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Multiple stochastic integrals

H is a separable Hilbert space.

H1 = {X (h),h ∈ H} is a Gaussian family of random variables in
(Ω,F ,P) with zero mean and covariance

E(X (h)X (g)) = 〈h,g〉H .

For q ≥ 2 we define the qth Wiener chaos as

Hq = Span{hq(X (g)),g ∈ H, ‖g‖H = 1},

where hq(x) is the qth Hermite polynomial.

Multiple stochastic integral of order q:

Iq :
(

H⊗̂q ,
√

q!‖ · ‖H⊗q

)
→ Hq

is a linear isometry defined by Iq(g⊗q) = hq(X (g)).
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Wiener chaos expansion
Assume F is generated by H1. We have the orthogonal decomposition

L2(Ω) =
∞⊕

q=0

Hq ,

where H0 = R. Any F ∈ L2(Ω) can be written as

F = E(F ) +
∞∑

q=1

Iq(fq),

where fq ∈ H⊗̂q are determined by F .

Example: Let B = {Bt , t ∈ [0,T ]} be a Brownian motion. Then, H = L2([0,T ])

and X (h) =
∫ T

0 htdBt . For any q ≥ 2, H⊗̂q = L2
sym([0,T ]q) and Iq is the

iterated Itô stochastic integral:

Iq(h) = q!

∫ T

0
. . .

∫ t2

0
h(t1, . . . , tq)dBt1 . . . dBtq .
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Malliavin Calculus

S is the space of random variables of the form

F = f (X (h1), ...,X (hn)),

where hi ∈ H and f ∈ C∞b (Rn).

If F ∈ S we define its derivative by

DF =
n∑

i=1

∂f
∂xi

(X (h1), ...,X (hn))hi .

DF is a random variable with values in H.

For any p ≥ 1, D1,p ⊂ Lp(Ω; H) is the closure of S with respect to the
norm

‖DF‖1,p =
(
E(|F |p) + E(‖DF‖p

H)
)1/p

.

David Nualart (Kansas University) Malliavin calculus and CLTs SSP 2017 5 / 33



The adjoint of D is the divergence operator δ defined by the duality
relationship

E(〈DF ,u〉H) = E(Fδ(u))

for any F ∈ D1,q and u ∈ Dom δ ⊂ Lp(Ω; H), with 1
p + 1

q = 1.

In the Brownian motion case, an adapted process
u ∈ L2(Ω× [0,T ]) ∼ L2(Ω; H) belongs to Dom δ and δ(u) coincides with
the Itô’s stochastic integral:

δ(u) =

∫ T

0
utdBt

If u not adapted δ(u) coincides with an anticipating stochastic integral
introduced by Skorohod in 1975. A stochastic calculus can be developed
for the Skorohod integral (N.-Pardoux 1988).
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Meyer inequalities

Theorem (Meyer 1983)

For any p > 1 and u ∈ D1,p(H) satisfying E(u) = 0,

E(|δ(u)|p) ≤ cp
(
E(‖Du‖pH⊗H)

)
.

1 A proof based on the boundedness in Lp of the Riesz transform
was given by Pisier.
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The Ornstein-Uhlenbeck semigroup

{Tt , t ≥ 0} is a one-parameter semigroup of contraction operators on
L2(Ω), defined by

Tt (F ) =
∞∑

q=0

e−qt Iq(fq),

where F =
∑∞

q=0 Iq(fq).

Mehler’s formula: For any t ≥ 0 and F ∈ L2(Ω) we have

Tt (F ) = Ẽ(F (e−tX +
√

1− e−2t X̃ )),

where X̃ is an independent copy of X and Ẽ denotes the mathematical
expectation with respect to X̃ .
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The generator of the Ornstein-Uhlenbeck semigroup

The infinitesimal generator of the semigroup Tt in L2(Ω) is given by

LF = lim
t↓0

TtF − F
t

=
∞∑

q=1

−qIq(fq),

if F =
∑∞

q=0 Iq(fq).
The domain of L is

Dom L = {F ∈ L2(Ω),
∞∑

q=1

q2q!‖fq‖22 <∞} = D2,2.
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Stochastic integral representations

Question: Given F ∈ L2(Ω), with E [F ] = 0, find u ∈ Dom δ such that

F = δ(u) .

