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Joint work with Sourav Chatterjee.

G is a graph

V (G) is the set of its vertices

E(G) is the set of its edges.

Not oriented.

|V (G)| is the number of vertices inG

|E(G)| are the number of edges inG.
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GN is the set of all graphsG with N vertices.

We think ofV (G) as{1, 2, . . . , N}

The setE is all unordered pairs(i, j), i.e. the full set
of edges.

E(G) ⊂ E
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G is determined by its edge setE(G) ⊂ E

|GN | = 2(
N
2)

A random graph withN vertices is just a probability
measure onGN , i.e. a collection of weights{p(G)}
with

∑

G∈GN
p(G) = 1
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What types of random graphs do we consider?
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What types of random graphs do we consider?

A pair of vertices are connected by an edge with
probabilityp

Different edges are independent.

Th probabilityPN,p(G) of a graphG ∈ GN is given
by

p|E(G)|(1− p)(
N
2)−|E(G)|
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What types of random graphs do we consider?

A pair of vertices are connected by an edge with
probabilityp

Different edges are independent.

Th probabilityPN,p(G) of a graphG ∈ GN is given
by

p|E(G)|(1− p)(
N
2)−|E(G)|

If p = 1
2 , the distribution is uniform and we are

essentially counting the number of graphs.
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We want to calculate the probabilities of the
following types of events.
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We want to calculate the probabilities of the
following types of events.

Let Γ be a finite graph.

The number of different occurrences ofΓ in G is
#G(Γ)

The number of different occurrences ofΓ in a
complete graph withN vertices#N(Γ)

The ratiorG(Γ) =
#G(Γ)
#N (Γ)
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We consider mapsV (Γ) → V (G) that are one to
one.
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p(N, k) = N(N − 1) · · · (N − k + 1) of them.
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We consider mapsV (Γ) → V (G) that are one to
one.

If |V (G)| = N and|V (Γ)| = k there are
p(N, k) = N(N − 1) · · · (N − k + 1) of them.

Of these a certain numberp(G,N, k) will map a
connected pair of vertices inΓ to connected ones in
G.

rG(Γ) =
p(G,N,k)
p(N,k) .
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There is some ambiguity here due to possible
multiple counting.

Large DeviationsandRandom Graphs – p.8/39



There is some ambiguity here due to possible
multiple counting.

It is a multiple that depends only onΓ and will
cancel out when we take the ratio.

Large DeviationsandRandom Graphs – p.8/39



There is some ambiguity here due to possible
multiple counting.

It is a multiple that depends only onΓ and will
cancel out when we take the ratio.

What probabilities do we want to estimate ?

Large DeviationsandRandom Graphs – p.8/39



There is some ambiguity here due to possible
multiple counting.

It is a multiple that depends only onΓ and will
cancel out when we take the ratio.

What probabilities do we want to estimate ?

For eachj ∈ {1, 2, . . . , k} we are given a finite
graphΓj and a numberrj ∈ [0, 1].

Large DeviationsandRandom Graphs – p.8/39



There is some ambiguity here due to possible
multiple counting.

It is a multiple that depends only onΓ and will
cancel out when we take the ratio.

What probabilities do we want to estimate ?

For eachj ∈ {1, 2, . . . , k} we are given a finite
graphΓj and a numberrj ∈ [0, 1].

We are interested in estimating the probability

PN,p

[

∀j, |rG(Γj)− rj| ≤ ǫ
]
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More precisely we are interested in calculating the
function
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More precisely we are interested in calculating the
function

ψp({Γj, rj}) given by

− lim
ǫ→0

lim
N→∞

1
(

N
2

) logPN,p

[

∀j, |rG(Γj)− rj| ≤ ǫ
]
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More precisely we are interested in calculating the
function

ψp({Γj, rj}) given by

− lim
ǫ→0

lim
N→∞

1
(

N
2

) logPN,p

[

∀j, |rG(Γj)− rj| ≤ ǫ
]

ψp({Γj, rj}) = 0 if and only if rj = pE(Γj) for
j = 1, 2, . . . , k.
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Let us consider the set

