Large Deviations and
 Random Graphs

S.R.S. Varadhan

Courant Institute, NYU

UC Irvine
March 25, 2011

- Joint work with Sourav Chatterjee.
\square Joint work with Sourav Chatterjee.
$\square G$ is a graph
\square Joint work with Sourav Chatterjee.
$\square G$ is a graph
$\square V(G)$ is the set of its vertices
\square Joint work with Sourav Chatterjee.
$\square G$ is a graph
$\square V(G)$ is the set of its vertices
$\square E(G)$ is the set of its edges.
\square Joint work with Sourav Chatterjee.
$\square G$ is a graph
$\square V(G)$ is the set of its vertices
$\square E(G)$ is the set of its edges.
\square Not oriented.
\square Joint work with Sourav Chatterjee.
$\square G$ is a graph
$\square V(G)$ is the set of its vertices
$\square E(G)$ is the set of its edges.
\square Not oriented.
$\square|V(G)|$ is the number of vertices in G
\square Joint work with Sourav Chatterjee.
$\square G$ is a graph
$\square V(G)$ is the set of its vertices
$\square E(G)$ is the set of its edges.
\square Not oriented.
$\square|V(G)|$ is the number of vertices in G
$\square|E(G)|$ are the number of edges in G.

\mathcal{G}_{N} is the set of all graphs G with N vertices.

$\square \mathcal{G}_{N}$ is the set of all graphs G with N vertices.

- We think of $V(G)$ as $\{1,2, \ldots, N\}$
$\square \mathcal{G}_{N}$ is the set of all graphs G with N vertices.
\square We think of $V(G)$ as $\{1,2, \ldots, N\}$
The set \mathcal{E} is all unordered pairs (i, j), i.e. the full set of edges.
$\square \mathcal{G}_{N}$ is the set of all graphs G with N vertices.
\square We think of $V(G)$ as $\{1,2, \ldots, N\}$
The set \mathcal{E} is all unordered pairs (i, j), i.e. the full set of edges.
$\square E(G) \subset \mathcal{E}$
$\square G$ is determined by its edge set $E(G) \subset \mathcal{E}$
$\square G$ is determined by its edge set $E(G) \subset \mathcal{E}$
$\left|\mathcal{G}_{N}\right|=2^{\binom{N}{2}}$
$\square G$ is determined by its edge set $E(G) \subset \mathcal{E}$
$-\left|\mathcal{G}_{N}\right|=2^{\binom{N}{2}}$
- A random graph with N vertices is just a probability measure on \mathcal{G}_{N}, i.e. a collection of weights $\{p(G)\}$ with $\sum_{G \in \mathcal{G}_{N}} p(G)=1$

\square What types of random graphs do we consider?

\square What types of random graphs do we consider?

