Large Deviations and Random Graphs

S.R.S. Varadhan Courant Institute, NYU

> UC Irvine March 25, 2011

Joint work with Sourav Chatterjee.

- Joint work with Sourav Chatterjee.
- $\blacksquare G$ is a graph

- Joint work with Sourav Chatterjee.
- $\blacksquare G$ is a graph
- $lue{V}(G)$ is the set of its vertices

- Joint work with Sourav Chatterjee.
- $lue{G}$ is a graph
- $\mathbf{V}(G)$ is the set of its vertices
- ullet E(G) is the set of its edges.

- Joint work with Sourav Chatterjee.
- $lue{G}$ is a graph
- ullet V(G) is the set of its vertices
- E(G) is the set of its edges.
- Not oriented.

- Joint work with Sourav Chatterjee.
- $lue{G}$ is a graph
- $lue{V}(G)$ is the set of its vertices
- E(G) is the set of its edges.
- Not oriented.
- |V(G)| is the number of vertices in G

- Joint work with Sourav Chatterjee.
- $\blacksquare G$ is a graph
- $\overline{\hspace{1em}V(G)}$ is the set of its vertices
- E(G) is the set of its edges.
- Not oriented.
- |V(G)| is the number of vertices in G
- |E(G)| are the number of edges in G.

 \mathcal{G}_N is the set of all graphs G with N vertices.

- $lue{\mathcal{G}}_N$ is the set of all graphs G with N vertices.
- We think of V(G) as $\{1, 2, \ldots, N\}$

- $lue{\mathcal{G}}_N$ is the set of all graphs G with N vertices.
- We think of V(G) as $\{1, 2, \dots, N\}$
- The set \mathcal{E} is all unordered pairs (i, j), i.e. the full set of edges.

- $lue{\mathcal{G}}_N$ is the set of all graphs G with N vertices.
- We think of V(G) as $\{1, 2, \ldots, N\}$
- The set \mathcal{E} is all unordered pairs (i, j), i.e. the full set of edges.
- $\blacksquare E(G) \subset \mathcal{E}$

 $lue{G}$ is determined by its edge set $E(G) \subset \mathcal{E}$

 $lue{G}$ is determined by its edge set $E(G) \subset \mathcal{E}$

$$|\mathcal{G}_N| = 2^{\binom{N}{2}}$$

 $lue{G}$ is determined by its edge set $E(G) \subset \mathcal{E}$

$$|\mathcal{G}_N| = 2^{\binom{N}{2}}$$

A random graph with N vertices is just a probability measure on \mathcal{G}_N , i.e. a collection of weights $\{p(G)\}$ with $\sum_{G \in \mathcal{G}_N} p(G) = 1$

What types of random graphs do we consider?

- What types of random graphs do we consider?
- A pair of vertices are connected by an edge with probability p

- What types of random graphs do we consider?
- A pair of vertices are connected by an edge with probability p
- Different edges are independent.

- What types of random graphs do we consider?
- A pair of vertices are connected by an edge with probability p
- Different edges are independent.
- Th probability $P_{N,p}(G)$ of a graph $G \in \mathcal{G}_N$ is given by

- What types of random graphs do we consider?
- A pair of vertices are connected by an edge with probability p
- Different edges are independent.
- Th probability $P_{N,p}(G)$ of a graph $G \in \mathcal{G}_N$ is given by

$$p^{|E(G)|}(1-p)^{\binom{N}{2}-|E(G)|}$$

- What types of random graphs do we consider?
- A pair of vertices are connected by an edge with probability p
- Different edges are independent.
- Th probability $P_{N,p}(G)$ of a graph $G \in \mathcal{G}_N$ is given by
- $p^{|E(G)|}(1-p)^{\binom{N}{2}-|E(G)|}$
- If $p = \frac{1}{2}$, the distribution is uniform and we are essentially counting the number of graphs.

We want to calculate the probabilities of the following types of events.

- We want to calculate the probabilities of the following types of events.
- Let Γ be a finite graph.