(I) Brownian motion case: If we require u to be adapted, then it is unique and
given by the Clark-Ocone formula:

ut = E(DtF |Ft ),

where Ft is the filtration generated by the Brownian motion. That is,

F = E [F ] +

∫ T

0
E(DtF |Ft )dBt .
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CLT for local time increments

Let

Lx
t =

∫ t

0
δx (Bs)ds

be the Brownian local time. Clark-Ocone formula has been used
to give a simple proof of the following central limit theorem (Hu-N.
’09):

Theorem

h−
3
2

(∫
R

(Lx+h
t − Lx

t )2dx − 4th
)
⇒ 8

√
αt

3
η,

as h→ 0, where αt =
∫
R(Lx

t )2dx and η is a N(0,1) random variable
independent of B.
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(II) Second integral representation:

u = −DL−1F .

Proof: The proof is based on the following property:

Proposition
F ∈ D1,2 and DF ∈ Domδ if and only if F ∈ DomL and in this case

δ(DF ) = −LF .

Therefore, taking into account that E [F ] = 0, we get

F = LL−1F = −δ(DL−1F ).

In the Brownian motion case, u is unique among all processes with a
chaos expansion ut =

∑∞
q=0 Iq(fq,t ), such that fq,t (t1, . . . , tq) is symmetric

in all q + 1 variables t , t1, . . . , tq .
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Convergence to a mixture of normal laws

Let F = δ(u). Then

〈DF ,u〉H ∼ S2

〈u,h〉H ∼ 0, ∀h ∈ H

}
=⇒ L(F ) ∼ L(Sη) ,

where η is a N(0,1) random variable independent of X .

Theorem (Nourdin-N. ’10)
Let Fn = δ(un), where un ∈ D2,2(H). Suppose that supn E(|Fn|) <∞ and

(i) 〈un,DFn〉H
L1

−→ S2, as n→∞.

(ii) For all h ∈ H, 〈un,h〉H
L1

−→ 0 as n→∞.

Then, Fn converges stably to ηS, where η is a N(0,1) random variable
independent of X (that is, (Fn,X )

L→ (Sη,X )).
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Sketch of the proof:
Suppose that (Fn,X )

L→ (F∞,X ). We need to show that

E
(
eiλF∞ |X

)
= e−

λ2
2 S2

. (1)

Set Y ∈ S and define
φn(λ) = E(eiλFn Y ).

We compute the limit of φ′n(λ) in two ways:
1. Using weak convergence:

φ′n(λ) = iE(eiλFn FnY )→ iE(eiλF∞F∞Y ).

2. Using Malliavin calculus and our assumptions:

φ′n(λ) = iE(eiλFn FnY ) = iE(eiλFnδ(un)Y )

= iE
(〈

D
(
eiλFn Y

)
,un
〉

H

)
= −λE

(
eiλFn 〈un,DFn〉H Y

)
+ iE

(
eiλFn〈un,DY 〉H

)
→ −λE(eiλF∞S2Y ).
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As a consequence,

iE(eiλF∞F∞Y ) = −λE(eiλF∞S2Y ).

This leads to a linear differential equation satisfied by the conditional
characteristic function of F∞:

∂

∂λ
E(eiλF∞ |X ) = −S2λE(eiλF∞ |X ),

and we obtain
E(eiλF∞ |X ) = e−

λ2
2 S2

.
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Remarks:

It turns out that

〈un,DFn〉H = ‖un‖2
H + 〈un, δ(Dun)〉H .

Therefore, a sufficient condition for (i) is:

(i’) ‖un‖2
H

L1

−→ S2 and 〈un, δ(Dun)〉H
L1

−→ 0.

