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Background: Mean Field Models

Reed-Frost (SIR) Model

» Population Size N < ~o

» Individuals susceptible (S), infected (l), or recovered (R).
» Recovered individuals immune from further infection.

» Infecteds recover in time 1.

» Infecteds infect susceptibles with probability p.
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Background: Mean Field Models

Reed-Frost (SIR) Model

Population Size N < co

Individuals susceptible (S), infected (1), or recovered (R).
Recovered individuals immune from further infection.
Infecteds recover in time 1.

vV v.v. v Y

Infecteds infect susceptibles with probability p.
Critical Case: p=1/N
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Background: Mean Field Models

SIR Model:Example

Steve Lalley i Zheng Spatial Epidemics: Critical vior in Dimensions
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Background: Mean Field Models

Reed-Frost and Random Graphs

Reed-Frost model is equivalent to the Erdés-Renyi random
graph model:

Individuals «—— Vertices
Infections «—— Edges
Epidemic —— Connected Components
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Reed-Frost (SIR) Model
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Background: Mean Field Models

Branching Envelope of an Epidemic

» Each epidemic has a branching envelope (GW process)
» Offspring distribution: Binomial-(N, p)

» Epidemic is dominated by its branching envelope

» When |} « S, infected set grows =~ branching envelope
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Reed-Frost (SIR) Model
Branching Envelopes
Critical B

Background: Mean Field Models

Example: SIS Epidemic and its Branching Envelope

N = 80000
Ip = 200
p = 1/80000
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Background: Mean Field Models

Critical Behavior: Reed-Frost (SIR) Epidemics

» # Infected in Generation t:= [V
» # Recovered in Generation t: = RN
» Initial Condition: Y ~ bN®

Theorem: As population size N — oo,

(wek) = (a3)

The limit process satisfies /(0) = b and

dR(t) = I(t) dt

di(t) = ++/I(t) dB; if o < 1/3
dl(t) = +/I(t) dB; — I(t)R(t) dt ifa=1/3
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Background: Mean Field Models

Critical Behavior: Reed-Frost (SIR) Epidemics

» Population size: N — oo

» # Infected in Generation t:= I}V

» # Recovered in Generation t: = RN
» Initial Condition: ) ~ bN®

Corollary: If « = 1/3 then

RN /N?/® — ~(b)
where 7(b) = first passage time of B(t) + t2/2 to b.
(Martin-Lof; Aldous)
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Background: Mean Field Models

Critical Behavior: Heuristics

» Critical Epidemic with [y = m should last ~ m generations.
» Number R; recovered should be ~ m?.

» Offspring in branching envelope :: attempted infections.

» Misfires: Infections of immunes not allowed.

» Critical Threshold: # misfires/generations ~ O(1)

Critical SIR Epidemic:

E(#misfires in generation t + 1) ~ 1R;/N

so there will be observable deviation from branching envelope
when
i~ N3 and R;=~ N?/3
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Spatial Epidemic Models

Spatial SIR Epidemic:

» Villages V, at Sites x € Z¢
» Village Size:=N
» Nearest Neighbor Disease Propagation

» SIR Rules Locally:

» Infected individuals infect susceptibles at same or
neighboring site with probability py

» Infecteds recover in time 1.

» Recovered individuals immune from further infection.
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Spatial Epidemic Models

Spatial SIR Epidemic:

» Villages V, at Sites x € Z¢
» Village Size:=N
» Nearest Neighbor Disease Propagation

» SIR Rules Locally:

» Infected individuals infect susceptibles at same or
neighboring site with probability py

» Infecteds recover in time 1.

» Recovered individuals immune from further infection.

Critical Case: Infection probability py = 1/((2d + 1)N).
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Spatial Epidemic Models

Percolation Representation

Spatial SIR epidemic is equivalent to critical bond percolation
on the graph Gy := Ky x Z9 with nearest neighbor connections:

» Vertex set [N] x Z9
» Edges connect vertices (i, x) and (j, y) if dist(x, y) < 1
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Spatial Epidemic Models

Percolation Representation

Spatial SIR epidemic is equivalent to critical bond percolation
on the graph Gy := Ky x Z9 with nearest neighbor connections:

» Vertex set [N] x Z9

» Edges connect vertices (i, x) and (j, y) if dist(x, y) < 1
Problem: At critical point p =1/(2d + 1)N,

» How does connectivity probability decay?

