Malliavin calculus and central limit theorems

David Nualart

Department of Mathematics
Kansas University
Seminar on Stochastic Processes 2017
University of Virginia
March 8-11 2017

Outline

(1) A brief introduction to Malliavin calculus
(2) Stochastic integral representations
(3) Central and noncentral limit theorems
(4) Central limit theorem for the self-intersection local time of the fractional Brownian motion

Multiple stochastic integrals

- H is a separable Hilbert space.
- $\mathcal{H}_{1}=\{X(h), h \in H\}$ is a Gaussian family of random variables in (Ω, \mathcal{F}, P) with zero mean and covariance

$$
E(X(h) X(g))=\langle h, g\rangle_{H} .
$$

- For $q \geq 2$ we define the q th Wiener chaos as

$$
\mathcal{H}_{q}=\overline{\operatorname{Span}}\left\{h_{q}(X(g)), g \in H,\|g\|_{H}=1\right\}
$$

where $h_{q}(x)$ is the q th Hermite polynomial.

- Multiple stochastic integral of order q :

$$
I_{q}:\left(H^{\hat{\otimes} a}, \sqrt{q!}\|\cdot\|_{H \otimes a}\right) \rightarrow \mathcal{H}_{q}
$$

is a linear isometry defined by $I_{q}\left(g^{\otimes q}\right)=h_{q}(X(g))$.

Wiener chaos expansion

Assume \mathcal{F} is generated by \mathcal{H}_{1}. We have the orthogonal decomposition

$$
L^{2}(\Omega)=\bigoplus_{q=0}^{\infty} \mathcal{H}_{q}
$$

where $\mathcal{H}_{0}=\mathbb{R}$. Any $F \in L^{2}(\Omega)$ can be written as

$$
F=E(F)+\sum_{q=1}^{\infty} I_{q}\left(f_{q}\right)
$$

where $f_{q} \in H^{\hat{\otimes} q}$ are determined by F.
Example: Let $B=\left\{B_{t}, t \in[0, T]\right\}$ be a Brownian motion. Then, $H=L^{2}([0, T])$ iterated Itô stochastic integral:

$$
I_{q}(h)=q!\int_{0}^{T} \cdots \int_{0}^{t_{2}} h\left(t_{1}, \ldots, t_{q}\right) d B_{t_{1}} \ldots d B_{t_{t_{1}}}
$$

Wiener chaos expansion

Assume \mathcal{F} is generated by \mathcal{H}_{1}. We have the orthogonal decomposition

$$
L^{2}(\Omega)=\bigoplus_{q=0}^{\infty} \mathcal{H}_{q}
$$

where $\mathcal{H}_{0}=\mathbb{R}$. Any $F \in L^{2}(\Omega)$ can be written as

$$
F=E(F)+\sum_{q=1}^{\infty} I_{q}\left(f_{q}\right)
$$

where $f_{q} \in H^{\hat{\otimes} q}$ are determined by F.
Example: Let $B=\left\{B_{t}, t \in[0, T]\right\}$ be a Brownian motion. Then, $H=L^{2}([0, T])$ and $X(h)=\int_{0}^{T} h_{t} d B_{t}$. For any $q \geq 2, H^{\hat{\otimes} q}=L_{s y m}^{2}\left([0, T]^{q}\right)$ and I_{q} is the iterated Itô stochastic integral:

$$
I_{q}(h)=q!\int_{0}^{T} \ldots \int_{0}^{t_{2}} h\left(t_{1}, \ldots, t_{q}\right) d B_{t_{1}} \ldots d B_{t_{q}}
$$

Malliavin Calculus

- \mathcal{S} is the space of random variables of the form

$$
F=f\left(X\left(h_{1}\right), \ldots, X\left(h_{n}\right)\right),
$$

where $h_{i} \in H$ and $f \in C_{b}^{\infty}\left(\mathbb{R}^{n}\right)$.

- If $F \in \mathcal{S}$ we define its derivative by

$$
D F=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(X\left(h_{1}\right), \ldots, X\left(h_{n}\right)\right) h_{i}
$$

$D F$ is a random variable with values in H.

- For any $p \geq 1, \mathbb{D}^{1, p} \subset L^{p}(\Omega ; H)$ is the closure of \mathcal{S} with respect to the norm

$$
\|D F\|_{1, p}=\left(E\left(|F|^{p}\right)+E\left(\|D F\|_{H}^{p}\right)\right)^{1 / p}
$$

- The adjoint of D is the divergence operator δ defined by the duality relationship

$$
E\left(\langle D F, u\rangle_{H}\right)=E(F \delta(u))
$$

for any $F \in \mathbb{D}^{1, q}$ and $u \in \operatorname{Dom} \delta \subset L^{p}(\Omega ; H)$, with $\frac{1}{p}+\frac{1}{q}=1$.

- The adjoint of D is the divergence operator δ defined by the duality relationship

$$
E\left(\langle D F, u\rangle_{H}\right)=E(F \delta(u))
$$

for any $F \in \mathbb{D}^{1, q}$ and $u \in \operatorname{Dom} \delta \subset L^{p}(\Omega ; H)$, with $\frac{1}{p}+\frac{1}{q}=1$.