- A pair of vertices are connected by an edge with probability p
\square What types of random graphs do we consider?
\square A pair of vertices are connected by an edge with probability p
- Different edges are independent.
\square What types of random graphs do we consider?
\square A pair of vertices are connected by an edge with probability p
\square Different edges are independent.
\square Th probability $P_{N, p}(G)$ of a graph $G \in \mathcal{G}_{N}$ is given by
\square What types of random graphs do we consider?
- A pair of vertices are connected by an edge with probability p
- Different edges are independent.
- Th probability $P_{N, p}(G)$ of a graph $G \in \mathcal{G}_{N}$ is given by
- $p^{|E(G)|}(1-p)^{\binom{N}{2}-|E(G)|}$
\square What types of random graphs do we consider?
\square A pair of vertices are connected by an edge with probability p
- Different edges are independent.
- Th probability $P_{N, p}(G)$ of a graph $G \in \mathcal{G}_{N}$ is given by
- $p^{|E(G)|}(1-p)^{\binom{N}{2}-|E(G)|}$
\square If $p=\frac{1}{2}$, the distribution is uniform and we are essentially counting the number of graphs.
- We want to calculate the probabilities of the following types of events.
- We want to calculate the probabilities of the following types of events.
- Let Γ be a finite graph.
\square We want to calculate the probabilities of the following types of events.
\square Let Γ be a finite graph.
- The number of different occurrences of Γ in G is $\#_{G}(\Gamma)$
- We want to calculate the probabilities of the following types of events.
\square Let Γ be a finite graph.
- The number of different occurrences of Γ in G is $\#_{G}(\Gamma)$
- The number of different occurrences of Γ in a complete graph with N vertices $\#_{N}(\Gamma)$
- We want to calculate the probabilities of the following types of events.
\square Let Γ be a finite graph.
- The number of different occurrences of Γ in G is $\#_{G}(\Gamma)$
\square The number of different occurrences of Γ in a complete graph with N vertices $\#_{N}(\Gamma)$
- The ratio $r_{G}(\Gamma)=\frac{\#_{G}(\Gamma)}{\#_{N}(\Gamma)}$
\square We consider maps $V(\Gamma) \rightarrow V(G)$ that are one to one.
\square We consider maps $V(\Gamma) \rightarrow V(G)$ that are one to one.
- If $|V(G)|=N$ and $|V(\Gamma)|=k$ there are $p(N, k)=N(N-1) \cdots(N-k+1)$ of them.
\square We consider maps $V(\Gamma) \rightarrow V(G)$ that are one to one.
- If $|V(G)|=N$ and $|V(\Gamma)|=k$ there are $p(N, k)=N(N-1) \cdots(N-k+1)$ of them.
- Of these a certain number $p(G, N, k)$ will map a connected pair of vertices in Γ to connected ones in G.
\square We consider maps $V(\Gamma) \rightarrow V(G)$ that are one to one.
- If $|V(G)|=N$ and $|V(\Gamma)|=k$ there are $p(N, k)=N(N-1) \cdots(N-k+1)$ of them.
- Of these a certain number $p(G, N, k)$ will map a connected pair of vertices in Γ to connected ones in G.
$\square r_{G}(\Gamma)=\frac{p(G, N, k)}{p(N, k)}$.

There is some ambiguity here due to possible multiple counting.

- There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.
\square There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.
\square What probabilities do we want to estimate ?
\square There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.
\square What probabilities do we want to estimate ?
- For each $j \in\{1,2, \ldots, k\}$ we are given a finite graph Γ_{j} and a number $r_{j} \in[0,1]$.
\square There is some ambiguity here due to possible multiple counting.
- It is a multiple that depends only on Γ and will cancel out when we take the ratio.
\square What probabilities do we want to estimate ?
- For each $j \in\{1,2, \ldots, k\}$ we are given a finite graph Γ_{j} and a number $r_{j} \in[0,1]$.
\square We are interested in estimating the probability

$$
P_{N, p}\left[\forall j,\left|r_{G}\left(\Gamma_{j}\right)-r_{j}\right| \leq \epsilon\right]
$$

\square More precisely we are interested in calculating the function
\square More precisely we are interested in calculating the function
$\square \psi_{p}\left(\left\{\Gamma_{j}, r_{j}\right\}\right)$ given by
$-\lim _{\epsilon \rightarrow 0} \lim _{N \rightarrow \infty} \frac{1}{\binom{N}{2}} \log P_{N, p}\left[\forall j,\left|r_{G}\left(\Gamma_{j}\right)-r_{j}\right| \leq \epsilon\right]$
\square More precisely we are interested in calculating the function
$\square \psi_{p}\left(\left\{\Gamma_{j}, r_{j}\right\}\right)$ given by
$-\lim _{\epsilon \rightarrow 0} \lim _{N \rightarrow \infty} \frac{1}{\binom{N}{2}} \log P_{N, p}\left[\forall j,\left|r_{G}\left(\Gamma_{j}\right)-r_{j}\right| \leq \epsilon\right]$
$\square \psi_{p}\left(\left\{\Gamma_{j}, r_{j}\right\}\right)=0$ if and only if $r_{j}=p^{E\left(\Gamma_{j}\right)}$ for $j=1,2, \ldots, k$.