- We want to calculate the probabilities of the following types of events.
- Let Γ be a finite graph.
- The number of different occurrences of Γ in G is $\#_G(\Gamma)$

- We want to calculate the probabilities of the following types of events.
- Let Γ be a finite graph.
- The number of different occurrences of Γ in G is $\#_G(\Gamma)$
- The number of different occurrences of Γ in a complete graph with N vertices $\#_N(\Gamma)$

- We want to calculate the probabilities of the following types of events.
- Let Γ be a finite graph.
- The number of different occurrences of Γ in G is $\#_G(\Gamma)$
- The number of different occurrences of Γ in a complete graph with N vertices $\#_N(\Gamma)$
- The ratio $r_G(\Gamma) = \frac{\#_G(\Gamma)}{\#_N(\Gamma)}$

We consider maps $V(\Gamma) \to V(G)$ that are one to one.

- We consider maps $V(\Gamma) \to V(G)$ that are one to one.
- If |V(G)| = N and $|V(\Gamma)| = k$ there are $p(N,k) = N(N-1)\cdots(N-k+1)$ of them.

- We consider maps $V(\Gamma) \to V(G)$ that are one to one.
- If |V(G)| = N and $|V(\Gamma)| = k$ there are $p(N, k) = N(N-1)\cdots(N-k+1)$ of them.
- Of these a certain number p(G, N, k) will map a connected pair of vertices in Γ to connected ones in G.

- We consider maps $V(\Gamma) \to V(G)$ that are one to one.
- If |V(G)| = N and $|V(\Gamma)| = k$ there are $p(N,k) = N(N-1)\cdots(N-k+1)$ of them.
- Of these a certain number p(G, N, k) will map a connected pair of vertices in Γ to connected ones in G.
- $lackbox{\ref{eq:r_G(\Gamma)}}=rac{p(G,N,k)}{p(N,k)}.$

There is some ambiguity here due to possible multiple counting.

- There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.

- There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.
- What probabilities do we want to estimate?

- There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.
- What probabilities do we want to estimate?
- For each $j \in \{1, 2, ..., k\}$ we are given a finite graph Γ_j and a number $r_j \in [0, 1]$.

- There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.
- What probabilities do we want to estimate?
- For each $j \in \{1, 2, ..., k\}$ we are given a finite graph Γ_j and a number $r_j \in [0, 1]$.
- We are interested in estimating the probability

$$P_{N,p}[\forall j, |r_G(\Gamma_j) - r_j| \le \epsilon]$$

More precisely we are interested in calculating the function

- More precisely we are interested in calculating the function
- $lacksq \psi_p(\{\Gamma_j,r_j\})$ given by

$$-\lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{1}{\binom{N}{2}} \log P_{N,p} \left[\forall j, |r_G(\Gamma_j) - r_j| \le \epsilon \right]$$

- More precisely we are interested in calculating the function
- $\Psi_p(\{\Gamma_j,r_j\})$ given by

$$-\lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{1}{\binom{N}{2}} \log P_{N,p} \left[\forall j, |r_G(\Gamma_j) - r_j| \le \epsilon \right]$$

 $\psi_p(\{\Gamma_j, r_j\}) = 0$ if and only if $r_j = p^{E(\Gamma_j)}$ for $j = 1, 2, \dots, k$.

Let us consider the set

$$\mathcal{K} = \{f : [0,1]^2 \to [0,1]; f(x,y) = f(y,x)\}$$

Let us consider the set

$$\mathcal{K} = \{f : [0,1]^2 \to [0,1]; f(x,y) = f(y,x)\}$$

Define

$$H_p(f) = \int_0^1 \int_0^1 h_p(f(x,y)) dx dy$$

Let us consider the set

$$\mathcal{K} = \{ f : [0,1]^2 \to [0,1]; f(x,y) = f(y,x) \}$$

Define

$$H_p(f) = \int_0^1 \int_0^1 h_p(f(x,y)) dx dy$$

Where

$$h_p(f) = f \log \frac{f}{p} + (1 - f) \log \frac{1 - f}{1 - p}$$

For any $f \in \mathcal{K}$, finite graph Γ with vertices $\{1, 2, \dots, k\}$, and edge set $E(\Gamma)$ we define

$$r^{\Gamma}(f) = \int_{[0,1]^{|V(\Gamma)|}} \Pi_{(i,j)\in E(\Gamma)} f(x_i, x_j) \Pi_{i=1}^k dx_i$$

For any $f \in \mathcal{K}$, finite graph Γ with vertices $\{1, 2, \dots, k\}$, and edge set $E(\Gamma)$ we define

$$r^{\Gamma}(f) = \int_{[0,1]^{|V(\Gamma)|}} \Pi_{(i,j)\in E(\Gamma)} f(x_i, x_j) \Pi_{i=1}^k dx_i$$