- In the Brownian motion case, an adapted process
$u \in L^{2}(\Omega \times[0, T]) \sim L^{2}(\Omega ; H)$ belongs to $\operatorname{Dom} \delta$ and $\delta(u)$ coincides with the Itô's stochastic integral:

$$
\delta(u)=\int_{0}^{T} u_{t} d B_{t}
$$

- If u not adapted $\delta(u)$ coincides with an anticipating stochastic integral introduced by Skorohod in 1975. A stochastic calculus can be developed for the Skorohod integral (N.-Pardoux 1988).

Meyer inequalities

Theorem (Meyer 1983)

For any $p>1$ and $u \in \mathbb{D}^{1, p}(H)$ satisfying $E(u)=0$,

$$
E\left(|\delta(u)|^{p}\right) \leq c_{p}\left(E\left(\|D u\|_{H \otimes H}^{p}\right)\right) \text {. }
$$

(1) A proof based on the boundedness in L^{p} of the Riesz transform was given by Pisier.

The Ornstein-Uhlenbeck semigroup

- $\left\{T_{t}, t \geq 0\right\}$ is a one-parameter semigroup of contraction operators on $L^{2}(\Omega)$, defined by

$$
T_{t}(F)=\sum_{q=0}^{\infty} e^{-q t} l_{q}\left(f_{q}\right),
$$

where $F=\sum_{q=0}^{\infty} I_{q}\left(f_{q}\right)$.

- Mehler's formula: For any $t \geq 0$ and $F \in L^{2}(\Omega)$ we have

where \tilde{X} is an independent copy of X and \tilde{E} denotes the mathematical expectation with respect to X.

The Ornstein-Uhlenbeck semigroup

- $\left\{T_{t}, t \geq 0\right\}$ is a one-parameter semigroup of contraction operators on $L^{2}(\Omega)$, defined by

$$
T_{t}(F)=\sum_{q=0}^{\infty} e^{-q t} l_{q}\left(f_{q}\right)
$$

where $F=\sum_{q=0}^{\infty} I_{q}\left(f_{q}\right)$.

- Mehler's formula: For any $t \geq 0$ and $F \in L^{2}(\Omega)$ we have

$$
T_{t}(F)=\tilde{E}\left(F\left(e^{-t} X+\sqrt{1-e^{-2 t}} \tilde{X}\right)\right)
$$

where \tilde{X} is an independent copy of X and \tilde{E} denotes the mathematical expectation with respect to \tilde{X}.

The generator of the Ornstein-Uhlenbeck semigroup

- The infinitesimal generator of the semigroup T_{t} in $L^{2}(\Omega)$ is given by

$$
L F=\lim _{t \downarrow 0} \frac{T_{t} F-F}{t}=\sum_{q=1}^{\infty}-q l_{q}\left(f_{q}\right)
$$

if $F=\sum_{q=0}^{\infty} I_{q}\left(f_{q}\right)$.

The generator of the Ornstein-Uhlenbeck semigroup

- The infinitesimal generator of the semigroup T_{t} in $L^{2}(\Omega)$ is given by

$$
L F=\lim _{t \downarrow 0} \frac{T_{t} F-F}{t}=\sum_{q=1}^{\infty}-q l_{q}\left(f_{q}\right)
$$

if $F=\sum_{q=0}^{\infty} I_{q}\left(f_{q}\right)$.

- The domain of L is

$$
\operatorname{Dom} L=\left\{F \in L^{2}(\Omega), \sum_{q=1}^{\infty} q^{2} q!\left\|f_{q}\right\|_{2}^{2}<\infty\right\}=\mathbb{D}^{2,2}
$$

Stochastic integral representations

Question: Given $F \in L^{2}(\Omega)$, with $E[F]=0$, find $u \in \operatorname{Dom} \delta$ such that

$$
F=\delta(u) \text {. }
$$

(I) Brownian motion case: If we require u to be adapted, then it is unique and given by the Clark-Ocone formula:
where \mathcal{F}_{t} is the filtration generated by the Brownian motion. That is,

Stochastic integral representations

Question: Given $F \in L^{2}(\Omega)$, with $E[F]=0$, find $u \in \operatorname{Dom} \delta$ such that

$$
F=\delta(u) \text {. }
$$

(I) Brownian motion case: If we require u to be adapted, then it is unique and given by the Clark-Ocone formula:

$$
u_{t}=E\left(D_{t} F \mid \mathcal{F}_{t}\right)
$$

where \mathcal{F}_{t} is the filtration generated by the Brownian motion. That is,

$$
F=E[F]+\int_{0}^{T} E\left(D_{t} F \mid \mathcal{F}_{t}\right) d B_{t}
$$

CLT for local time increments

- Let

$$
L_{t}^{x}=\int_{0}^{t} \delta_{x}\left(B_{s}\right) d s
$$

be the Brownian local time. Clark-Ocone formula has been used to give a simple proof of the following central limit theorem (Hu-N. '09):

Theorem

$$
h^{-\frac{3}{2}}\left(\int_{\mathbb{R}}\left(L_{t}^{x+h}-L_{t}^{x}\right)^{2} d x-4 t h\right) \Rightarrow 8 \sqrt{\frac{\alpha_{t}}{3}} \eta,
$$

as $h \rightarrow 0$, where $\alpha_{t}=\int_{\mathbb{R}}\left(L_{t}^{x}\right)^{2} d x$ and η is a $N(0,1)$ random variable independent of B.