- Let us consider the set

$$
\mathcal{K}=\left\{f:[0,1]^{2} \rightarrow[0,1] ; f(x, y)=f(y, x)\right\}
$$

- Let us consider the set

$$
\mathcal{K}=\left\{f:[0,1]^{2} \rightarrow[0,1] ; f(x, y)=f(y, x)\right\}
$$

- Define

$$
H_{p}(f)=\int_{0}^{1} \int_{0}^{1} h_{p}(f(x, y)) d x d y
$$

- Let us consider the set

$$
\mathcal{K}=\left\{f:[0,1]^{2} \rightarrow[0,1] ; f(x, y)=f(y, x)\right\}
$$

- Define

$$
H_{p}(f)=\int_{0}^{1} \int_{0}^{1} h_{p}(f(x, y)) d x d y
$$

Where

$$
h_{p}(f)=f \log \frac{f}{p}+(1-f) \log \frac{1-f}{1-p}
$$

- For any $f \in \mathcal{K}$, finite graph Γ with vertices $\{1,2, \ldots, k\}$, and edge set $E(\Gamma)$ we define

$$
r^{\Gamma}(f)=\int_{[0,1]|V(\Gamma)|} \Pi_{(i, j) \in E(\Gamma)} f\left(x_{i}, x_{j}\right) \Pi_{i=1}^{k} d x_{i}
$$

- For any $f \in \mathcal{K}$, finite graph Γ with vertices $\{1,2, \ldots, k\}$, and edge set $E(\Gamma)$ we define

$$
r^{\Gamma}(f)=\int_{[0,1]|V(\Gamma)|} \Pi_{(i, j) \in E(\Gamma)} f\left(x_{i}, x_{j}\right) \Pi_{i=1}^{k} d x_{i}
$$

- For example if Γ is the triangle, then

$$
r^{\Delta}(f)=\int_{[0,1]^{3}} f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) f\left(x_{3}, x_{1}\right) d x_{1} d x_{2} d x_{3}
$$

For a k cycle it is

$$
\int_{[0,1]^{k}} f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) \cdots f\left(x_{k}, x_{1}\right) d x_{1} d x_{2} \cdots d x_{k}
$$

- For a k cycle it is

$$
\int_{[0,1]^{k}} f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right) \cdots f\left(x_{k}, x_{1}\right) d x_{1} d x_{2} \cdots d x_{k}
$$

\square The main result is.

$$
\psi_{p}\left(\left\{\Gamma_{j}, r_{j}\right\}\right)=\inf _{\left\{f: \forall j, r^{\Gamma_{j}}(f)=r_{j}\right\}} H_{p}(f)
$$

\square What is it good for?
\square What is it good for?
\square Let us analyze $\psi_{p}\left(\Gamma^{\Delta}, c\right)$.

- What is it good for?
\square Let us analyze $\psi_{p}\left(\Gamma^{\Delta}, c\right)$.
\square Calculus of variations. The infimum is attained. Proof later. Compactness and continuity.
\square What is it good for?
\square Let us analyze $\psi_{p}\left(\Gamma^{\Delta}, c\right)$.
\square Calculus of variations. The infimum is attained. Proof later. Compactness and continuity.
- Euler equation

$$
\log \frac{f(x, y)}{1-f(x, y)}-\log \frac{p}{1-p}=\beta \int_{0}^{1} f(x, z) f(y, z) d x
$$

- Subject to

$$
\int_{[0,1]^{3}} f(x, y) f(y, z) f(z, x) d x d y d z=c
$$

- Subject to

$$
\int_{[0,1]^{3}} f(x, y) f(y, z) f(z, x) d x d y d z=c
$$

\square If $\left|c-p^{3}\right| \ll 1$, then $f(x, y)=c^{\frac{1}{3}}$ is the only solution and so is optimal.

- Subject to

$$
\int_{[0,1]^{3}} f(x, y) f(y, z) f(z, x) d x d y d z=c
$$

- If $\left|c-p^{3}\right| \ll 1$, then $f(x, y)=c^{\frac{1}{3}}$ is the only solution and so is optimal.
\square For any c, if $p \ll 1$, then a clique

$$
f=\mathbf{1}_{\left[0, c^{\frac{1}{3}}\right]}(x) \mathbf{1}_{\left[0, c^{\left.\frac{1}{3}\right]}\right]}(y)
$$

is a better option than $f \equiv c^{\frac{1}{3}}$.