Comparison with the Asymptotic Knight Theorem for Brownian
martingales (Revuz-Yor):

If {un,n ≥ 1} are square-integrable adapted processes, then,
Fn = δ(un) =

∫ T
0 un(s)dBs and the stable convergence of Fn to N(0,S2)

is implied by the following conditions:

(A)
∫ t

0 un(s)ds P→ 0, uniformly in t .
(B)

∫ T
0 un(s)2ds → S2 in L1(Ω).
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Applications

Weighted Hermite variations of the fractional Brownian motion: Assume
1

2q < H < 1− 1
2q . Then,

1√
n

n∑
k=1

f (BH
k−1

n
)hq(nH(BH

k
n
− BH

k−1
n

))
Stably−→ σH,q

∫ 1

0
f (BH

s )dWs,

where W is a Brownian motion independent of BH (Nourdin, Réveillac,
Tudor, N.).

Itô’s formulas in law: Noncentral limit theorem for symmetric integrals
with respect to the fractional Brownian motion for critical values of the
Hurst parameter (Burdzy, Swanson, Nourdin, Réveillac, Harnett, N.,
Binotto).

David Nualart (Kansas University) Malliavin calculus and CLTs SSP 2017 17 / 33



Rate of convergence:

Theorem (Nourdin-N.-Peccati ’16)
Let F = δ(u), where u ∈ D2,2(H). Let S ≥ 0 be such that S2 ∈ D1,2 and let η
be a N(0,1) random variable independent of X . Then for any ϕ ∈ C3

b

|E [ϕ(F )]− E [ϕ(Sη)]| ≤ 1
2
‖ϕ′′‖∞E

[
|〈u,DF 〉H − S2|

]
+

1
3
‖ϕ′′′‖∞E

[
|〈u,DS2〉H |

]
.

Proof: Use interpolation method:

E [ϕ(F )]− E [ϕ(Sη)] =

∫ 1

0
g′(t)dt ,

where g(t) = E [ϕ(
√

tF +
√

1− tSη)].
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Stein’s method for normal approximation
Stein’s lemma:

Z ∼ N(0, σ2) ⇔ E(f (Z )Z ) = σ2E(f ′(Z )) ∀ f ∈ C1
b (R).

Let Z ∼ N(0, σ2), and fix h such that E(|h(Z )|) <∞. Stein’s equation

σ2f ′(x)− xf (x) = h(x)− E(h(Z ))

has a unique solution fh satisfying limx→±∞ e−x2/2σ2
fh(x) = 0.

If ‖h‖∞ ≤ 1, then ‖fh‖∞ ≤ 1
σ

√
π/2 and ‖f ′h‖∞ ≤

2
σ2 . So, for any random

variable F , taking h = 1B,

dTV (F ,Z ) = sup
B∈B(R)

|P(F ∈ B)− P(Z ∈ B)|

≤ sup
f∈CTV

|E [σ2f ′(F )− Ff (F )]|,

where CTV is the class of functions with ‖f‖∞ ≤ 1
σ

√
π/2 and ‖f ′‖∞ ≤ 2

σ2 .
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Case S2 = σ2

This leads to the following result:

Theorem
Suppose that F ∈ D1,2 satisfies F = δ(u), where u ∈ Dom δ. Let Z be a
N(0, σ2) random variable. Then,

dTV (F ,Z ) ≤ 2
σ2 E [|σ2 − 〈DF ,u〉H |].

Proof:

E [σ2f ′(F )− Ff (F )] = E [σ2f ′(F )− δ(u)f (F )]

= E [σ2f ′(F )− 〈u,D[f (F )]〉H ]

= E [f ′(F )(σ2 − 〈u,DF 〉H)].

In particular, taking u = −DL−1F , we get

dTV (F ,Z ) ≤ 2
σ2 E [|σ2 − 〈DF ,−DL−1F 〉H |].
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dTV (F ,Z ) ≤ 2
σ2 E [|σ2 − 〈DF ,−DL−1F 〉H |].
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Case S2 = σ2

This leads to the following result:
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Normal approximation on a fixed Wiener chaos

Proposition
Suppose F ∈ Hq for some q ≥ 2 and E(F 2) = σ2. Then,

dTV (F ,Z ) ≤ 2
qσ2

√
Var
(
‖DF‖2

H

)
.