(II) Second integral representation:

$$
u=-D L^{-1} F \text {. }
$$

Proof. The proof is based on the following property:

Therefore, taking into account that $E[F]=0$, we get

(II) Second integral representation:

$$
u=-D L^{-1} F \text {. }
$$

Proof: The proof is based on the following property:

Proposition

$F \in \mathbb{D}^{1,2}$ and $D F \in \operatorname{Dom} \delta$ if and only if $F \in \operatorname{Dom} L$ and in this case

$$
\delta(D F)=-L F
$$

(II) Second integral representation:

$$
u=-D L^{-1} F \text {. }
$$

Proof: The proof is based on the following property:

Proposition

$F \in \mathbb{D}^{1,2}$ and $D F \in \operatorname{Dom} \delta$ if and only if $F \in \operatorname{Dom} L$ and in this case

$$
\delta(D F)=-L F
$$

Therefore, taking into account that $E[F]=0$, we get

$$
F=L L^{-1} F=-\delta\left(D L^{-1} F\right) .
$$

(II) Second integral representation:

$$
u=-D L^{-1} F \text {. }
$$

Proof: The proof is based on the following property:

Proposition

$F \in \mathbb{D}^{1,2}$ and $D F \in \operatorname{Dom} \delta$ if and only if $F \in \operatorname{Dom} L$ and in this case

$$
\delta(D F)=-L F
$$

Therefore, taking into account that $E[F]=0$, we get

$$
F=L L^{-1} F=-\delta\left(D L^{-1} F\right) .
$$

- In the Brownian motion case, u is unique among all processes with a chaos expansion $u_{t}=\sum_{q=0}^{\infty} I_{q}\left(f_{q, t}\right)$, such that $f_{q, t}\left(t_{1}, \ldots, t_{q}\right)$ is symmetric in all $q+1$ variables t, t_{1}, \ldots, t_{q}.

Convergence to a mixture of normal laws

- Let $F=\delta(u)$. Then

$$
\left.\begin{array}{l}
\langle D F, u\rangle_{H} \sim S^{2} \\
\langle u, h\rangle_{H} \sim 0, \forall h \in H
\end{array}\right\} \quad \Longrightarrow \quad \mathcal{L}(F) \sim \mathcal{L}(S \eta)
$$

where η is a $N(0,1)$ random variable independent of X.

Convergence to a mixture of normal laws

- Let $F=\delta(u)$. Then

$$
\left.\begin{array}{l}
\langle D F, u\rangle_{H} \sim S^{2} \\
\langle u, h\rangle_{H} \sim 0, \forall h \in H
\end{array}\right\} \quad \Longrightarrow \quad \mathcal{L}(F) \sim \mathcal{L}(S \eta)
$$

where η is a $N(0,1)$ random variable independent of X.
Theorem (Nourdin-N. '10)
Let $F_{n}=\delta\left(u_{n}\right)$, where $u_{n} \in \mathbb{D}^{2,2}(H)$. Suppose that $\sup _{n} E\left(\left|F_{n}\right|\right)<\infty$ and
(i) $\left\langle u_{n}, D F_{n}\right\rangle_{H} \xrightarrow{L^{1}} S^{2}$, as $n \rightarrow \infty$.
(ii) For all $h \in H,\left\langle u_{n}, h\right\rangle_{H} \xrightarrow{L^{1}} 0$ as $n \rightarrow \infty$.

Then, F_{n} converges stably to ηS, where η is a $N(0,1)$ random variable independent of X (that is, $\left(F_{n}, X\right) \xrightarrow{\mathcal{L}}(S \eta, X)$).

Sketch of the proof:

- Suppose that $\left(F_{n}, X\right) \xrightarrow{\mathcal{L}}\left(F_{\infty}, X\right)$. We need to show that

$$
\begin{equation*}
E\left(e^{i \lambda F_{\infty}} \mid X\right)=e^{-\frac{\lambda^{2}}{2} S^{2}} \tag{1}
\end{equation*}
$$

- Set $Y \in \mathcal{S}$ and define
- We compute the limit of $\phi_{n}^{\prime}(\lambda)$ in two ways:

Using weak convergence:
2. Using Malliavin calculus and our assumptions:

Sketch of the proof:

- Suppose that $\left(F_{n}, X\right) \xrightarrow{\mathcal{L}}\left(F_{\infty}, X\right)$. We need to show that

$$
\begin{equation*}
E\left(e^{i \lambda F_{\infty}} \mid X\right)=e^{-\frac{\lambda^{2}}{2} S^{2}} \tag{1}
\end{equation*}
$$

- Set $Y \in \mathcal{S}$ and define

$$
\phi_{n}(\lambda)=E\left(e^{i \lambda F_{n}} Y\right) .
$$

- We compute the limit of $\phi_{n}^{\prime}(\lambda)$ in two ways:

1. Using weak convergence:

$$
\phi_{n}^{\prime}(\lambda)=i E\left(e^{i \lambda F_{n}} F_{n} Y\right) \rightarrow i E\left(e^{i \lambda F_{\infty}} F_{\infty} Y\right) .
$$

Sketch of the proof:

- Suppose that $\left(F_{n}, X\right) \xrightarrow{\mathcal{L}}\left(F_{\infty}, X\right)$. We need to show that

$$
\begin{equation*}
E\left(e^{i \lambda F_{\infty}} \mid X\right)=e^{-\frac{\lambda^{2}}{2} S^{2}} \tag{1}
\end{equation*}
$$