For example if Γ is the triangle, then

$$\mathbf{r}^{\Delta}(f) = \int_{[0,1]^3} f(x_1, x_2) f(x_2, x_3) f(x_3, x_1) dx_1 dx_2 dx_3$$

For a k cycle it is

$$\int_{[0,1]^k} f(x_1, x_2) f(x_2, x_3) \cdots f(x_k, x_1) dx_1 dx_2 \cdots dx_k$$

For a k cycle it is

$$\int_{[0,1]^k} f(x_1, x_2) f(x_2, x_3) \cdots f(x_k, x_1) dx_1 dx_2 \cdots dx_k$$

The main result is.

$$\psi_p(\{\Gamma_j, r_j\}) = \inf_{\{f: \forall j, \ r^{\Gamma_j}(f) = r_j\}} H_p(f)$$

What is it good for?

- What is it good for?
- Let us analyze $\psi_p(\Gamma^{\Delta}, c)$.

- What is it good for?
- Let us analyze $\psi_p(\Gamma^{\Delta}, c)$.
- Calculus of variations. The infimum is attained.
 Proof later. Compactness and continuity.

- What is it good for?
- Let us analyze $\psi_p(\Gamma^{\Delta}, c)$.
- Calculus of variations. The infimum is attained.
 Proof later. Compactness and continuity.
- Euler equation

$$\log \frac{f(x,y)}{1 - f(x,y)} - \log \frac{p}{1 - p} = \beta \int_0^1 f(x,z) f(y,z) dx$$

Subject to

$$\int_{[0,1]^3} f(x,y)f(y,z)f(z,x)dxdydz = c$$

Subject to

$$\int_{[0,1]^3} f(x,y)f(y,z)f(z,x)dxdydz = c$$

If $|c-p^3| << 1$, then $f(x,y) = c^{\frac{1}{3}}$ is the only solution and so is optimal.

Subject to

$$\int_{[0,1]^3} f(x,y)f(y,z)f(z,x)dxdydz = c$$

- If $|c-p^3| << 1$, then $f(x,y) = c^{\frac{1}{3}}$ is the only solution and so is optimal.
- For any c, if $p \ll 1$, then a clique

$$f = \mathbf{1}_{[0,c^{\frac{1}{3}}]}(x)\mathbf{1}_{[0,c^{\frac{1}{3}}]}(y)$$

is a better option than $f \equiv c^{\frac{1}{3}}$.

A slight increase or decrease from p^3 in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.

- A slight increase or decrease from p^3 in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.
- This is not the case if p is small but c is not.

- A slight increase or decrease from p^3 in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.
- This is not the case if p is small but c is not.
- \blacksquare A similar story when c is small but p is not.

- A slight increase or decrease from p^3 in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.
- This is not the case if p is small but c is not.
- \blacksquare A similar story when c is small but p is not.
- A bipartite graph is a better option.

What is the general Large Deviations setup and how do we apply it here?

- What is the general Large Deviations setup and how do we apply it here?
- A metric space \mathcal{X} and a sequence P_n of probability distributions.

- What is the general Large Deviations setup and how do we apply it here?
- A metric space \mathcal{X} and a sequence P_n of probability distributions.
- $\blacksquare P_n \to \delta_{x_0}$.

- What is the general Large Deviations setup and how do we apply it here?
- A metric space \mathcal{X} and a sequence P_n of probability distributions.
- $\blacksquare P_n \to \delta_{x_0}.$
- If A is such that $d(x_0, A) > 0$ $P_n(A) \to 0$ as $n \to \infty$.

Want a lower semi continuos function I(x) such that

$$\frac{1}{n}\log P_n[S(x,\epsilon)] = -I(x) + o(\epsilon) + o_{\epsilon}(n)$$

Want a lower semi continuos function I(x) such that

$$\frac{1}{n}\log P_n[S(x,\epsilon)] = -I(x) + o(\epsilon) + o_{\epsilon}(n)$$

$$\limsup_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P_n(S(x, \epsilon)) \le -I(x)$$

Want a lower semi continuos function I(x) such that

$$\frac{1}{n}\log P_n[S(x,\epsilon)] = -I(x) + o(\epsilon) + o_{\epsilon}(n)$$

$$\limsup_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P_n(S(x, \epsilon)) \le -I(x)$$

$$\liminf_{\epsilon \to 0} \liminf_{n \to \infty} \frac{1}{n} \log P_n(S(x, \epsilon)) \ge -I(x)$$

If K is compact

$$\limsup_{n \to \infty} \frac{1}{n} \log P_n(K) \le -\inf_{x \in K} I(x)$$

 \blacksquare If K is compact

$$\limsup_{n \to \infty} \frac{1}{n} \log P_n(K) \le -\inf_{x \in K} I(x)$$

 \blacksquare If G is open

$$\liminf_{n \to \infty} \frac{1}{n} \log P_n(G) \ge -\inf_{x \in G} I(x)$$

For any ℓ the set $\{x: I(x) \leq \ell\}$ is compact.

