗ vertex with minimal label
≺ lexicographical order on Te

Recall D∗(ρ∗,a) = Z a := Za −min Z .

Fix a ∈ Te and for t ∈ [0,Z a], set
ϕa(t) = sup{b ≺ a : Z b = t}

(same formula as in the discrete case !)

Then (ϕa(t))0≤t≤Z a
is a geodesic from ρ∗ to a

(called a simple geodesic)
ρ∗

a

ϕa(t)

Fact
Simple geodesics visit only leaves of Te (except possibly at the
endpoint)
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How many simple geodesics from a given point ?

If a is a leaf of Te,
there is a unique simple geodesic
from ρ∗ to a
Otherwise, there are

I 2 distinct simple geodesics if a is a
simple point

I 3 distinct simple geodesics if a is a
branching point

(3 is the maximal multiplicity in Te)

ρ∗

a

Proposition (key result)
All geodesics from the root are simple geodesics.

Jean-François Le Gall (Université Paris-Sud) The Brownian map Lawrence, March 2012 34 / 41



The main result about geodesics
Define the skeleton of Te by Sk(Te) = Te\{leaves of Te} and set

Skel = π(Sk(Te)) (π : Te → Te/≈= m∞ canonical projection)

Then
the restriction of π to Sk(Te) is a homeomorphism onto Skel
dim(Skel) = 2 (recall dim(m∞) = 4)

Theorem (Geodesics from the root)
Let x ∈ m∞. Then,

if x /∈ Skel, there is a unique geodesic from ρ∗ to x
if x ∈ Skel, the number of distinct geodesics from ρ∗ to x is the
multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

Remarks
Skel is the cut-locus of m∞ relative to ρ∗: cf classical Riemannian
geometry [Poincaré, Myers, ...], where the cut-locus is a tree.
same results if ρ∗ replaced by a point chosen “at random” in m∞.
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Confluence property of geodesics

Fact: Two simple geodesics coincide near ρ∗.
(easy from the definition)

Corollary
Given δ > 0, there exists ε > 0 s.t.

if D∗(ρ∗, x) ≥ δ, D∗(ρ∗, y) ≥ δ
if γ is any geodesic from ρ∗ to x
if γ′ is any geodesic from ρ∗ to y

then

γ(t) = γ′(t) for all t ≤ ε

�

?

ρ∗
ε

δ

x

y

“Only one way” of leaving ρ∗ along a geodesic.
(also true if ρ∗ is replaced by a typical point of m∞)
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Uniqueness of geodesics in discrete maps
Mn uniform distributed over M2p

n = {2p − angulations with n faces}
V (Mn) set of vertices of Mn, ∂ root vertex of Mn, dgr graph distance

For v ∈ V (Mn), Geo(∂ → v) = {geodesics from ∂ to v}
If γ, γ′ are two discrete paths (with the same length)

d(γ, γ′) = max
i

dgr(γ(i), γ′(i))

Corollary
Let δ > 0. Then,

1
n

#{v ∈ V (Mn) : ∃γ, γ′ ∈ Geo(∂ → v), d(γ, γ′) ≥ δn1/4} −→
n→∞

0

Macroscopic uniqueness of geodesics, also true for
“approximate geodesics”= paths with length dgr(∂, v) + o(n1/4)
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5. Canonical embeddings: Open problems

Recall that a planar map is defined up to (orientation-preserving)
homeomorphisms of the sphere.

It is possible to choose a particular (canonical) embedding of the graph
satisfying conformal invariance properties, and this choice is unique (at
least up to the Möbius transformations, which are the conformal
transformations of the sphere S2).

Question
Applying this canonical embedding to Mn (uniform over p-angulations
with n faces), can one let n tend to infinity and get a random metric ∆
on the sphere S2 satisfying conformal invariance properties, and such
that

(S2,∆)
(d)
= (m∞,D∗)
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Canonical embeddings via circle packings 1

From a circle packing,
construct a graph M :

V (M) = {centers of
circles}

edge between a and b
if the corresponding
circles are tangent.

A triangulation (without
loops or multiple edges) can
always be represented in
this way.

Representation unique up
to Möbius transformations.
Figure by Nicolas Curien
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Canonical embeddings via circle packings 2
Apply to Mn uniform over
{triangulations with n faces}.
Let n→∞. Expect to get

Random metric ∆ on
S2 (with conformal
invariance properties)
such that
(S2,∆) = (m∞,D∗)
Random volume
measure on S2

Connections with the
Gaussian free field and
Liouville quantum gravity ?
(cf Duplantier-Sheffield).
Figure by Nicolas Curien
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