Proof: Using L−1F = − 1
q F and E [‖DF‖2

H ] = qσ2, we obtain

E [|σ2 − 〈DF ,−DL−1F 〉H |] = E
[∣∣∣∣σ2 − 1

q
‖DF‖2

H

∣∣∣∣]
≤ 1

q

√
Var
(
‖DF‖2

H

)
.
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Using the product formula for multiple stochastic integrals, one can show
that Var

(
‖DF‖2

H

)
is equivalent up to a constant to E [F 4]− 3σ4. This

leads to the Fourth Moment Theorem (Nualart-Peccati-’05,
Nourdin-Peccati’08):

Theorem
Fix q ≥ 2. Let Fn ∈ Hq , n ≥ 1 be such that

lim
n→∞

E(F 2
n ) = σ2.

The following conditions are equivalent:

(i) dTV (Fn,Z )→ 0, as n→∞ where Z ∼ N(0, σ2) .

(ii) E(F 4
n )→ 3σ4, as n→∞.

(iii) ‖DFn‖2
H → qσ2 in L2(Ω), as n→∞.
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Applications and extensions

Book: Nourdin and G. Peccati ’12: Normal Approximations with Malliavin
Calculus : From Stein’s Method to Universality.

Webpage: https ://sites.google.com/site/malliavinstein/home.

Applications: Exact Berry Esséen asymptotics, quantitative
Breuer-Major theorems, ...

Generalizations: Functionals of the Poisson processes, convergence to
nongaussian distributions (Gamma, second chaos, invariant measures
of diffusions,...).
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Self-intersection local time of the fBm

The d-dimensional fractional Brownian motion (d ≥ 2) with Hurst
parameter H ∈ (0,1) is a zero mean Gaussian process {BH

t , t ≥ 0} with
covariance

E [BH,i
t BH,j

s ] = δij
1
2

(t2H + s2H − |t − s|2H).

Its self-intersection local time on [0,T ] is formally defined by

LT =

∫ T

0

∫ t

0
δ0(BH

t − BH
s )dsdt .

Notice that

E [LT ] =

∫ T

0

∫ t

0
E
[
δ0(BH

t − BH
s )
]

dsdt

= (2π)−
d
2

∫ T

0

∫ t

0
|t − s|−Hddsdt <∞⇔ Hd < 1.
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Varadhan’s renormalization

Let pε(x) = (2πε)−d/2e−|x|
2/2ε, and set

LT ,ε =

∫ T

0

∫ t

0
pε(BH

t − BH
s )dsdt .

The following results were proved in [Hu-Nualart ’05]:

(i) If Hd < 1, then LT ,ε
L2

→ LT , as ε ↓ 0.

(ii) If 1
d ≤ H < 3

2d , then LT ,ε − E [LT ,ε]
L2

→ L̃T , as ε ↓ 0.

(iii) If 3
2d < H < 3

4 , then we have the convergence in law:

ε
d
2−

3
4H [LT ,ε − E [LT ,ε]]

L→ N(0,Tσ2
H,d ) (2)

as ε ↓ 0. (Example: H = 1
2 and d ≥ 3)
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The proof of (2) is based on the chaos expansion

ΦT ,ε := ε
d
2−

3
4H [LT ,ε − E [LT ,ε]] =

∞∑
m=2

Jm(LT ,ε)

and the application of the Fourth Moment Theorem to each projection
Jm(LT ,ε), m ≥ 2, as ε ↓ 0.

A first ingredient in the proof is the convergence of the variance:

E
[
Φ2

T ,ε
] ε↓0→ IT ,

where

IT = (2π)−d
∫

0<s<t<T
0<s′<t′<T

[
(λρ− µ2)−

d
2 − (λρ)−

d
2

]
dsdtds′dt ′,

with the notation λ = |t − s|2H , ρ = |t ′ − s′|2H and
µ = E [(BH,1

t − BH,1
s )(BH,1

t′ − BH,1
s′ )].
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Functional CLT

Theorem (Jaramillo-N. ’17)
If 3

2d < H < 3
4 , then

{ε d
2−

3
4H [LT ,ε − E [LT ,ε]] ,T ≥ 0} L→ {σH,dWT ,T ≥ 0},

where W is a standard Brownian motion.