- For any ℓ the set $\{x: I(x) \leq \ell\}$ is compact.
- For any $\ell < \infty$, there is a set K_{ℓ} such that $C \cap K_{\ell} = \emptyset$ implies

$$\limsup_{n \to \infty} \frac{1}{n} \log P_n(C) \le -\ell$$

- For any ℓ the set $\{x: I(x) \leq \ell\}$ is compact.
- For any $\ell < \infty$, there is a set K_{ℓ} such that $C \cap K_{\ell} = \emptyset$ implies

$$\limsup_{n \to \infty} \frac{1}{n} \log P_n(C) \le -\ell$$

It now follows that for any closed set C

$$\limsup_{n \to \infty} \frac{1}{n} \log P_n[C] \le -\inf_{x \in C} I(x)$$

Contraction Principle.

- Contraction Principle.
- $\blacksquare \{P_n\}$ satisfies LDP with rate I(x) on \mathcal{X} ,

- Contraction Principle.
- $\blacksquare \{P_n\}$ satisfies LDP with rate I(x) on \mathcal{X} ,
- $F: \mathcal{X} \to \mathcal{Y}$ is a continuous map.

- Contraction Principle.
- $\blacksquare \{P_n\}$ satisfies LDP with rate I(x) on \mathcal{X} ,
- $F: \mathcal{X} \to \mathcal{Y}$ is a continuous map.
- $Q_n = P_n F^{-1}$ satisfies an LDP on \mathcal{Y}

- Contraction Principle.
- $\blacksquare \{P_n\}$ satisfies LDP with rate I(x) on \mathcal{X} ,
- lacksquare $F: \mathcal{X} \to \mathcal{Y}$ is a continuous map.
- $\mathbf{Q}_n = P_n F^{-1}$ satisfies an LDP on \mathcal{Y}
- With rate function

$$J(y) = \inf_{x:F(x)=y} I(x)$$

Let us turn to our case. The probability measures are on graphs with N vertices.

- Let us turn to our case. The probability measures are on graphs with N vertices.
- The space keeps changing.

- Let us turn to our case. The probability measures are on graphs with N vertices.
- The space keeps changing.
- Need to put them all on the same space.

- Let us turn to our case. The probability measures are on graphs with N vertices.
- The space keeps changing.
- Need to put them all on the same space.
- Every graph is an adjacency matrix.

- Let us turn to our case. The probability measures are on graphs with N vertices.
- The space keeps changing.
- Need to put them all on the same space.
- Every graph is an adjacency matrix.
- Random graph is a random symmetric matrix.

$$X = \{x_{i,j}\}, x_{i,i} = 0, x_{i,j} \in \{0,1\}$$

Imbed in \mathcal{K} . Simple functions constant on small squares.

■ Measures $\{Q_{N,p}\}$ on \mathcal{K} .

- Measures $\{Q_{N,p}\}$ on \mathcal{K} .
- The space \mathcal{K} needs a topology. Weak is good. Nice compact space.

- Measures $\{Q_{N,p}\}$ on \mathcal{K} .
- The space K needs a topology. Weak is good. Nice compact space.
- $\mathbf{Q}_{N,p} \Rightarrow \delta_p$

- Measures $\{Q_{N,p}\}$ on \mathcal{K} .
- The space \mathcal{K} needs a topology. Weak is good. Nice compact space.
- $\mathbf{Q}_{N,p} \Rightarrow \delta_p$
- Lower Bound. Let f be a nice function in \mathcal{K} .

- Measures $\{Q_{N,p}\}$ on \mathcal{K} .
- The space \mathcal{K} needs a topology. Weak is good. Nice compact space.
- $\mathbf{Q}_{N,p} \Rightarrow \delta_p$
- Lower Bound. Let f be a nice function in \mathcal{K} .
- Create a random graph with probability $f(\frac{i}{N}, \frac{j}{N})$ of connecting i and j

By law of large numbers

$$Q_N^f \Rightarrow \delta_f$$

in the weak topology on \mathcal{K} .

