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Joint work with Sourav Chatterjee.
G Is a graph

V(G) is the set of its vertices
E(G) is the set of its edges.

Not oriented.

[V ()] is the number of vertices i@
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Joint work with Sourav Chatterjee.
G Is a graph
V(G) is the set of its vertices

E(G) is the set of its edges.
Not oriented.

V(G)
E(G)

IS the number of vertices I&¢
are the number of edges n
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The set is all unordered pair§&, j), i.e. the full set
of edges.
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Gy Is the set of all graph& with NV vertices.
We think of V(G) as{1,2,..., N}

The set is all unordered pair§&, j), i.e. the full set
of edges.

E(G)C¢&
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Is determined by its edge sB{G) C £



Is determined by its edge sB{G) C £
v = 2(2)



G is determined by its edge sBt{G) C &
G| = 202)

A random graph withV vertices is just a probability
measure oy, i.e. a collection of weight$p(G)}

with ZGEQN p(G) =1
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What types of random graphs do we consider?
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What types of random graphs do we consider?

A pair of vertices are connected by an edge with
probability p

Different edges are independent.

Th probability Py ,(G) of a graphGG € Gy is given
by

plE@I(1 — p)(2)-1E@)
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What types of random graphs do we consider?

A pair of vertices are connected by an edge with
probability p

Different edges are independent.

Th probability Py ,(G) of a graphGG € Gy is given
by

plE@I(1 — p)(2)-1E@)

If p = 2, the distribution is uniform and we are
essentially counting the number of graphs.
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We want to calculate the probabilities of the
following types of events.
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We want to calculate the probabilities of the
following types of events.

LetI' be a finite graph.
The number of different occurrenceslofn GG Is

#a(l')

The number of different occurrenceslofn a
complete graph withlV vertices# y(I")

The ratiorg(I') = ﬁi%
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We consider mapg(I') — V(G) that are one to
one.

If |V(G)| = N and|V(I")| = k there are
p(N,k)=N(N —1)---(N —k+1) of them.
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We consider mapg(I') — V(G) that are one to
one.

If |V(G)| = N and|V(I")| = k there are
p(N,k)=N(N —1)---(N —k+1) of them.
Of these a certain numbeg(G, N, k) will map a

connected pair of vertices Into connected ones In
G.
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We consider mapg(I') — V(G) that are one to
one.

If |V(G)| = N and|V(I")| = k there are
p(N,k)=N(N —1)---(N —k+1) of them.

Of these a certain numbeg(G, N, k) will map a
connected pair of vertices Into connected ones In

G.
G,N,k
ra(l') = p;(N,k) 3
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There is some ambiguity here due to possible
multiple counting.
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There is some ambiguity here due to possible
multiple counting.

It Is a multiple that depends only dhand will
cancel out when we take the ratio.

What probabillities do we want to estimate ?

For each) € {1,2,...,k} we are given a finite
graphl’; and a number; € [0, 1].
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There is some ambiguity here due to possible
multiple counting.

It Is a multiple that depends only dhand will
cancel out when we take the ratio.

What probabillities do we want to estimate ?

For each) € {1,2,...,k} we are given a finite
graphl’; and a number; € [0, 1].

We are interested in estimating the probability

Pyp|VJ, ra(Ly) — 7| < €
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More precisely we are interested in calculating the
function
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More precisely we are interested in calculating the
function

¥p(11;,751) given by

.. 1 .
_lli%]\lflinoo@bgpjv’p[v]’ ‘Tg(rj) — 7’]" < 6}
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More precisely we are interested in calculating the
function

¥p(11;,751) given by

.. 1 .
_lli%]\lflinoo@bgpjv’p[v]’ ‘Tg(rj) — 7’]" < 6}

U,({T';,7;}) = 0if and only if r; = pPL3) for
i=12 .k
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>t US consider the set