» How does size of largest connected cluster scale with N?
» Joint distribution of largest, 2nd largest,- - - ?
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Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling

Spatial Epidemic Models Branching Random Walk: Local Behavior

Spatial Extent of SuperBM (d = 1)

Percolation Representation

Spatial SIR epidemic is equivalent to critical bond percolation
on the graph Gy := Ky x Z9 with nearest neighbor connections:
» Vertex set [N] x Z9
» Edges connect vertices (i, x) and (j, y) if dist(x, y) < 1

Problem: At critical point p =1/(2d + 1)N,
» How does connectivity probability decay?
» How does size of largest connected cluster scale with N?
» Joint distribution of largest, 2nd largest,- - - ?

Conjecture: Let Ay = maximum x such that a vertex (j, x) is
connected to a vertex (i,0). Then Ry/N*/(6=9 converges in
distribution as N — oo in dimensions d = 1,2, 3.
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Spatial Epidemic Models

Branching Envelope

The branching envelope of a spatial SIR epidemic is a
branching random walk: In each generation,
» A particle at x puts offspring at x or neighbors x + e.

» #Offspring are independent Binomial—(N, py) or
Poisson-Npy

» Critical BRW : p = py = 1/((2d + 1)N).
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Spatial Epidemic Models

Branching Envelope

The branching envelope of a spatial SIR epidemic is a
branching random walk: In each generation,
» A particle at x puts offspring at x or neighbors x + e.

» #Offspring are independent Binomial—(N, py) or
Poisson-Npy

» Critical BRW : p = py = 1/((2d + 1)N).

Associated Measure-Valued Processes

XM = XtM’N: measure that puts mass 1/M
at x/+/M for each particle at
site x at time t.
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Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling

Spatial Epidemic Models Branching Random Walk: Local Behavior

Spatial Extent of SuperBM (d = 1)

Critical Spatial SIS Epidemic: Simulation
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Spatial Epidemic Models

Watanabe’s Theorem
Let X be the measure-valued process associated to a critical
nearest neighbor branching random walk. If
XV — X
then
XM = X

where X; is the Dawson-Watanabe process (superBM). The
DW process is a measure-valued diffusion.

Note 1: The total mass || X;|| is a Feller diffusion.
Note 2: Watanabe is the spatial analogue of Feller.
Note 3: In 1D, X; has a continuous density X(t, x).
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Scaling Limits: SIR Spatial Epidemics in d = 1
Recall: XtM’N is the measure that puts mass 1/M at x/v/M for
each infected individual at site x at time t.

Theorem: Assume that the epidemic is critical and that
M = N If XN = X, then

MN

where
» If o < 2/5 then X; is the Dawson-Watanabe process.
» If « = 2/5 then X; is the Dawson-Watanabe process with
killing rate

/tX(s,x)ds
0
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Scaling Limits: SIR Spatial Epidemics in d = 2,3

Recall: XtM’N is the measure that puts mass 1/M at x/v/'M for
each infected individual at site x at time t.

Theorem: Assume that the epidemic is critical and that
M = N« If Xé‘”’N = Xp and Xj satisfies a smoothness
condition then
XN — X,
where
» If o < 2/(6 — d) then X; is the Dawson-Watanabe process.

» If a =2/(6 — d) then X; is the Dawson-Watanabe process
with killing rate L(t, x) = Sugitani local time density.
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Spatial Extent of SuperBM (d = 1)

Sugitani’s Local Time

Theorem: Assume that d = 2 or 3 and that the initial
configuration Xy = p of the super-BM X; satisfies

Smoothness Condition:

Ai&ﬂﬁﬂX—mdMn

is jointly continuous in t, x, where ¢;(x) is the heat kernel
(Gaussian density). Then for each t > 0 the occupation

measure ¢
u:/&x
0

is absolutely continuous with jointly continuous density L(t, x).
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Spatial Epidemic Models

Critical Scaling: Heuristics (SIR Epidemics, d = 1)
# Infected Per Generation: ~ M

Duration: =~ M generations.