- Set $Y \in \mathcal{S}$ and define

$$
\phi_{n}(\lambda)=E\left(e^{i \lambda F_{n}} Y\right) .
$$

- We compute the limit of $\phi_{n}^{\prime}(\lambda)$ in two ways:

1. Using weak convergence:

$$
\phi_{n}^{\prime}(\lambda)=i E\left(e^{i \lambda F_{n}} F_{n} Y\right) \rightarrow i E\left(e^{i \lambda F_{\infty}} F_{\infty} Y\right)
$$

2. Using Malliavin calculus and our assumptions:

$$
\begin{aligned}
\phi_{n}^{\prime}(\lambda)= & i E\left(e^{i \lambda F_{n}} F_{n} Y\right)=i E\left(e^{i \lambda F_{n}} \delta\left(u_{n}\right) Y\right) \\
= & i E\left(\left\langle D\left(e^{i \lambda F_{n}} Y\right), u_{n}\right\rangle_{H}\right) \\
= & -\lambda E\left(e^{i \lambda F_{n}}\left\langle u_{n}, D F_{n}\right\rangle_{H} Y\right)+i E\left(e^{i \lambda F_{n}}\left\langle u_{n}, D Y\right\rangle_{H}\right) \\
& \rightarrow-\lambda E\left(e^{i \lambda F_{\infty}} S^{2} Y\right) .
\end{aligned}
$$

- As a consequence,

$$
i E\left(e^{i \lambda F_{\infty}} F_{\infty} Y\right)=-\lambda E\left(e^{i \lambda F_{\infty}} S^{2} Y\right)
$$

- This leads to a linear differential equation satisfied by the conditional characteristic function of F_{∞} :

$$
\frac{\partial}{\partial \lambda} E\left(e^{i \lambda F_{\infty}} \mid X\right)=-S^{2} \lambda E\left(e^{i \lambda F_{\infty}} \mid X\right)
$$

and we obtain

$$
E\left(e^{i \lambda F_{\infty}} \mid X\right)=e^{-\frac{\lambda^{2}}{2} S^{2}}
$$

Remarks:

- It turns out that

$$
\left\langle u_{n}, D F_{n}\right\rangle_{H}=\left\|u_{n}\right\|_{H}^{2}+\left\langle u_{n}, \delta\left(D u_{n}\right)\right\rangle_{H} .
$$

Therefore, a sufficient condition for (i) is:

$$
\text { (i') }\left\|u_{n}\right\|_{H}^{2} \xrightarrow{L^{1}} S^{2} \text { and }\left\langle u_{n}, \delta\left(D u_{n}\right)\right\rangle_{H} \xrightarrow{L^{1}} 0 .
$$

- Comparison with the Asymptotic Knight Theorem for Brownian

 martingales (Revuz-Yor)If $\left\{U_{n}, n>1\right\}$ are square-integrable adapted processes, then, is implied by the following conditions:

Remarks:

- It turns out that

$$
\left\langle u_{n}, D F_{n}\right\rangle_{H}=\left\|u_{n}\right\|_{H}^{2}+\left\langle u_{n}, \delta\left(D u_{n}\right)\right\rangle_{H} .
$$

Therefore, a sufficient condition for (i) is:
(i') $\left\|u_{n}\right\|_{H}^{2} \xrightarrow{L^{1}} S^{2}$ and $\left\langle u_{n}, \delta\left(D u_{n}\right)\right\rangle_{H} \xrightarrow{L^{1}} 0$.

- Comparison with the Asymptotic Knight Theorem for Brownian martingales (Revuz-Yor):

If $\left\{u_{n}, n \geq 1\right\}$ are square-integrable adapted processes, then, $F_{n}=\delta\left(u_{n}\right)=\int_{0}^{T} u_{n}(s) d B_{s}$ and the stable convergence of F_{n} to $N\left(0, S^{2}\right)$ is implied by the following conditions:
(A) $\int_{0}^{t} u_{n}(s) d s \xrightarrow{P} 0$, uniformly in t.
(B) $\int_{0}^{T} u_{n}(s)^{2} d s \rightarrow S^{2}$ in $L^{1}(\Omega)$.

Applications

- Weighted Hermite variations of the fractional Brownian motion: Assume $\frac{1}{2 q}<H<1-\frac{1}{2 q}$. Then,

$$
\frac{1}{\sqrt{n}} \sum_{k=1}^{n} f\left(B_{\frac{k-1}{n}}^{H}\right) h_{q}\left(n^{H}\left(B_{\frac{k}{n}}^{H}-B_{\frac{k-1}{n}}^{H}\right)\right) \xrightarrow{\text { Stably }} \sigma_{H, q} \int_{0}^{1} f\left(B_{s}^{H}\right) d W_{s},
$$

where W is a Brownian motion independent of B^{H} (Nourdin, Réveillac, Tudor, N.).

- Itô's formulas in law: Noncentral limit theorem for symmetric integrals with respect to the fractional Brownian motion for critical values of the Hurst parameter (Burdzy, Swanson, Nourdin, Réveillac, Harnett, N., Binotto).