K = {f : [0, 1]2 → [0, 1]; f(x, y) = f(y, x)}

Large DeviationsandRandom Graphs – p.10/39



Let us consider the set

K = {f : [0, 1]2 → [0, 1]; f(x, y) = f(y, x)}

Define

Hp(f) =

∫ 1

0

∫ 1

0

hp(f(x, y))dxdy
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Let us consider the set

K = {f : [0, 1]2 → [0, 1]; f(x, y) = f(y, x)}

Define

Hp(f) =

∫ 1

0

∫ 1

0

hp(f(x, y))dxdy

Where

hp(f) = f log
f

p
+ (1− f) log

1− f

1− p
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For anyf ∈ K, finite graphΓ with vertices
{1, 2, . . . , k}, and edge setE(Γ) we define

rΓ(f) =

∫

[0,1]|V (Γ)|

Π(i,j)∈E(Γ)f(xi, xj)Π
k
i=1dxi
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For anyf ∈ K, finite graphΓ with vertices
{1, 2, . . . , k}, and edge setE(Γ) we define

rΓ(f) =

∫

[0,1]|V (Γ)|

Π(i,j)∈E(Γ)f(xi, xj)Π
k
i=1dxi

For example ifΓ is the triangle, then

r∆(f) =

∫

[0,1]3
f(x1, x2)f(x2, x3)f(x3, x1)dx1dx2dx3
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For ak cycle it is
∫

[0,1]k
f(x1, x2)f(x2, x3) · · · f(xk, x1)dx1dx2 · · · dxk
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For ak cycle it is
∫

[0,1]k
f(x1, x2)f(x2, x3) · · · f(xk, x1)dx1dx2 · · · dxk

The main result is.

ψp({Γj, rj}) = inf
{f : ∀j, rΓj (f)=rj}

Hp(f)
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What is it good for?
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What is it good for?

Let us analyzeψp(Γ
∆, c).
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Calculus of variations. The infimum is attained.
Proof later. Compactness and continuity.
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What is it good for?

Let us analyzeψp(Γ
∆, c).

Calculus of variations. The infimum is attained.
Proof later. Compactness and continuity.

Euler equation

log
f(x, y)

1− f(x, y)
−log

p

1− p
= β

∫ 1

0

f(x, z)f(y, z)dx
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Subject to
∫

[0,1]3
f(x, y)f(y, z)f(z, x)dxdydz = c

Large DeviationsandRandom Graphs – p.14/39



Subject to
∫

[0,1]3
f(x, y)f(y, z)f(z, x)dxdydz = c

If |c− p3| << 1, thenf(x, y) = c
1
3 is the only

solution and so is optimal.
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Subject to
∫

[0,1]3
f(x, y)f(y, z)f(z, x)dxdydz = c

If |c− p3| << 1, thenf(x, y) = c
1
3 is the only

solution and so is optimal.

For anyc, if p << 1, then a clique

f = 1
[0,c

1
3 ]
(x)1

[0,c
1
3 ]
(y)

is a better option thanf ≡ c
1
3 .
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A slight increase or decrease fromp3 in the
proportion of triangles is explained by a
corresponding deviation in the number of edges
from p to c

1
3 .
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This is not the case ifp is small butc is not.
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1
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This is not the case ifp is small butc is not.

A similar story whenc is small butp is not.
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A slight increase or decrease fromp3 in the
proportion of triangles is explained by a
corresponding deviation in the number of edges
from p to c

1
3 .

This is not the case ifp is small butc is not.

A similar story whenc is small butp is not.

A bipartite graph is a better option.
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What is the general Large Deviations setup and how
do we apply it here?
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.

Large DeviationsandRandom Graphs – p.16/39



What is the general Large Deviations setup and how
do we apply it here?

A metric spaceX and a sequencePn of probability
distributions.

Pn → δx0
.