K={f:[0.1]" = [0,1; f(z,y) = f(y, )}



Let us consider the set

K={f:[0,17 = [0,1}; f(z,y) = f(y,z)}

Define
/ / f(x,y))dzdy

Large DeviationsandRandom Graphs — p.10/39



Let us consider the set

K={f:[0,17 = [0,1}; f(z,y) = f(y,z)}

Define
/ / f(x,y))dzdy

hp(f)=f10g£+(1—f)10g1:f

Where
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Foranyf € IC, finite graphl’ with vertices
{1,2,...,k}, and edge se(I") we define

Tr(f) — /[ vy H(i,j)EE(F)f(miaxj)H§:1dxi
0,1]IV(T
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Foranyf € IC, finite graphl’ with vertices
{1,2,...,k}, and edge se(I") we define

Tr(f) — /[ vy H(i,j)EE(F)f(miaxj)H§:1dxi
0,1]IV(T

For example Ifl" Is the triangle, then

TA(f) — o] f(xlny)f(xQ,Qfg)f(llfg,lﬁl)dl‘ldl’gdxg
0,1]3
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Jr ak cycle itis

f(@1,z2) f (T2, 23) - - - [Tk, T1)dT1dT2 - - - d,
0,1]%



For ak cycle it is

f(w1, 22) f (w2, 23) - - - [Tk, 1)dT1dT2 - - - dy,
0,1]*

The main result is.

({1, 75}) = | Hrlf Hy(f)
{f:95, 3 (f)=r;j}
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hat is it good for?
ot us analyze), (I'2, ¢).



What is it good for?
Let us analyze),(I'2, c).

Calculus of variations. The infimum Is attained.
Proof later. Compactness and continuity.
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What is it good for?
Let us analyze),(I'2, c).

Calculus of variations. The infimum Is attained.
Proof later. Compactness and continuity.

Euler equation

f(z,y) N
10g1_f(x7y) logﬂ —B/O f(z,2) [y, z)dx
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bject to

o f(x,9) f(y, 2) (2, x)dxdydz = c



Subject to

f@,y)fy,z)f(z, x)dzdydz =

0,1]°

If |c — p3| << 1, thenf(z,y) = ¢ is the only
solution and so Is optimal.
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Subject to

f@,y)fy,z)f(z, x)dzdydz =

0,1]°

If |c — p3| << 1, thenf(z,y) = ¢ is the only
solution and so Is optimal.

For anyc, If p << 1, then a clique

f=1y 5@, 4 )

W=

IS a better option thai = cs.
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A slight increase or decrease frgmin the
proportion of triangles is explained by a
corresponding deviation in the number of edges

from p to c3.
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A slight increase or decrease frgmin the
proportion of triangles is explained by a
corresponding deviation in the number of edges

from p to c3.
This is not the case if Is small butc is not.
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A slight increase or decrease frgmin the
proportion of triangles is explained by a
corresponding deviation in the number of edges

from p to c3.
This is not the case if Is small butc is not.
A similar story whenc is small butp Is not.
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A slight increase or decrease frgmin the
proportion of triangles is explained by a
corresponding deviation in the number of edges

from p to c3.

This is not the case if Is small butc is not.
A similar story whenc is small butp Is not.
A bipartite graph is a better option.
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What is the general Large Deviations setup and how
do we apply it here?
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What is the general Large Deviations setup and how
do we apply it here?

A metric spacetY and a sequenck, of probabillity
distributions.
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What is the general Large Deviations setup and how
do we apply it here?

A metric spacetY and a sequenck, of probabillity
distributions.

B, — 0y, -
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What is the general Large Deviations setup and how
do we apply it here?

A metric spacetY and a sequenck, of probabillity
distributions.