- A slight increase or decrease from p^{3} in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.
- A slight increase or decrease from p^{3} in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.
\square This is not the case if p is small but c is not.
- A slight increase or decrease from p^{3} in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.
\square This is not the case if p is small but c is not.
\square A similar story when c is small but p is not.
- A slight increase or decrease from p^{3} in the proportion of triangles is explained by a corresponding deviation in the number of edges from p to $c^{\frac{1}{3}}$.
- This is not the case if p is small but c is not.
- A similar story when c is small but p is not.
\square A bipartite graph is a better option.
- What is the general Large Deviations setup and how do we apply it here?
- What is the general Large Deviations setup and how do we apply it here?
- A metric space \mathcal{X} and a sequence P_{n} of probability distributions.
- What is the general Large Deviations setup and how do we apply it here?
- A metric space \mathcal{X} and a sequence P_{n} of probability distributions.
- $P_{n} \rightarrow \delta_{x_{0}}$.
- What is the general Large Deviations setup and how do we apply it here?
- A metric space \mathcal{X} and a sequence P_{n} of probability distributions.
$\square P_{n} \rightarrow \delta_{x_{0}}$.
\square If A is such that $d\left(x_{0}, A\right)>0 P_{n}(A) \rightarrow 0$ as $n \rightarrow \infty$.
\square Want a lower semi continuos function $I(x)$ such that

$$
\frac{1}{n} \log P_{n}[S(x, \epsilon)]=-I(x)+o(\epsilon)+o_{\epsilon}(n)
$$

\square Want a lower semi continuos function $I(x)$ such that

$$
\begin{aligned}
& \frac{1}{n} \log P_{n}[S(x, \epsilon)]=-I(x)+o(\epsilon)+o_{\epsilon}(n) \\
& \limsup _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(S(x, \epsilon)) \leq-I(x)
\end{aligned}
$$

\square Want a lower semi continuos function $I(x)$ such that

$$
\frac{1}{n} \log P_{n}[S(x, \epsilon)]=-I(x)+o(\epsilon)+o_{\epsilon}(n)
$$

$$
\limsup _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(S(x, \epsilon)) \leq-I(x)
$$

$$
\liminf _{\epsilon \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(S(x, \epsilon)) \geq-I(x)
$$

- If K is compact

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(K) \leq-\inf _{x \in K} I(x)
$$

- If K is compact

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(K) \leq-\inf _{x \in K} I(x)
$$

- If G is open

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(G) \geq-\inf _{x \in G} I(x)
$$

For any ℓ the set $\{x: I(x) \leq \ell\}$ is compact.

- For any ℓ the set $\{x: I(x) \leq \ell\}$ is compact.
\square For any $\ell<\infty$, there is a set K_{ℓ} such that $C \cap K_{\ell}=\emptyset$ implies

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(C) \leq-\ell
$$

- For any ℓ the set $\{x: I(x) \leq \ell\}$ is compact.
\square For any $\ell<\infty$, there is a set K_{ℓ} such that $C \cap K_{\ell}=\emptyset$ implies

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}(C) \leq-\ell
$$

\square It now follows that for any closed set C

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log P_{n}[C] \leq-\inf _{x \in C} I(x)
$$

- Contraction Principle.

Contraction Principle.

$\square\left\{P_{n}\right\}$ satisfies LDP with rate $I(x)$ on \mathcal{X},

- Contraction Principle.
$\square\left\{P_{n}\right\}$ satisfies LDP with rate $I(x)$ on \mathcal{X},
$\square F: \mathcal{X} \rightarrow \mathcal{Y}$ is a continuous map.
- Contraction Principle.
$\square\left\{P_{n}\right\}$ satisfies LDP with rate $I(x)$ on \mathcal{X},
$\square F: \mathcal{X} \rightarrow \mathcal{Y}$ is a continuous map.
- $Q_{n}=P_{n} F^{-1}$ satisfies an LDP on \mathcal{Y}
- Contraction Principle.
$\square\left\{P_{n}\right\}$ satisfies LDP with rate $I(x)$ on \mathcal{X},
$\square F: \mathcal{X} \rightarrow \mathcal{Y}$ is a continuous map.
- $Q_{n}=P_{n} F^{-1}$ satisfies an LDP on \mathcal{Y}
\square With rate function

$$
J(y)=\inf _{x: F(x)=y} I(x)
$$

- Let us turn to our case. The probability measures are on graphs with N vertices.
- Let us turn to our case. The probability measures are on graphs with N vertices.
\square The space keeps changing.
- Let us turn to our case. The probability measures are on graphs with N vertices.
\square The space keeps changing.
\square Need to put them all on the same space.
- Let us turn to our case. The probability measures are on graphs with N vertices.
\square The space keeps changing.
- Need to put them all on the same space.
\square Every graph is an adjacency matrix.
- Let us turn to our case. The probability measures are on graphs with N vertices.
\square The space keeps changing.
\square Need to put them all on the same space.
\square Every graph is an adjacency matrix.
- Random graph is a random symmetric matrix.
$X=\left\{x_{i, j}\right\}, x_{i, i}=0, x_{i, j} \in\{0,1\}$