If A is such thatd(x0, A) > 0 Pn(A) → 0 as
n→ ∞.
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Want a lower semi continuos functionI(x) such that

1

n
logPn[S(x, ǫ)] = −I(x) + o(ǫ) + oǫ(n)
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Want a lower semi continuos functionI(x) such that

1

n
logPn[S(x, ǫ)] = −I(x) + o(ǫ) + oǫ(n)

lim sup
ǫ→0

lim sup
n→∞

1

n
logPn(S(x, ǫ)) ≤ −I(x)
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Want a lower semi continuos functionI(x) such that

1

n
logPn[S(x, ǫ)] = −I(x) + o(ǫ) + oǫ(n)

lim sup
ǫ→0

lim sup
n→∞

1

n
logPn(S(x, ǫ)) ≤ −I(x)

lim inf
ǫ→0

lim inf
n→∞

1

n
logPn(S(x, ǫ)) ≥ −I(x)
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If K is compact

lim sup
n→∞

1

n
logPn(K) ≤ − inf

x∈K
I(x)
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If K is compact

lim sup
n→∞

1

n
logPn(K) ≤ − inf

x∈K
I(x)

If G is open

lim inf
n→∞

1

n
logPn(G) ≥ − inf

x∈G
I(x)
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For anyℓ the set{x : I(x) ≤ ℓ} is compact.
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For anyℓ the set{x : I(x) ≤ ℓ} is compact.

For anyℓ <∞, there is a setKℓ such that
C ∩Kℓ = ∅ implies

lim sup
n→∞

1

n
logPn(C) ≤ −ℓ
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For anyℓ the set{x : I(x) ≤ ℓ} is compact.

For anyℓ <∞, there is a setKℓ such that
C ∩Kℓ = ∅ implies

lim sup
n→∞

1

n
logPn(C) ≤ −ℓ

It now follows that for any closed setC

lim sup
n→∞

1

n
logPn[C] ≤ − inf

x∈C
I(x)
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Contraction Principle.
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F : X → Y is a continuous map.
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Contraction Principle.

{Pn} satisfies LDP with rateI(x) onX ,

F : X → Y is a continuous map.

Qn = PnF
−1 satisfies an LDP onY

With rate function

J(y) = inf
x:F (x)=y

I(x)
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Let us turn to our case. The probability measures are
on graphs withN vertices.
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Let us turn to our case. The probability measures are
on graphs withN vertices.

The space keeps changing.

Need to put them all on the same space.

Every graph is an adjacency matrix.

Random graph is a random symmetric matrix.
X = {xi,j}, xi,i = 0, xi,j ∈ {0, 1}
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0 x1,2 · · · x1,N
x2,1 0 · · · x2,N
. . . · · · · · · · · ·

xN,1 xN,2 · · · 0

Large DeviationsandRandom Graphs – p.22/39



Imbed inK. Simple functions constant on small
squares.

− −− −− −− −− −− −− −− −

| 0 | x1,2 | · · · | x1,N |

− −− −− −− −− −− −− −− −

| x2,1 | 0 | · · · | x2,N |

−− −− −− −− −− −−

| · · · | · · · | · · · | · · · |

− −− −− −− −− −− −− −− −

| xN,1 | xN,2 | · · · | 0 |

− −− −− −− −− −− −− −− −
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Measures{QN,p} onK.
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Measures{QN,p} onK.

The spaceK needs a topology. Weak is good. Nice
compact space.
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Lower Bound. Letf be a nice function inK.
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Measures{QN,p} onK.

The spaceK needs a topology. Weak is good. Nice
compact space.

QN,p ⇒ δp

Lower Bound. Letf be a nice function inK.

Create a random graph with probabilityf( i
N
, j
N
) of

connectingi andj
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By law of large numbers

Qf
N ⇒ δf

in the weak topology onK.
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By law of large numbers

Qf
N ⇒ δf

in the weak topology onK.

The new measureQf
N onK has entropy

H(Qf
N , QN,p) ≃

(

N

2

)

Hp(f)
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Standard tilting argument

P (A) =

∫

A

dP

dQ
dQ

= Q(A)
1

Q(A)

∫

A

e− log dQ
dP dQ

≥ Q(A) exp[−
1

Q(A)

∫

A

log
dQ

dP
dQ]

= exp[−H(Q;P ) + o(H(Q,P ))]
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Upper Bound. Cramér.