Rate of convergence:

Theorem (Nourdin-N.-Peccati '16)
Let $F=\delta(u)$, where $u \in \mathbb{D}^{2,2}(H)$. Let $S \geq 0$ be such that $S^{2} \in \mathbb{D}^{1,2}$ and let η be a $N(0,1)$ random variable independent of X. Then for any $\varphi \in C_{b}^{3}$

$$
\begin{aligned}
|E[\varphi(F)]-E[\varphi(S \eta)]| \leq & \frac{1}{2}\left\|\varphi^{\prime \prime}\right\|_{\infty} E\left[\left|\langle u, D F\rangle_{H}-S^{2}\right|\right] \\
& +\frac{1}{3}\left\|\varphi^{\prime \prime \prime}\right\|_{\infty} E\left[\left|\left\langle u, D S^{2}\right\rangle_{H}\right|\right] .
\end{aligned}
$$

Proof: Use interpolation method:

$$
E[\varphi(F)]-E[\varphi(S \eta)]=\int_{0}^{1} g^{\prime}(t) d t,
$$

where $g(t)=E[\varphi(\sqrt{t} F+\sqrt{1-t} S \eta)]$.

Stein's method for normal approximation

- Stein's lemma:

$$
Z \sim N\left(0, \sigma^{2}\right) \Leftrightarrow E(f(Z) Z)=\sigma^{2} E\left(f^{\prime}(Z)\right) \quad \forall f \in C_{b}^{1}(\mathbb{R}) .
$$

- Let $Z \sim N\left(0, \sigma^{2}\right)$, and fix h such that $E(|h(Z)|)<\infty$. Stein's equation

Stein's method for normal approximation

- Stein's lemma:

$$
Z \sim N\left(0, \sigma^{2}\right) \quad \Leftrightarrow \quad E(f(Z) Z)=\sigma^{2} E\left(f^{\prime}(Z)\right) \quad \forall f \in C_{b}^{1}(\mathbb{R}) .
$$

- Let $Z \sim N\left(0, \sigma^{2}\right)$, and fix h such that $E(|h(Z)|)<\infty$. Stein's equation

$$
\sigma^{2} f^{\prime}(x)-x f(x)=h(x)-E(h(Z))
$$

has a unique solution f_{h} satisfying $\lim _{x \rightarrow \pm \infty} e^{-x^{2} / 2 \sigma^{2}} f_{h}(x)=0$.

Stein's method for normal approximation

- Stein's lemma:

$$
Z \sim N\left(0, \sigma^{2}\right) \quad \Leftrightarrow \quad E(f(Z) Z)=\sigma^{2} E\left(f^{\prime}(Z)\right) \quad \forall f \in C_{b}^{1}(\mathbb{R})
$$

- Let $Z \sim N\left(0, \sigma^{2}\right)$, and fix h such that $E(|h(Z)|)<\infty$. Stein's equation

$$
\sigma^{2} f^{\prime}(x)-x f(x)=h(x)-E(h(Z))
$$

has a unique solution f_{h} satisfying $\lim _{x \rightarrow \pm \infty} e^{-x^{2} / 2 \sigma^{2}} f_{h}(x)=0$.

- If $\|h\|_{\infty} \leq 1$, then $\left\|f_{h}\right\|_{\infty} \leq \frac{1}{\sigma} \sqrt{\pi / 2}$ and $\left\|f_{h}^{\prime}\right\|_{\infty} \leq \frac{2}{\sigma^{2}}$. So, for any random variable F, taking $h=\mathbf{1}_{B}$,

$$
\begin{aligned}
d_{T V}(F, Z) & =\sup _{B \in \mathcal{B}(\mathbb{R})}|P(F \in B)-P(Z \in B)| \\
& \leq \sup _{f \in \mathcal{C}_{T V}}\left|E\left[\sigma^{2} f^{\prime}(F)-F f(F)\right]\right|,
\end{aligned}
$$

where $\mathcal{C}_{T V}$ is the class of functions with $\|f\|_{\infty} \leq \frac{1}{\sigma} \sqrt{\pi / 2}$ and $\left\|f^{\prime}\right\|_{\infty} \leq \frac{2}{\sigma^{2}}$.

Case $S^{2}=\sigma^{2}$

This leads to the following result:
Theorem
Suppose that $F \in \mathbb{D}^{1,2}$ satisfies $F=\delta(u)$, where $u \in \operatorname{Dom} \delta$. Let Z be a $N\left(0, \sigma^{2}\right)$ random variable. Then,

$$
d_{T V}(F, Z) \leq \frac{2}{\sigma^{2}} E\left[\left|\sigma^{2}-\langle D F, u\rangle_{H}\right|\right]
$$

Case $S^{2}=\sigma^{2}$

This leads to the following result:
Theorem
Suppose that $F \in \mathbb{D}^{1,2}$ satisfies $F=\delta(u)$, where $u \in \operatorname{Dom} \delta$. Let Z be a $N\left(0, \sigma^{2}\right)$ random variable. Then,

$$
d_{T V}(F, Z) \leq \frac{2}{\sigma^{2}} E\left[\left|\sigma^{2}-\langle D F, u\rangle_{H}\right|\right]
$$