By law of large numbers

$$Q_N^f \Rightarrow \delta_f$$

in the weak topology on \mathcal{K} .

The new measure Q_N^f on $\mathcal K$ has entropy

$$H(Q_N^f, Q_{N,p}) \simeq {N \choose 2} H_p(f)$$

Standard tilting argument

$$P(A) = \int_{A} \frac{dP}{dQ} dQ$$

$$= Q(A) \frac{1}{Q(A)} \int_{A} e^{-\log \frac{dQ}{dP}} dQ$$

$$\geq Q(A) \exp\left[-\frac{1}{Q(A)} \int_{A} \log \frac{dQ}{dP} dQ\right]$$

$$= \exp\left[-H(Q; P) + o(H(Q, P))\right]$$

$$\frac{2}{N^2} \log E^{Q_{N,p}} \left[\frac{N^2}{2} \int J(x,y) f(x,y) dx dy \right]$$

$$\to \int_0^1 \int_0^1 \log [p e^{J(x,y)} + (1-p)] dx dy$$

$$\frac{2}{N^2} \log E^{Q_{N,p}} \left[\frac{N^2}{2} \int J(x,y) f(x,y) dx dy \right]$$

$$\to \int_0^1 \int_0^1 \log \left[p e^{J(x,y)} + (1-p) \right] dx dy$$

Tchebychev. Half-plane. For small balls, optimize.

$$\frac{2}{N^2} \log E^{Q_{N,p}} \left[\frac{N^2}{2} \int J(x,y) f(x,y) dx dy \right]$$

$$\to \int_0^1 \int_0^1 \log \left[p e^{J(x,y)} + (1-p) \right] dx dy$$

- Tchebychev. Half-plane. For small balls, optimize.
- $I(f) = H_p(f)$

$$\frac{2}{N^2} \log E^{Q_{N,p}} \left[\frac{N^2}{2} \int J(x,y) f(x,y) dx dy \right]$$

$$\to \int_0^1 \int_0^1 \log \left[p e^{J(x,y)} + (1-p) \right] dx dy$$

- Tchebychev. Half-plane. For small balls, optimize.
- $I(f) = H_p(f)$
- Are we done!

NO!, Why?

- NO!, Why?
- The object of interest is the map

$$F = \{r^{\Gamma_j}(f)\}; \ \mathcal{K} \to [0, 1]^k$$

- NO!, Why?
- The object of interest is the map

$$F = \{r^{\Gamma_j}(f)\}; \ \mathcal{K} \to [0, 1]^k$$

They are not continuous unless no two edges in consists Γ share a common vertex.

- NO!, Why?
- The object of interest is the map

$$F = \{r^{\Gamma_j}(f)\}; \ \mathcal{K} \to [0, 1]^k$$

- They are not continuous unless no two edges in consists Γ share a common vertex.
- Well. Change the topology to L_1

- NO!, Why?
- The object of interest is the map

$$F = \{r^{\Gamma_j}(f)\}; \ \mathcal{K} \to [0, 1]^k$$

- They are not continuous unless no two edges in consists Γ share a common vertex.
- Well. Change the topology to L_1
- No chance. Even the Law of large numbers fails.

- NO!, Why?
- The object of interest is the map

$$F = \{r^{\Gamma_j}(f)\}; \ \mathcal{K} \to [0,1]^k$$

- They are not continuous unless no two edges in consists Γ share a common vertex.
- Well. Change the topology to L_1
- No chance. Even the Law of large numbers fails.
- In between topology! Cut topology.

$$d(f,g) = \sup_{\|a\| \le 1 \atop \|b\| \le 1} \int \int [f(x,y) - g(x,y]a(x)b(y)dxdy$$
$$= \sup_{A,B} \int_{A} \int_{B} [f(x,y) - g(x,y]dxdy$$

$$d(f,g) = \sup_{\|a\| \le 1 \atop \|b\| \le 1} \int \int [f(x,y) - g(x,y]a(x)b(y)dxdy$$
$$= \sup_{A,B} \int_{A} \int_{B} [f(x,y) - g(x,y]dxdy$$

In the cut topology F is continuous. Half the battle!

$$d(f,g) = \sup_{\|a\| \le 1 \atop \|b\| \le 1} \int \int [f(x,y) - g(x,y]a(x)b(y)dxdy$$
$$= \sup_{A,B} \int_{A} \int_{B} [f(x,y) - g(x,y]dxdy$$

- \blacksquare In the cut topology F is continuous. Half the battle!
- Law of large numbers?

Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N},\frac{j+1}{N}\right]$

- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N},\frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.

- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N},\frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.
- Error Bounds $e^{-cN^{2}}$

- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N},\frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.
- Error Bounds e^{-cN^2}
- Number of rectangles $2^n \times 2^n$. That is good. LLN Holds.

- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N},\frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.
- Error Bounds e^{-cN^2}
- Number of rectangles $2^n \times 2^n$. That is good. LLN Holds.
- Three fourths of the battle!

If \mathcal{K} were compact in the cut topology we would be done.

- If \mathcal{K} were compact in the cut topology we would be done.
- But it is not. The projection $f \to \int f(x,y)dy$ is continuous. The image is L_1 and not compact.

- If \mathcal{K} were compact in the cut topology we would be done.
- But it is not. The projection $f \to \int f(x,y)dy$ is continuous. The image is L_1 and not compact.
- The problem is invariant under a huge group. The permutation group Π_N .

- If \mathcal{K} were compact in the cut topology we would be done.
- But it is not. The projection $f \to \int f(x,y)dy$ is continuous. The image is L_1 and not compact.
- The problem is invariant under a huge group. The permutation group Π_N .
- The function $H_p(f)$, $r^{\Gamma}(f)$ are invariant under the group $\sigma \in \Sigma$ of measure preserving transformations of [0,1].

• Go to \mathcal{K}/Σ .

- Go to \mathcal{K}/Σ .
- It is compact! (Lovász-Szegedy)

- Go to \mathcal{K}/Σ .
- It is compact! (Lovász-Szegedy)
- But what is it?

- Go to \mathcal{K}/Σ .
- It is compact! (Lovász-Szegedy)
- But what is it?
- It is the space of "graphons"

- Go to \mathcal{K}/Σ .
- It is compact! (Lovász-Szegedy)
- But what is it?
- It is the space of "graphons"
- What is a graphon?

 $\blacksquare G_n$ a sequence of graphs. Becoming infinite.

- G_n a sequence of graphs. Becoming infinite.
- We say G_n has limit if

$$\lim_{n\to\infty} r_{G_n}(\Gamma) = r(\Gamma)$$

exists for every finite graph Γ

- $\blacksquare G_n$ a sequence of graphs. Becoming infinite.
- We say G_n has limit if

$$\lim_{n\to\infty} r_{G_n}(\Gamma) = r(\Gamma)$$

exists for every finite graph Γ

Graphon is the map $\Gamma \to r(\Gamma)$

- $\blacksquare G_n$ a sequence of graphs. Becoming infinite.
- We say G_n has limit if

$$\lim_{n\to\infty} r_{G_n}(\Gamma) = r(\Gamma)$$

exists for every finite graph Γ

- Graphon is the map $\Gamma \to r(\Gamma)$
- It has a representation as $r^{\Gamma}(f)$ for some f in \mathcal{K}

is not unique. But $r^{\Gamma}(f) \equiv r^{\Gamma}(g)$ if and only if $f(x,y) = g(\sigma x, \sigma y)$ for some $\sigma \in \Sigma$

- is not unique. But $r^{\Gamma}(f) \equiv r^{\Gamma}(g)$ if and only if $f(x,y) = g(\sigma x, \sigma y)$ for some $\sigma \in \Sigma$
- In other words $r(\cdot) \in \mathcal{K}/\Sigma$

Since \mathcal{K}/Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f},\epsilon)$ in \mathcal{K}/Σ

- Since \mathcal{K}/Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f},\epsilon)$ in \mathcal{K}/Σ
- This means estimating

$$Q_{N,p}[\cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

- Since \mathcal{K}/Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f},\epsilon)$ in \mathcal{K}/Σ
- This means estimating

$$Q_{N,p}[\cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

Szemerédi's regularity lemma.

- Since \mathcal{K}/Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f},\epsilon)$ in \mathcal{K}/Σ
- This means estimating

$$Q_{N,p}[\cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

- Szemerédi's regularity lemma.
- The permutation group $\Pi_N \subset \Sigma$ by permuting intervals of length $\frac{1}{N}$.