B, — 0y, -
If Aissuch thatl(x;, A) >0 P,(A) — 0as

n — OQ.
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Want a lower semi continuos functidiz) such that

% IOg Pn[S(xa 6)] — —](l‘) ™ O(E) T Oe(n)
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Want a lower semi continuos functidiz) such that

% IOg Pn[S(xa 6)] — —](l‘) ™ O(E) T Oe(n)

1
lim sup lim sup — log P,(S(z,¢€)) < —I(x)
n

e—( n— 00
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Want a lower semi continuos functidiz) such that

1

- log P,|S(x,¢)] = —I(x) + o(€) 4+ oc(n)
. . 1
lim sup lim sup — log P,(S(z,¢€)) < —I(x)
e—0 n—oo T
1

lim inf lim inf — log P, (S(x,¢€)) > —I(x)

e—0 n—oo N
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K 1s compact

1
lim sup — log P,,(K) < — inf I(x)

n—> 00 T acEK



If K Is compact

1
limsup — log P,(K) < — inf I(x)
n— 00 T reK
If G I1s open
1

liminf —log P, (G) > — inf I(x)

n—oo M relG
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or any/ the set{z : I(x) < £} is compact.



For any/ the set{x : I(x) < ¢} is compact.
For any/ < oo, there Is a sek, such that
C'N K, =0 implies

1
lim sup — log P,,(C') < —/
n

n—oo
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For any/ the set{x : I(x) < ¢} is compact.

For any/ < oo, there Is a sek, such that
C N Ky = () implies

1
lim sup — log P,,(C') < —/
n

n—oo

It now follows that for any closed sét

|
lim sup — log P,|C]| < — inf I(x)

n— 00 n CCEC
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ontraction Principle.



Contraction Principle.
{P,} satisfies LDP with raté(z) on X,
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Contraction Principle.
{P,} satisfies LDP with raté(z) on X,
F : X — Y Is acontinuous map.

Q. = P,F~! satisfies an LDP opy
With rate function

J(y) = inf I(x
(y) A (z)
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Let us turn to our case. The probability measures are
on graphs withV vertices.
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Let us turn to our case. The probability measures are
on graphs withV vertices.

The space keeps changing.
Need to put them all on the same space.
Every graph is an adjacency matrix.

Random graph is a random symmetric matrix.
X = {ZL’Z'J'}, T = O,$i’j - {O, 1}
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Imbed In/C. Simple functions constant on small
squares.
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easure§ Qn,} onkC.



Measureqd @, } on K.

The spaceC needs a topology. Weak is good. Nice
compact space.
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Measureqd @, } on K.

The spaceC needs a topology. Weak is good. Nice
compact space.

QN’p — 5]9
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Measureqd @, } on K.

The spaceC needs a topology. Weak is good. Nice
compact space.

QN’p —> 5]9
Lower Bound. Letf be a nice function IiiC.
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Measureqd @, } on K.

The spaceC needs a topology. Weak is good. Nice
compact space.

QN’p —> 5]9
Lower Bound. Letf be a nice function IiiC.

Create a random graph with probabllﬁyN, N) of
connecting and)
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By law of large numbers

Q]fvz>5f

In the weak topology oif.

Large DeviationsandRandom Graphs — p.25/39



By law of large numbers

Q]fv — 5]0
In the weak topology oif.

The new measur@{V on /IC has entropy

H(QY @) = (3 ) 1)
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Standard tilting argument

dP
P(A) = /A 1070

1 dQ
— A EEEE— _logd_P
Yo /Ae “

> Q(A) expl Qg T /A log 720)

— exp|—H(Q; P) + o(H(Q, P))




Upper Bound. Cramer.

oo B0 [ ()1 oy

%/ / log[pe”™¥) + (1 — p)dzdy
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Upper Bound. Cramer.

oo B0 [ ()1 oy

%/ / log[pe”™¥) + (1 — p)dzdy

Tchebychev. Half-plane. For small balls, optimize.
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Upper Bound. Cramer.

oo B0 [ ()1 oy

%/ / log[pe”™¥) + (1 — p)dzdy

Tchebychev. Half-plane. For small balls, optimize.

[(f) = Hp(f)

Large DeviationsandRandom Graphs — p.27/39



Upper Bound. Cramer.

oo B0 [ ()1 oy

%/ / log[pe”™¥) + (1 — p)dzdy

Tchebychev. Half-plane. For small balls, optimize.