Proof:

$$
\begin{aligned}
E\left[\sigma^{2} f^{\prime}(F)-F f(F)\right] & =E\left[\sigma^{2} f^{\prime}(F)-\delta(u) f(F)\right] \\
& =E\left[\sigma^{2} f^{\prime}(F)-\langle u, D[f(F)]\rangle_{H}\right] \\
& =E\left[f^{\prime}(F)\left(\sigma^{2}-\langle u, D F\rangle_{H}\right)\right]
\end{aligned}
$$

Case $S^{2}=\sigma^{2}$

This leads to the following result:

Theorem

Suppose that $F \in \mathbb{D}^{1,2}$ satisfies $F=\delta(u)$, where $u \in \operatorname{Dom} \delta$. Let Z be a $N\left(0, \sigma^{2}\right)$ random variable. Then,

$$
d_{T V}(F, Z) \leq \frac{2}{\sigma^{2}} E\left[\left|\sigma^{2}-\langle D F, u\rangle_{H}\right|\right]
$$

Proof:

$$
\begin{aligned}
E\left[\sigma^{2} f^{\prime}(F)-F f(F)\right] & =E\left[\sigma^{2} f^{\prime}(F)-\delta(u) f(F)\right] \\
& =E\left[\sigma^{2} f^{\prime}(F)-\langle u, D[f(F)]\rangle_{H}\right] \\
& =E\left[f^{\prime}(F)\left(\sigma^{2}-\langle u, D F\rangle_{H}\right)\right] .
\end{aligned}
$$

- In particular, taking $u=-D L^{-1} F$, we get

$$
d_{T V}(F, Z) \leq \frac{2}{\sigma^{2}} E\left[\left|\sigma^{2}-\left\langle D F,-D L^{-1} F\right\rangle_{H}\right|\right] .
$$

Normal approximation on a fixed Wiener chaos

Proposition

Suppose $F \in \mathcal{H}_{q}$ for some $q \geq 2$ and $E\left(F^{2}\right)=\sigma^{2}$. Then,

$$
d_{T V}(F, Z) \leq \frac{2}{q \sigma^{2}} \sqrt{\operatorname{Var}\left(\|D F\|_{H}^{2}\right)} .
$$

Normal approximation on a fixed Wiener chaos

Proposition

Suppose $F \in \mathcal{H}_{q}$ for some $q \geq 2$ and $E\left(F^{2}\right)=\sigma^{2}$. Then,

$$
d_{T V}(F, Z) \leq \frac{2}{q \sigma^{2}} \sqrt{\operatorname{Var}\left(\|D F\|_{H}^{2}\right)}
$$

Proof: Using $L^{-1} F=-\frac{1}{q} F$ and $E\left[\|D F\|_{H}^{2}\right]=q \sigma^{2}$, we obtain

$$
\begin{aligned}
E\left[\left|\sigma^{2}-\left\langle D F,-D L^{-1} F\right\rangle_{H}\right|\right] & =E\left[\left|\sigma^{2}-\frac{1}{q}\|D F\|_{H}^{2}\right|\right] \\
& \leq \frac{1}{q} \sqrt{\operatorname{Var}\left(\|D F\|_{H}^{2}\right)} .
\end{aligned}
$$

- Using the product formula for multiple stochastic integrals, one can show that $\operatorname{Var}\left(\|D F\|_{H}^{2}\right)$ is equivalent up to a constant to $E\left[F^{4}\right]-3 \sigma^{4}$. This leads to the Fourth Moment Theorem (Nualart-Peccati-'05, Nourdin-Peccati'08):

Theorem

Fix $q \geq 2$. Let $F_{n} \in \mathcal{H}_{q}, n \geq 1$ be such that

$$
\lim _{n \rightarrow \infty} E\left(F_{n}^{2}\right)=\sigma^{2}
$$

The following conditions are equivalent:
(i) $d_{T V}\left(F_{n}, Z\right) \rightarrow 0$, as $n \rightarrow \infty$ where $Z \sim N\left(0, \sigma^{2}\right)$.
(ii) $E\left(F_{n}^{4}\right) \rightarrow 3 \sigma^{4}$, as $n \rightarrow \infty$.
(iii) $\left\|D F_{n}\right\|_{H}^{2} \rightarrow q \sigma^{2}$ in $L^{2}(\Omega)$, as $n \rightarrow \infty$.

Applications and extensions

- Book: Nourdin and G. Peccati '12: Normal Approximations with Malliavin Calculus : From Stein's Method to Universality.
- Webpage: https ://sites.google.com/site/malliavinstein/home.
- Applications: Exact Berry Esséen asymptotics, quantitative Breuer-Major theorems, ...
- Generalizations: Functionals of the Poisson processes, convergence to nongaussian distributions (Gamma, second chaos, invariant measures of diffusions,...).