$$
\begin{array}{cccc}
0 & x_{1,2} & \cdots & x_{1, N} \\
x_{2,1} & 0 & \cdots & x_{2, N} \\
\cdots & \cdots & \cdots & \cdots \\
x_{N, 1} & x_{N, 2} & \cdots & 0
\end{array}
$$

- Imbed in \mathcal{K}. Simple functions constant on small squares.

\square Measures $\left\{Q_{N, p}\right\}$ on \mathcal{K}.
- Measures $\left\{Q_{N, p}\right\}$ on \mathcal{K}.

The space \mathcal{K} needs a topology. Weak is good. Nice compact space.

- Measures $\left\{Q_{N, p}\right\}$ on \mathcal{K}.
\square The space \mathcal{K} needs a topology. Weak is good. Nice compact space.
$Q_{N, p} \Rightarrow \delta_{p}$
- Measures $\left\{Q_{N, p}\right\}$ on \mathcal{K}.
- The space \mathcal{K} needs a topology. Weak is good. Nice compact space.
$\square Q_{N, p} \Rightarrow \delta_{p}$
\square Lower Bound. Let f be a nice function in \mathcal{K}.
- Measures $\left\{Q_{N, p}\right\}$ on \mathcal{K}.
- The space \mathcal{K} needs a topology. Weak is good. Nice compact space.
- $Q_{N, p} \Rightarrow \delta_{p}$
\square Lower Bound. Let f be a nice function in \mathcal{K}.
Create a random graph with probability $f\left(\frac{i}{N}, \frac{j}{N}\right)$ of connecting i and j
- By law of large numbers

$$
Q_{N}^{f} \Rightarrow \delta_{f}
$$

in the weak topology on \mathcal{K}.

- By law of large numbers

$$
Q_{N}^{f} \Rightarrow \delta_{f}
$$

in the weak topology on \mathcal{K}.
The new measure Q_{N}^{f} on \mathcal{K} has entropy

$$
H\left(Q_{N}^{f}, Q_{N, p}\right) \simeq\binom{N}{2} H_{p}(f)
$$

- Standard tilting argument

$$
\begin{aligned}
P(A) & =\int_{A} \frac{d P}{d Q} d Q \\
& =Q(A) \frac{1}{Q(A)} \int_{A} e^{-\log \frac{d Q}{d P}} d Q \\
& \geq Q(A) \exp \left[-\frac{1}{Q(A)} \int_{A} \log \frac{d Q}{d P} d Q\right] \\
& =\exp [-H(Q ; P)+o(H(Q, P))]
\end{aligned}
$$

- Upper Bound. Cramér.

$$
\begin{aligned}
& \left.\frac{2}{N^{2}} \log E^{Q_{N, p}} \frac{N^{2}}{2} \int J(x, y) f(x, y) d x d y\right] \\
& \quad \rightarrow \int_{0}^{1} \int_{0}^{1} \log \left[p e^{J(x, y)}+(1-p)\right] d x d y
\end{aligned}
$$

- Upper Bound. Cramér.

$$
\begin{aligned}
& \frac{2}{N^{2}} \log E^{Q_{N, p}}\left[\frac{N^{2}}{2} \int J(x, y) f(x, y) d x d y\right] \\
& \quad \rightarrow \int_{0}^{1} \int_{0}^{1} \log \left[p e^{J(x, y)}+(1-p)\right] d x d y
\end{aligned}
$$

- Tchebychev. Half-plane. For small balls, optimize.
- Upper Bound. Cramér.

$$
\begin{aligned}
& \frac{2}{N^{2}} \log E^{Q_{N, p}}\left[\frac{N^{2}}{2} \int J(x, y) f(x, y) d x d y\right] \\
& \quad \rightarrow \int_{0}^{1} \int_{0}^{1} \log \left[p e^{J(x, y)}+(1-p)\right] d x d y
\end{aligned}
$$

- Tchebychev. Half-plane. For small balls, optimize.
$\square I(f)=H_{p}(f)$
- Upper Bound. Cramér.

$$
\begin{aligned}
& \frac{2}{N^{2}} \log E^{Q_{N, p}}\left[\frac{N^{2}}{2} \int J(x, y) f(x, y) d x d y\right] \\
& \quad \rightarrow \int_{0}^{1} \int_{0}^{1} \log \left[p e^{J(x, y)}+(1-p)\right] d x d y
\end{aligned}
$$

- Tchebychev. Half-plane. For small balls, optimize.
$\square I(f)=H_{p}(f)$
\square Are we done!
nO!, Why?
- NO!, Why?