The proof of the convergence of the finite dimensional distributions can
be done by the same method as the CLT for T fixed.

The main difficulty is to show the tightness property of the laws. For this
we need an estimate of the form

E
[
|ΦT ,ε − ΦS,ε|p

]
≤ Cp,d,H |T − S|p/2, (3)

for some p > 2.
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We know that this is true for p = 2, and in this case, we need to estimate
a double integral over essentially three types of regions:

1 [s′, t ′] ⊂ [s, t ]

2 [s′, t ′] ∩ [s, t ] = ∅

3 s < s′ < t < t ′ (the intervals overlap)

However, for p = 4 we have to deal with 4 intervals [si , ti ], i = 1,2,3,4,
the number of different regions is very large and each integral is too
complicated.

Question: How to show the estimate (2)?
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Proving tightness using Malliavin calculus

Fix S ≤ T and define Zε = ΦT ,ε − ΦS,ε.

We can write
Zε = −δDL−1Zε.

Using that E [DL−1Zε] = 0 and Meyer inequalities, yields

‖Zε‖p ≤ cp‖D2L−1Zε‖Lp(Ω;(Hd )⊗2),

where H is the Hilbert space associated with the covariance of the fBm.

We know that

Zε = ε
d
2−

3
4H

∫
s<t

S<t<T

(
pε(BH

t − BH
s )− E [pε(BH

t − BH
s )]
)

dsdt .

Also L−1(F − E [F ]) = −
∫∞

0 TθFdθ, where {Tθ, θ ≥ 0} is the
Ornstein-Uhlenbeck semigroup.
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As a consequence,

D2L−1Zε =

∫ ∞
0

D2TθZεdθ

=

∫ ∞
0

∫
s<t

S<t<T

D2Tθ[pε(BH
t − BH

s )]dsdtdθ

=

∫ ∞
0

∫
s<t

S<t<T

D2Ẽ [pε(e−θ(BH
t − BH

s ) +
√

1− e−2θ(B̃H
t − B̃H

s ))]dsdtdθ

=

∫ ∞
0

∫
s<t

S<t<T

D2pε+(1−e−2θ)(t−s)2H (e−θ(BH
t − BH

s ))dsdtdθ

=

∫ ∞
0

∫
s<t

S<t<T

e−2θp′′ε+(1−e−2θ)(t−s)2H (e−θ(BH
t − BH

s ))1⊗2
[s,t]dsdtdθ.
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Finally, using Minkowski inequality,

‖Zε‖2
p ≤ c2

p‖D2L−1Zε‖2
Lp(Ω;(Hd )⊗2) = c2

p‖‖DL−1Zε‖2
(Hd )⊗2)‖p/2

≤ c2
p

∫
R2

+

∫
s<t

S<t<T

∫
s′<t′

S<t′<T

e−2θ−2βµ2

×‖p′′ε+(1−e−2θ)(e
−θ(BH

t′ − BH
s′))‖p

×‖p′′ε+(1−e−2β)(e
−β(BH

t − BH
s ))‖pdsdtd ′sdt ′dθdβ.

This leads to
‖Zε‖2

p ≤ Cp,d,HI|T − S|p,

where

I =

∫
0<s<t<T

0<s′<t′<T

µ2

λρ
((1 + λ)(1 + ρ)− µ2)−

d
p dsdtds′dt ′ <∞,

provided 2 < p < 4Hd
3 .
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Remarks:

Critical case H = 3d
2 : A logarithmic factor is needed for the central limit

theorem to hold true, but the functional version is open.

Case H > 3
4 : In this case,

ε−
d
2−

3
2H +1(LT ,ε − E [LT ,ε])

L2

−→ cd,H

d∑
j=1

X j
T ,

where X j
T is a Rosenblatt-type random variable, defined as the double

stochastic integral of δ{s=t} with respect to BH,j on [0,T ]2.

The case H = 3
4 is open.
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Thanks for your attention !
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