- Since \mathcal{K}/Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f},\epsilon)$ in \mathcal{K}/Σ
- This means estimating

$$Q_{N,p}[\cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

- Szemerédi's regularity lemma.
- The permutation group $\Pi_N \subset \Sigma$ by permuting intervals of length $\frac{1}{N}$.
- Given $\epsilon > 0$, there is a finite set $\{g_j\} \subset \mathcal{K}$ such that for sufficiently large N,

$$\mathcal{K}_N = \cup_j \cup_{\sigma \in \Pi_N} B(\sigma g_j, \epsilon)$$
 Large Deviations and Random Graphs - p.35/39

It is therefore enough to estimate the probability

$$Q_{N,p}[\cup_j \cup_{\sigma \in \Pi_N} B(\sigma g_j, \epsilon)) \cap [\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)]]$$

It is therefore enough to estimate the probability

$$Q_{N,p}[\cup_j \cup_{\sigma \in \Pi_N} B(\sigma g_j, \epsilon)) \cap [\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)]]$$

Since j only varies over a finite set, it is enough to estimate for any g

$$Q_{N,p}\big[[\cup_{\sigma\in\pi(N)}B(\sigma g,\epsilon)]\cap[\cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]\big]$$

It is therefore enough to estimate the probability

$$Q_{N,p}[\cup_j \cup_{\sigma \in \Pi_N} B(\sigma g_j, \epsilon)) \cap [\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)]]$$

Since j only varies over a finite set, it is enough to estimate for any g

$$Q_{N,p}\big[[\cup_{\sigma\in\pi(N)}B(\sigma g,\epsilon)]\cap[\cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]\big]$$

This is the same as

$$Q_{N,p} \left[\cup_{\sigma \in \pi(N)} \left[B(\sigma g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon) \right] \right]$$

$$Q_{N,p}[B(g,\epsilon)\cap \cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

$$Q_{N,p}[B(g,\epsilon)\cap \cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

If the intersection is nonempty, then it is contained in $B(\sigma f, 3\epsilon)$ for some $\sigma \in \Sigma$.

$$Q_{N,p}[B(g,\epsilon)\cap \cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

- If the intersection is nonempty, then it is contained in $B(\sigma f, 3\epsilon)$ for some $\sigma \in \Sigma$.
- The choice of σ does not depend on N. Only on ϵ .

 $\overline{\hspace{1em}Q_{N,p}}$ is Π_N invariant. $N! << e^{cN^2}$.

$$Q_{N,p}[B(g,\epsilon)\cap \cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

- If the intersection is nonempty, then it is contained in $B(\sigma f, 3\epsilon)$ for some $\sigma \in \Sigma$.
- The choice of σ does not depend on N. Only on ϵ .
- Balls are weakly closed.

$$Q_{N,p}[B(g,\epsilon)\cap \cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

- If the intersection is nonempty, then it is contained in $B(\sigma f, 3\epsilon)$ for some $\sigma \in \Sigma$.
- **The choice of** σ does not depend on N. Only on ϵ .
- Balls are weakly closed.
- We have upper bounds. $H_p(\sigma f) = H_p(f)$

$$Q_{N,p}[B(g,\epsilon)\cap \cup_{\sigma\in\Sigma}B(\sigma f,\epsilon)]$$

- If the intersection is nonempty, then it is contained in $B(\sigma f, 3\epsilon)$ for some $\sigma \in \Sigma$.
- The choice of σ does not depend on N. Only on ϵ .
- Balls are weakly closed.
- We have upper bounds. $H_p(\sigma f) = H_p(f)$
- Done!

With $p = \frac{1}{2}$, we have done the counting.

- With $p = \frac{1}{2}$, we have done the counting.
- The quantity

$$D(N, \epsilon) = \# |\{G : |r_G(\Gamma_j) - r_j| \le \epsilon \text{ for } j = 1, 2, \dots, k\}|$$

- With $p = \frac{1}{2}$, we have done the counting.
- The quantity

$$D(N, \epsilon) = \# |\{G : |r_G(\Gamma_j) - r_j| \le \epsilon \text{ for } j = 1, 2, \dots, k\}|$$

Satisfies

$$\lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{2}{N^2} \log D(N, \epsilon) = \log 2 - \psi_{\frac{1}{2}}(\{\Gamma_j, r_j\})$$

Thank You.