The object of interest is the map

$$
F=\left\{r^{\Gamma_{j}}(f)\right\} ; \mathcal{K} \rightarrow[0,1]^{k}
$$

- NO!, Why?
\square The object of interest is the map

$$
F=\left\{r^{\Gamma_{j}}(f)\right\} ; \mathcal{K} \rightarrow[0,1]^{k}
$$

They are not continuous unless no two edges in consists Γ share a common vertex.

- NO!, Why?
\square The object of interest is the map

$$
F=\left\{r^{\Gamma_{j}}(f)\right\} ; \mathcal{K} \rightarrow[0,1]^{k}
$$

\square They are not continuous unless no two edges in consists Γ share a common vertex.
\square Well. Change the topology to L_{1}

- NO!, Why?
\square The object of interest is the map

$$
F=\left\{r^{\Gamma_{j}}(f)\right\} ; \mathcal{K} \rightarrow[0,1]^{k}
$$

\square They are not continuous unless no two edges in consists Γ share a common vertex.

- Well. Change the topology to L_{1}
\square No chance. Even the Law of large numbers fails.
- NO!, Why?
\square The object of interest is the map

$$
F=\left\{r^{\Gamma_{j}}(f)\right\} ; \mathcal{K} \rightarrow[0,1]^{k}
$$

\square They are not continuous unless no two edges in consists Γ share a common vertex.
\square Well. Change the topology to L_{1}
\square No chance. Even the Law of large numbers fails.
\square In between topology! Cut topology.

$$
\begin{aligned}
d(f, g) & =\sup _{\substack{\|a \leq 1\\
\| b b \| \leq 1}} \iint[f(x, y)-g(x, y] a(x) b(y) d x d y \\
& =\sup _{A, B} \int_{A} \int_{B}[f(x, y)-g(x, y] d x d y
\end{aligned}
$$

$$
\begin{aligned}
d(f, g) & =\sup _{\substack{\|a \leq 1\\
\| b b \mid \leq 1}} \iint[f(x, y)-g(x, y] a(x) b(y) d x d y \\
& =\sup _{A, B} \int_{A} \int_{B}[f(x, y)-g(x, y] d x d y
\end{aligned}
$$

\square In the cut topology F is continuous. Half the battle!

$$
\begin{aligned}
d(f, g) & =\sup _{\substack{\|a \leq \leq 1\\
\| b b \mid \leq 1}} \iint[f(x, y)-g(x, y] a(x) b(y) d x d y \\
& =\sup _{A, B} \int_{A} \int_{B}[f(x, y)-g(x, y] d x d y
\end{aligned}
$$

\square In the cut topology F is continuous. Half the battle!

- Law of large numbers?
- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N}, \frac{j+1}{N}\right]$
- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N}, \frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.
- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N}, \frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.
- Error Bounds $e^{-c N^{2}}$
- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N}, \frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.
- Error Bounds $e^{-c N^{2}}$
\square Number of rectangles $2^{n} \times 2^{n}$. That is good. LLN Holds.
- Enough to take A and B as unions of intervals of the form $\left[\frac{j}{N}, \frac{j+1}{N}\right]$
- For each $A \times B$ it is only the ordinary LLN for independent random variables.
- Error Bounds $e^{-c N^{2}}$
\square Number of rectangles $2^{n} \times 2^{n}$. That is good. LLN Holds.
- Three fourths of the battle!
\square If \mathcal{K} were compact in the cut topology we would be done.
\square If \mathcal{K} were compact in the cut topology we would be done.
\square But it is not. The projection $f \rightarrow \int f(x, y) d y$ is continuous. The image is L_{1} and not compact.
\square If \mathcal{K} were compact in the cut topology we would be done.
\square But it is not. The projection $f \rightarrow \int f(x, y) d y$ is continuous. The image is L_{1} and not compact. The problem is invariant under a huge group. The permutation group Π_{N}.
\square If \mathcal{K} were compact in the cut topology we would be done.
\square But it is not. The projection $f \rightarrow \int f(x, y) d y$ is continuous. The image is L_{1} and not compact.
\square The problem is invariant under a huge group. The permutation group Π_{N}.
- The function $H_{p}(f), r^{\Gamma}(f)$ are invariant under the group $\sigma \in \Sigma$ of measure preserving transformations of $[0,1]$.