2

N2
logEQN,p[

N2

2

∫

J(x, y)f(x, y)dxdy]

→

∫ 1

0

∫ 1

0

log[peJ(x,y) + (1− p)]dxdy
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Upper Bound. Cramér.

2

N2
logEQN,p[

N2

2

∫

J(x, y)f(x, y)dxdy]

→

∫ 1

0

∫ 1

0

log[peJ(x,y) + (1− p)]dxdy

Tchebychev. Half-plane. For small balls, optimize.
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Upper Bound. Cramér.

2

N2
logEQN,p[

N2

2

∫

J(x, y)f(x, y)dxdy]

→

∫ 1

0

∫ 1

0

log[peJ(x,y) + (1− p)]dxdy

Tchebychev. Half-plane. For small balls, optimize.

I(f) = Hp(f)

Large DeviationsandRandom Graphs – p.27/39



Upper Bound. Cramér.

2

N2
logEQN,p[

N2

2

∫

J(x, y)f(x, y)dxdy]

→

∫ 1

0

∫ 1

0

log[peJ(x,y) + (1− p)]dxdy

Tchebychev. Half-plane. For small balls, optimize.

I(f) = Hp(f)

Are we done!
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NO!, Why?
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NO!, Why?

The object of interest is the map

F = {rΓj(f)}; K → [0, 1]k
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NO!, Why?
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NO!, Why?

The object of interest is the map

F = {rΓj(f)}; K → [0, 1]k

They are not continuous unless no two edges in
consistsΓ share a common vertex.

Well. Change the topology toL1

No chance. Even the Law of large numbers fails.
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NO!, Why?

The object of interest is the map

F = {rΓj(f)}; K → [0, 1]k

They are not continuous unless no two edges in
consistsΓ share a common vertex.

Well. Change the topology toL1

No chance. Even the Law of large numbers fails.

In between topology! Cut topology.
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d(f, g) = sup
‖a‖≤1
‖b‖≤1

∫ ∫

[f(x, y)− g(x, y]a(x)b(y)dxdy

= sup
A,B

∫

A

∫

B

[f(x, y)− g(x, y]dxdy
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d(f, g) = sup
‖a‖≤1
‖b‖≤1

∫ ∫

[f(x, y)− g(x, y]a(x)b(y)dxdy

= sup
A,B

∫

A

∫

B

[f(x, y)− g(x, y]dxdy

In the cut topologyF is continuous. Half the battle!
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d(f, g) = sup
‖a‖≤1
‖b‖≤1

∫ ∫

[f(x, y)− g(x, y]a(x)b(y)dxdy

= sup
A,B

∫

A

∫

B

[f(x, y)− g(x, y]dxdy

In the cut topologyF is continuous. Half the battle!

Law of large numbers?
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Enough to takeA andB as unions of intervals of the
form [ j

N
, j+1

N
]
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Enough to takeA andB as unions of intervals of the
form [ j

N
, j+1

N
]

For eachA× B it is only the ordinary LLN for
independent random variables.
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Enough to takeA andB as unions of intervals of the
form [ j

N
, j+1

N
]
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Enough to takeA andB as unions of intervals of the
form [ j

N
, j+1

N
]

For eachA× B it is only the ordinary LLN for
independent random variables.

Error Boundse−cN2

Number of rectangles2n × 2n. That is good. LLN
Holds.
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Enough to takeA andB as unions of intervals of the
form [ j

N
, j+1

N
]

For eachA× B it is only the ordinary LLN for
independent random variables.

Error Boundse−cN2

Number of rectangles2n × 2n. That is good. LLN
Holds.

Three fourths of the battle!
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If K were compact in the cut topology we would be
done.
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If K were compact in the cut topology we would be
done.

But it is not. The projectionf →
∫

f(x, y)dy is
continuous. The image isL1 and not compact.

The problem is invariant under a huge group. The
permutation groupΠN .

The functionHp(f), rΓ(f) are invariant under the
groupσ ∈ Σ of measure preserving transformations
of [0, 1].
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Go toK/Σ.
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Go toK/Σ.

It is compact! ( Lovász-Szegedy)

But what is it?