[(f) = Hp(f)

Are we done!
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NO!, Why?
The object of interest is the map

F={r(f)} K- 10,1
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NO!, Why?
The object of interest is the map

F={r(f)} K- 10,1

They are not continuous unless no two edges Iin
consistd' share a common vertex.
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NO!, Why?
The object of interest is the map

F={r(f)} K- 10,1

They are not continuous unless no two edges Iin
consistd' share a common vertex.

Well. Change the topology tb,
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NO!, Why?
The object of interest is the map
F={rD(f)} K~ 0.1

They are not continuous unless no two edges Iin
consistd' share a common vertex.

Well. Change the topology tb,
No chance. Even the Law of large numbers fails.
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NO!, Why?
The object of interest is the map

F={r(f)} K- 10,1

They are not continuous unless no two edges Iin
consistd' share a common vertex.

Well. Change the topology tb,
No chance. Even the Law of large numbers fails.

In between topology! Cut topology.
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= SUP// z,y) — g(z, yla(z)b(y)dxdy

lal]<1
[b]] <1

= sup// x,y) — g(x,y|dxdy
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= Sup// z,y) — g(z, yla(z)b(y)dxdy

lal]<1
[b]] <1

= sup// r,y) — g(x,yldrdy

In the cut topology' Is continuous. Half the battle!
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= Sup// z,y) — g(z, yla(z)b(y)dxdy

lal]<1
[b]] <1

= sup// r,y) — g(x,yldrdy

In the cut topology' Is continuous. Half the battle!
Law of large numbers?
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Enough to taked and B as unions of intervals of the

form [, 2]
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Enough to taked and B as unions of intervals of the

form [, 2]
For eachA x B itis only the ordinary LLN for

Independent random variables.
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Enough to taked and B as unions of intervals of the

form [, 2]

For eachA x B itis only the ordinary LLN for
Independent random variables.

Error Boundse—“V"
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Enough to taked and B as unions of intervals of the

form [, 2]

For eachA x B itis only the ordinary LLN for
Independent random variables.

Error Boundse—“V"

Number of rectangle®” x 2". That is good. LLN
Holds.
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Enough to taked and B as unions of intervals of the

form [, 2]

For eachA x B itis only the ordinary LLN for
Independent random variables.

Error Boundse—“V"

Number of rectangle®” x 2". That is good. LLN
Holds.

Three fourths of the battle!
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If /|C were compact in the cut topology we would be
done.
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If /|C were compact in the cut topology we would be
done.

But it is not. The projectiorf — [ f(z,y)dy is
continuous. The image i5; and not compact.
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If /|C were compact in the cut topology we would be
done.

But it is not. The projectiorf — [ f(z,y)dy is
continuous. The image i5; and not compact.

The problem is invariant under a huge group. The
permutation groupl y .
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If /|C were compact in the cut topology we would be
done.

But it is not. The projectiorf — [ f(z,y)dy is
continuous. The image I5; and not compact.

The problem is invariant under a huge group. The
permutation groupl y .

The functionH,(f), r* (f) are invariant under the
groupo € X of measure preserving transformations

of |0, 1].
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o to /3.
IS compact! ( Lovasz-Szegedy)



Go to /3.
It Is compact! ( Lovasz-Szegedy)
But what Is it?
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Go to /3.

It Is compact! ( Lovasz-Szegedy)
But what Is it?

It Is the space of "graphons"
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Go to /3.

It Is compact! ( Lovasz-Szegedy)
But what Is it?

It Is the space of "graphons"
What is a graphon?
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a sequence of graphs. Becoming infinite.



(G,, a sequence of graphs. Becoming infinite.
We sayG,, has limit if

lim rq (') = r(I')

n—o0

exists for every finite graph
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(G,, a sequence of graphs. Becoming infinite.
We sayG,, has limit if

lim rq (') = r(I')

n—o0

exists for every finite graph
Graphon is the map — r(I')
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(G,, a sequence of graphs. Becoming infinite.
We sayG,, has limit if

lim rq (') = r(I')

n—o0

exists for every finite graph
Graphon is the map — r(I')

It has a representation as( f) for somef in K
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f is not unique. But' (f) = ' (g) if and only if
f(x,y) = g(ox,oy) for somes € ¥
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f is not unique. But' (f) = ' (g) if and only if
f(x,y) = g(ox,oy) for somes € ¥