Go to \mathcal{K} / Σ.

- Go to \mathcal{K} / Σ.
\square It is compact! (Lovász-Szegedy)
- Go to \mathcal{K} / Σ.
\square It is compact! (Lovász-Szegedy)
\square But what is it?
- Go to \mathcal{K} / Σ.
\square It is compact! (Lovász-Szegedy)
\square But what is it?
\square It is the space of "graphons"
- Go to \mathcal{K} / Σ.
\square It is compact! (Lovász-Szegedy)
\square But what is it?
- It is the space of "graphons"
- What is a graphon?
$\square G_{n}$ a sequence of graphs. Becoming infinite.
- G_{n} a sequence of graphs. Becoming infinite.
\square We say G_{n} has limit if

$$
\lim _{n \rightarrow \infty} r_{G_{n}}(\Gamma)=r(\Gamma)
$$

exists for every finite graph Γ

- G_{n} a sequence of graphs. Becoming infinite.
\square We say G_{n} has limit if

$$
\lim _{n \rightarrow \infty} r_{G_{n}}(\Gamma)=r(\Gamma)
$$

exists for every finite graph Γ
Graphon is the map $\Gamma \rightarrow r(\Gamma)$

- G_{n} a sequence of graphs. Becoming infinite.
\square We say G_{n} has limit if

$$
\lim _{n \rightarrow \infty} r_{G_{n}}(\Gamma)=r(\Gamma)
$$

exists for every finite graph Γ
\square Graphon is the map $\Gamma \rightarrow r(\Gamma)$

- It has a representation as $r^{\Gamma}(f)$ for some f in \mathcal{K}
$\square f$ is not unique. But $r^{\Gamma}(f) \equiv r^{\Gamma}(g)$ if and only if $f(x, y)=g(\sigma x, \sigma y)$ for some $\sigma \in \Sigma$
- f is not unique. But $r^{\Gamma}(f) \equiv r^{\Gamma}(g)$ if and only if $f(x, y)=g(\sigma x, \sigma y)$ for some $\sigma \in \Sigma$
- In other words $r(\cdot) \in \mathcal{K} / \Sigma$
\square Since \mathcal{K} / Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f}, \epsilon)$ in \mathcal{K} / Σ
\square Since \mathcal{K} / Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f}, \epsilon)$ in \mathcal{K} / Σ
This means estimating

$$
Q_{N, p}\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square Since \mathcal{K} / Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f}, \epsilon)$ in \mathcal{K} / Σ
\square This means estimating

$$
Q_{N, p}\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square Szemerédi's regularity lemma.
\square Since \mathcal{K} / Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f}, \epsilon)$ in \mathcal{K} / Σ
\square This means estimating

$$
Q_{N, p}\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square Szemerédi's regularity lemma.
\square The permutation group $\Pi_{N} \subset \Sigma$ by permuting intervals of length $\frac{1}{N}$.
\square Since \mathcal{K} / Σ is compact it is enough to prove the upper bound for balls $B(\tilde{f}, \epsilon)$ in \mathcal{K} / Σ
\square This means estimating

$$
Q_{N, p}\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square Szemerédi's regularity lemma.
\square The permutation group $\Pi_{N} \subset \Sigma$ by permuting intervals of length $\frac{1}{N}$.
\square Given $\epsilon>0$, there is a finite set $\left\{g_{j}\right\} \subset \mathcal{K}$ such that for sufficiently large N,

- It is therefore enough to estimate the probability

$$
\left.Q_{N, p}\left[\cup_{j} \cup_{\sigma \in \Pi_{N}} B\left(\sigma g_{j}, \epsilon\right)\right) \cap\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]\right]
$$