Self-intersection local time of the fBm

- The d-dimensional fractional Brownian motion $(d \geq 2)$ with Hurst parameter $H \in(0,1)$ is a zero mean Gaussian process $\left\{B_{t}^{H}, t \geq 0\right\}$ with covariance

$$
E\left[B_{t}^{H, i} B_{s}^{H, j}\right]=\delta_{i j} \frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right) .
$$

- Its self-intersection local time on $[0, T]$ is formally defined by

$$
L_{T}=\int_{0}^{T} \int_{0}^{t} \delta_{0}\left(B_{t}^{H}-B_{s}^{H}\right) d s d t
$$

Notice that

$$
\begin{aligned}
E\left[L_{T}\right] & =\int_{0}^{T} \int_{0}^{t} E\left[\delta_{0}\left(B_{t}^{H}-B_{s}^{H}\right)\right] d s d t \\
& =(2 \pi)^{-\frac{d}{2}} \int_{0}^{T} \int_{0}^{t}|t-s|^{-H d} d s d t<\infty \Leftrightarrow H d<1 .
\end{aligned}
$$

Varadhan's renormalization

Let $p_{\epsilon}(x)=(2 \pi \epsilon)^{-d / 2} e^{-|x|^{2} / 2 \epsilon}$, and set

$$
L_{T, \epsilon}=\int_{0}^{T} \int_{0}^{t} p_{\epsilon}\left(B_{t}^{H}-B_{s}^{H}\right) d s d t .
$$

The following results were proved in [Hu-Nualart '05]:
(i) If $H d<1$, then $L_{T, \epsilon} \xrightarrow{L^{2}} L_{T}$, as $\epsilon \downarrow 0$.
(ii) If $\frac{1}{d} \leq H<\frac{3}{2 d}$, then $L_{T, \epsilon}-E\left[L_{T, \epsilon}\right] \xrightarrow{L^{2}} \widetilde{L}_{T}$, as $\epsilon \downarrow 0$.
(iii) If $\frac{3}{2 d}<H<\frac{3}{4}$, then we have the convergence in law:

$$
\begin{equation*}
\epsilon^{\frac{d}{2}-\frac{3}{4 H}}\left[L_{T, \epsilon}-E\left[L_{T, \epsilon}\right]\right] \xrightarrow{\mathcal{L}} N\left(0, T \sigma_{H, d}^{2}\right) \tag{2}
\end{equation*}
$$

as $\epsilon \downarrow 0$. (Example: $H=\frac{1}{2}$ and $d \geq 3$)

- The proof of (2) is based on the chaos expansion

$$
\Phi_{T, \epsilon}:=\epsilon^{\frac{d}{2}-\frac{3}{4 H}}\left[L_{T, \epsilon}-E\left[L_{T, \epsilon}\right]\right]=\sum_{m=2}^{\infty} J_{m}\left(L_{T, \epsilon}\right)
$$

and the application of the Fourth Moment Theorem to each projection $J_{m}\left(L_{T, \epsilon}\right), m \geq 2$, as $\epsilon \downarrow 0$.

- A first ingredient in the proof is the convergence of the variance:

$$
E\left[\phi_{T, \epsilon}^{2}\right] \xrightarrow{\epsilon \perp 0} I_{T}
$$

where

$$
I_{T}=(2 \pi)^{-d} \int_{\substack{0<s<t<\tau \\ 0<s^{\prime}<t^{\prime}<T}}\left[\left(\lambda \rho-\mu^{2}\right)^{-\frac{d}{2}}-(\lambda \rho)^{-\frac{d}{2}}\right] d s d t d s^{\prime} d t^{\prime},
$$

with the notation $\lambda=|t-s|^{2 H}, \rho=\left|t^{\prime}-s^{\prime}\right|^{2 H}$ and $\mu=E\left[\left(B_{t}^{H, 1}-B_{s}^{H, 1}\right)\left(B_{t^{\prime}}^{H, 1}-B_{s^{\prime}}^{H, 1}\right)\right]$.

Functional CLT

Theorem (Jaramillo-N. '17)

If $\frac{3}{2 d}<H<\frac{3}{4}$, then

$$
\left\{\epsilon^{\frac{d}{2}-\frac{3}{4 H}}\left[L_{T, \epsilon}-E\left[L_{T, \epsilon}\right]\right], T \geq 0\right\} \stackrel{\mathcal{L}}{\rightarrow}\left\{\sigma_{H, d} W_{T}, T \geq 0\right\},
$$

where W is a standard Brownian motion.

- The proof of the convergence of the finite dimensional distributions can be done by the same method as the CLT for T fixed.
- The main difficulty is to show the tightness property of the laws. For this we need an estimate of the form

$$
\begin{equation*}
E\left[\left|\Phi_{T, \epsilon}-\Phi_{S, \epsilon}\right|^{p}\right] \leq C_{p, d, H}|T-S|^{p / 2} \tag{3}
\end{equation*}
$$

for some $p>2$.

- We know that this is true for $p=2$, and in this case, we need to estimate a double integral over essentially three types of regions:
(1) $\left[s^{\prime}, t^{\prime}\right] \subset[s, t]$
(2) $\left[s^{\prime}, t^{\prime}\right] \cap[s, t]=\emptyset$
(3) $s<s^{\prime}<t<t^{\prime}$ (the intervals overlap)
- However, for $p=4$ we have to deal with 4 intervals $\left[s_{i}, t_{i}\right], i=1,2,3,4$, the number of different regions is very large and each integral is too complicated.
- Question: How to show the estimate (2)?

Proving tightness using Malliavin calculus

- Fix $S \leq T$ and define $Z_{\epsilon}=\Phi_{T, \epsilon}-\Phi_{S, \epsilon}$.
- We can write

$$
Z_{\epsilon}=-\delta D L^{-1} Z_{\epsilon} .
$$

Using that $E\left[D L^{-1} Z_{\epsilon}\right]=0$ and Meyer inequalities, yields

$$
\left\|Z_{\epsilon}\right\|_{p} \leq c_{p}\left\|D^{2} L^{-1} Z_{\epsilon}\right\|_{\left.L^{p}\left(\Omega_{;} ; \mathfrak{5}^{d}\right)^{\otimes 2}\right)}
$$

where \mathfrak{H} is the Hilbert space associated with the covariance of the fBm.