It is the space of "graphons"

What is a graphon?
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Gn a sequence of graphs. Becoming infinite.
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Gn a sequence of graphs. Becoming infinite.

We sayGn has limit if

lim
n→∞

rGn
(Γ) = r(Γ)

exists for every finite graphΓ
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Gn a sequence of graphs. Becoming infinite.

We sayGn has limit if

lim
n→∞

rGn
(Γ) = r(Γ)

exists for every finite graphΓ

Graphon is the mapΓ → r(Γ)

It has a representation asrΓ(f) for somef in K
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f is not unique. ButrΓ(f) ≡ rΓ(g) if and only if
f(x, y) = g(σx, σy) for someσ ∈ Σ
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f is not unique. ButrΓ(f) ≡ rΓ(g) if and only if
f(x, y) = g(σx, σy) for someσ ∈ Σ

In other wordsr(·) ∈ K/Σ
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SinceK/Σ is compact it is enough to prove the
upper bound for ballsB(f̃ , ǫ) in K/Σ
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SinceK/Σ is compact it is enough to prove the
upper bound for ballsB(f̃ , ǫ) in K/Σ

This means estimating

QN,p[∪σ∈ΣB(σf, ǫ)]

Szemerédi’s regularity lemma.

The permutation groupΠN ⊂ Σ by permuting
intervals of length1

N
.

Givenǫ > 0, there is a finite set{gj} ⊂ K such that
for sufficiently largeN ,

KN = ∪j ∪σ∈ΠN
B(σgj, ǫ)
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It is therefore enough to estimate the probability

QN,p[∪j ∪σ∈ΠN
B(σgj, ǫ)) ∩ [∪σ∈ΣB(σf, ǫ)]]
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It is therefore enough to estimate the probability

QN,p[∪j ∪σ∈ΠN
B(σgj, ǫ)) ∩ [∪σ∈ΣB(σf, ǫ)]]

Sincej only varies over a finite set, it is enough to
estimate for anyg

QN,p

[

[∪σ∈π(N)B(σg, ǫ)] ∩ [∪σ∈ΣB(σf, ǫ)]
]
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It is therefore enough to estimate the probability

QN,p[∪j ∪σ∈ΠN
B(σgj, ǫ)) ∩ [∪σ∈ΣB(σf, ǫ)]]

Sincej only varies over a finite set, it is enough to
estimate for anyg

QN,p

[

[∪σ∈π(N)B(σg, ǫ)] ∩ [∪σ∈ΣB(σf, ǫ)]
]

This is the same as

QN,p

[

∪σ∈π(N) [B(σg, ǫ) ∩ ∪σ∈ΣB(σf, ǫ)]
]
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QN,p is ΠN invariant.N ! << ecN
2

.

QN,p

[

B(g, ǫ) ∩ ∪σ∈ΣB(σf, ǫ)
]
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B(g, ǫ) ∩ ∪σ∈ΣB(σf, ǫ)
]

If the intersection is nonempty, then it is contained
in B(σf, 3ǫ) for someσ ∈ Σ.
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We have upper bounds.Hp(σf) = Hp(f)
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QN,p is ΠN invariant.N ! << ecN
2

.

QN,p

[

B(g, ǫ) ∩ ∪σ∈ΣB(σf, ǫ)
]

If the intersection is nonempty, then it is contained
in B(σf, 3ǫ) for someσ ∈ Σ.

The choice ofσ does not depend onN . Only onǫ.

Balls are weakly closed.

We have upper bounds.Hp(σf) = Hp(f)

Done!
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With p = 1
2, we have done the counting.

Large DeviationsandRandom Graphs – p.38/39



With p = 1
2, we have done the counting.

The quantity

D(N, ǫ) = #|{G : |rG(Γj)−rj| ≤ ǫ for j = 1, 2, . . . , k}|
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With p = 1
2, we have done the counting.

The quantity

D(N, ǫ) = #|{G : |rG(Γj)−rj| ≤ ǫ for j = 1, 2, . . . , k}|

Satisfies

lim
ǫ→0

lim
N→∞

2

N2
logD(N, ǫ) = log 2− ψ 1

2
({Γj, rj})
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Thank You.
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