- It is therefore enough to estimate the probability

$$
\left.Q_{N, p}\left[\cup_{j} \cup_{\sigma \in \Pi_{N}} B\left(\sigma g_{j}, \epsilon\right)\right) \cap\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]\right]
$$

\square Since j only varies over a finite set, it is enough to estimate for any g

$$
Q_{N, p}\left[\left[\cup_{\sigma \in \pi(N)} B(\sigma g, \epsilon)\right] \cap\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]\right]
$$

- It is therefore enough to estimate the probability

$$
\left.Q_{N, p}\left[\cup_{j} \cup_{\sigma \in \Pi_{N}} B\left(\sigma g_{j}, \epsilon\right)\right) \cap\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]\right]
$$

\square Since j only varies over a finite set, it is enough to estimate for any g

$$
Q_{N, p}\left[\left[\cup_{\sigma \in \pi(N)} B(\sigma g, \epsilon)\right] \cap\left[\cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]\right]
$$

This is the same as

$$
Q_{N, p}\left[\cup_{\sigma \in \pi(N)}\left[B(\sigma g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]\right]
$$

$Q_{N, p}$ is Π_{N} invariant. $N!\ll e^{c N^{2}}$.

$$
Q_{N, p}\left[B(g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

$\square Q_{N, p}$ is Π_{N} invariant. $N!\ll e^{c N^{2}}$.

$$
Q_{N, p}\left[B(g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

- If the intersection is nonempty, then it is contained in $B(\sigma f, 3 \epsilon)$ for some $\sigma \in \Sigma$.
- $Q_{N, p}$ is Π_{N} invariant. $N!\ll e^{c N^{2}}$.

$$
Q_{N, p}\left[B(g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square If the intersection is nonempty, then it is contained in $B(\sigma f, 3 \epsilon)$ for some $\sigma \in \Sigma$.
\square The choice of σ does not depend on N. Only on ϵ.

- $Q_{N, p}$ is Π_{N} invariant. $N!\ll e^{c N^{2}}$.

$$
Q_{N, p}\left[B(g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square If the intersection is nonempty, then it is contained in $B(\sigma f, 3 \epsilon)$ for some $\sigma \in \Sigma$.
\square The choice of σ does not depend on N. Only on ϵ.
\square Balls are weakly closed.

- $Q_{N, p}$ is Π_{N} invariant. $N!\ll e^{c N^{2}}$.

$$
Q_{N, p}\left[B(g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square If the intersection is nonempty, then it is contained in $B(\sigma f, 3 \epsilon)$ for some $\sigma \in \Sigma$.
\square The choice of σ does not depend on N. Only on ϵ.
\square Balls are weakly closed.
\square We have upper bounds. $H_{p}(\sigma f)=H_{p}(f)$

- $Q_{N, p}$ is Π_{N} invariant. $N!\ll e^{c N^{2}}$.

$$
Q_{N, p}\left[B(g, \epsilon) \cap \cup_{\sigma \in \Sigma} B(\sigma f, \epsilon)\right]
$$

\square If the intersection is nonempty, then it is contained in $B(\sigma f, 3 \epsilon)$ for some $\sigma \in \Sigma$.
\square The choice of σ does not depend on N. Only on ϵ.
\square Balls are weakly closed.
\square We have upper bounds. $H_{p}(\sigma f)=H_{p}(f)$
■ Done!
\square With $p=\frac{1}{2}$, we have done the counting.
\square With $p=\frac{1}{2}$, we have done the counting.

The quantity

$D(N, \epsilon)=\# \mid\left\{G:\left|r_{G}\left(\Gamma_{j}\right)-r_{j}\right| \leq \epsilon\right.$ for $\left.j=1,2, \ldots, k\right\} \mid$
\square With $p=\frac{1}{2}$, we have done the counting.
\square The quantity
$D(N, \epsilon)=\# \mid\left\{G:\left|r_{G}\left(\Gamma_{j}\right)-r_{j}\right| \leq \epsilon\right.$ for $\left.j=1,2, \ldots, k\right\} \mid$

- Satisfies
$\lim _{\epsilon \rightarrow 0} \lim _{N \rightarrow \infty} \frac{2}{N^{2}} \log D(N, \epsilon)=\log 2-\psi_{\frac{1}{2}}\left(\left\{\Gamma_{j}, r_{j}\right\}\right)$

Thank You.