- We know that

$$
Z_{\epsilon}=\epsilon^{\frac{d}{2}-\frac{3}{4 H}} \int_{\substack{s<t<t}}\left(p_{\epsilon}\left(B_{t}^{H}-B_{s}^{H}\right)-E\left[p_{\epsilon}\left(B_{t}^{H}-B_{s}^{H}\right)\right]\right) d s d t .
$$

- Also $L^{-1}(F-E[F])=-\int_{0}^{\infty} T_{\theta} F d \theta$, where $\left\{T_{\theta}, \theta \geq 0\right\}$ is the Ornstein-Uhlenbeck semigroup.
- As a consequence,

$$
\begin{aligned}
& D^{2} L^{-1} Z_{\epsilon}=\int_{0}^{\infty} D^{2} T_{\theta} Z_{\epsilon} d \theta \\
& =\int_{0}^{\infty} \int_{\substack{s<t \\
s<t<T}} D^{2} T_{\theta}\left[p_{\epsilon}\left(B_{t}^{H}-B_{s}^{H}\right)\right] d s d t d \theta \\
& =\int_{0}^{\infty} \int_{\substack{s<t \\
s<t<T}} D^{2} \tilde{E}\left[p_{\epsilon}\left(e^{-\theta}\left(B_{t}^{H}-B_{s}^{H}\right)+\sqrt{1-e^{-2 \theta}}\left(\tilde{B}_{t}^{H}-\tilde{B}_{s}^{H}\right)\right)\right] d s d t d \theta \\
& =\int_{0}^{\infty} \int_{\substack{s<t \\
s<t<T}} D^{2} p_{\epsilon+\left(1-e^{-2 \theta}\right)(t-s)^{2 H}\left(e^{-\theta}\left(B_{t}^{H}-B_{s}^{H}\right)\right) d s d t d \theta}^{=\int_{0}^{\infty} \int_{s<t<T}^{s<t}} e^{-2 \theta} p_{\epsilon+\left(1-e^{-2 \theta}\right)(t-s)^{\prime H}}\left(e^{-\theta}\left(B_{t}^{H}-B_{s}^{H}\right)\right) \mathbf{1}_{[s, t]}^{\otimes 2} d s d t d \theta .
\end{aligned}
$$

- Finally, using Minkowski inequality,

$$
\begin{aligned}
\left\|Z_{\epsilon}\right\|_{p}^{2} \leq & c_{p}^{2}\left\|D^{2} L^{-1} Z_{\epsilon}\right\|_{L^{p}\left(\Omega ;\left(\mathfrak{H}^{d}\right) \otimes 2\right)}^{2}=c_{p}^{2}\| \| D L^{-1} Z_{\epsilon}\left\|_{\left.\left(\mathfrak{F}^{d}\right)^{\otimes 2}\right)}^{2}\right\|_{p / 2} \\
\leq & c_{p}^{2} \int_{\mathbb{R}_{+}^{2}} \int_{\substack{s<t \\
s<t<T}} \int_{s^{s^{\prime}<t^{\prime}}<} e^{-2 \theta-2 \beta} \mu^{2} \\
& \times\left\|p_{\epsilon+\left(1-e^{-2 \theta)}\right.}^{\prime \prime}\left(e^{-\theta}\left(B_{t^{\prime}}^{H}-B_{s^{\prime}}^{H}\right)\right)\right\|_{p} \\
& \times\left\|p_{\epsilon+\left(1-e^{-2 \beta}\right)}^{\prime \prime}\left(e^{-\beta}\left(B_{t}^{H}-B_{s}^{H}\right)\right)\right\|_{p} d s d t d^{\prime} s d t^{\prime} d \theta d \beta .
\end{aligned}
$$

- This leads to

$$
\left\|Z_{\epsilon}\right\|_{p}^{2} \leq C_{p, d, H} \mathcal{I}|T-S|^{p}
$$

where

$$
\mathcal{I}=\int_{\substack{0<s<t<\tau \\ 0<s^{<}<t^{\prime}<T}} \frac{\mu^{2}}{\lambda \rho}\left((1+\lambda)(1+\rho)-\mu^{2}\right)^{-\frac{d}{\rho}} d s d t d s^{\prime} d t^{\prime}<\infty,
$$

provided $2<p<\frac{4 H d}{3}$.

Remarks:

- Critical case $H=\frac{3 d}{2}$: A logarithmic factor is needed for the central limit theorem to hold true, but the functional version is open.
- Case $H>\frac{3}{4}$: In this case,

$$
\epsilon^{-\frac{d}{2}-\frac{3}{2 H}+1}\left(L_{T, \epsilon}-E\left[L_{T, \epsilon}\right]\right) \xrightarrow{L^{2}} c_{d, H} \sum_{j=1}^{d} X_{T}^{j},
$$

where X_{T}^{j} is a Rosenblatt-type random variable, defined as the double stochastic integral of $\delta_{\{s=t\}}$ with respect to $B^{H, j}$ on $[0, T]^{2}$.

- The case $H=\frac{3}{4}$ is open.

Thanks for your attention!