In other words-(-) € K/X
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Sincek /Y is compact it is enough to prove the

~

upper bound for ball&(f,¢) in /X
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Sincek /Y is compact it is enough to prove the

~

upper bound for ball&(f,¢) in /X
This means estimating

QN,p[UUEEB(va 6)]
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Sincek /Y is compact it is enough to prove the

~

upper bound for ball&(f,¢) in /X
This means estimating

QN,p[UaeEB(Ufa 6)]

Szemeredi’s regularity lemma.
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Sincek /Y is compact it is enough to prove the

~

upper bound for ball&(f,¢) in /X
This means estimating

QN,p[UUEEB(va 6)]

Szemeredi’s regularity lemma.

The permutation groupy C X by permuting
intervals of length-.
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Sincek /Y is compact it is enough to prove the

~

upper bound for ball&(f,¢) in /X
This means estimating

QN,p[UUEEB(va 6)]

Szemeredi’s regularity lemma.
The permutation groupy C X by permuting
intervals of length-.

Givene > 0, there is a finite sefg, } C K such that
for sufficiently largelV,

/CN — U]' UUEHN B(O'gj, €
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It Is therefore enough to estimate the probability

QnplUj Usenry B(agj,€)) N [UsesB(o f €)]
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It Is therefore enough to estimate the probability

QnplUj Usenry B(agj,€)) N [UsesB(o f €)]

Sincej only varies over a finite set, it is enough to
estimate for any

QN,p “ gem(N )B(O-ga E)] A [UUEEB(va E)H
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It Is therefore enough to estimate the probability

QnplUj Usenry B(agj,€)) N [UsesB(o f €)]

Sincej only varies over a finite set, it is enough to
estimate for any

QNp “ gem(N )B(O-ga E)] A [UUEEB(va E)H

This Is the same as

QNp[ oen(N) [B(O-g? 6) A UUEEB(O-fv E)H
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, is Iy invariant. N! << e“V".

Qnp|B(g,€) NUsezB(a f, €)]



Qx, is Iy invariant. N1 << eN".

QN,p [B(ga 6) ] UUGZB(O-fa 6)}

If the Iintersection is nonempty, then it is contained
In B(of, 3¢) for someo € ..
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Qx, is Iy invariant. N1 << eN".

QN,p [B(ga 6) ] UUGZB(O-fa 6)}

If the Iintersection is nonempty, then it is contained
In B(of, 3¢) for someo € ..

The choice otr does not depend aN. Only one.
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Qx, is Iy invariant. N1 << eN".

QN,p [B(ga 6) ] UUGZB(O-fa 6)}

If the Iintersection is nonempty, then it is contained
In B(of, 3¢) for someo € ..

The choice otr does not depend aN. Only one.
Balls are weakly closed.
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Qx, is Iy invariant. N1 << eN".

QN,p [B(ga 6) ] UUGZB(O-fa 6)}

If the Iintersection is nonempty, then it is contained
In B(of, 3¢) for someo € ..

The choice otr does not depend aN. Only one.
Balls are weakly closed.

We have upper bound#l, (o f) = H,(f)
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Qx, is Iy invariant. N1 << eN".

QN,p [B(ga 6) ] UUGZB(O-fa 6)}

If the Iintersection is nonempty, then it is contained
In B(of, 3¢) for someo € ..

The choice otr does not depend aN. Only one.
Balls are weakly closed.

We have upper boundé#l, (o f) = H,(f)

Done!
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ith p = <, we have done the counting.



With p = 1, we have done the counting.
The quantity

D(N,e) = #|{G : |ra(l'j)—r;| < eforj=1,2 ... k}|
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With p = 1, we have done the counting.
The quantity

D(N,e) = #|{G : |ra(l'j)—r;| < eforj=1,2 ... k}|

Satisfies

2
lim lim —logD(N €) = IOgQ—%D%({FjaT’j})

e—0 N—oo
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Thank You.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