# Infected Per Site: ~ vM

# Recovered Per Site: ~ MvVM

# Misfires Per Site: ~ M?/N

# Misfires Per Generation: ~ M%/2 /N

So if M ~ N2/5 then # Misfires Per Generation ~ 1.

vV v v v v Y
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Spatial Epidemic Models

Critical Scaling: Heuristics (SIR Epidemics, d = 1)
# Infected Per Generation: ~ M

Duration: ~ M generations.

# Infected Per Site: ~ VM

# Recovered Per Site: ~ MVM

# Misfires Per Site: ~ M?/N

# Misfires Per Generation: ~ M%/2 /N

So if M ~ N2/5 then # Misfires Per Generation ~ 1.

But how do we know that the infected individuals in generation
ndon’t “clump”?

vV v v v v Y
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Spatial Epidemic Models

Critical Scaling: Heuristics (SIR Epidemics, d = 3)
# Infected Per Generation ~ Duration ~ M

# Sites Reachable ~ M3/2,

# Infected Per Infected Site: =~ O(1)

# Recovered Per Site: ~ M?/M3/2 = /M

# Misfires Per Generation: ~ M x vVM/N

So if M ~ N2/3 then # Misfires Per Generation ~ 1.

vV v. v v Y

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3



Spatial SIR Models
Superprocess Limits
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Spatial Epidemic Models Branching Random Walk: Local Behavior

Spatial Extent of SuperBM (d = 1)

Proof Strategy |

Lemma: Assume that L, and L are likelihood ratios under P,
and P, and define Q, and Q by

don - Ln dPn,
dQ = LdP.

Assume that X, and X are random variables whose
distributions under P, and P satisfy

(Xn, Ln) = (X, L).

Then the Q,—distribution of X, converges weakly to the
Q—distribution of X.
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Spatial SIR Models
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Spatial Extent of SuperBM (d = 1)

Proof Strategy Il

Theorem: (Dawson) The law Q of the Dawson-Watanabe
process with location-dependent killing rate 6(x, t) is mutually
a.c. relative to the law P of the Dawson-Watanabe process with
no killing (superBM), and the likelihood ratio is

dQ/dP = exp {—/«9(1‘, x) dM(t, x) — % /(Xt, o(t, )?) dt}

where M is the orthogonal martingale measure attached to the
superBM X;.

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3



Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling

Spatial Epidemic Models Branching Random Walk: Local Behavior

Spatial Extent of SuperBM (d = 1)

Proof Strategy Il

PV — Law of Mth branching random walk.
QMN = Law of corresponding spatial epidemic.

QMN

=11 1II (1 + RMN(¢, x))

timest sitesx

where RM:N(t, x) is a function of the number of misfires at site x
at time t. So the problem is to show that under PM as M — oo,

Z Z RMN(t, x)
t X

converges to the exponent in Dawson’s likelihood ratio.
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Spatial Epidemic Models

Local Behavior for Branching Random Walk: d = 1

Yk() = branching random walk on Z with Poisson-1
offspring distribution and initial state Y¥
scaling as in Watanabe’s theorem.
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Spatial Epidemic Models

Local Behavior for Branching Random Walk: d = 1

Yk() = branching random walk on Z with Poisson-1
offspring distribution and initial state Y¥
scaling as in Watanabe’s theorem.

Theorem: If YX([Vkx]) — Yo(x) where Y(x) is continuous with
compact support then

VEORD e

vk

where X(t, x) is the Dawson-Watanabe density process.
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Spatial Epidemic Models

Local Time for Branching Random Walk: d = 2,3

Yk() = branching random walk on Z9 with Poisson-1
offspring distribution and initial state Y¥
scaling as in Watanabe’s theorem.

U() = i Y ()
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Spatial Epidemic Models

Local Time for Branching Random Walk: d = 2,3

Yk() = branching random walk on Z9 with Poisson-1
offspring distribution and initial state Y¥
scaling as in Watanabe’s theorem.

U() = i Y ()

Theorem: If YX([Vkx]) — Yo(x) where Y, satisfies hypotheses
of Sugitani then in d = 2, 3,

k
Uklt((z[‘{f;]) — L(t,x)

where L(t, x) is Sugitani local time.
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Spatial Epidemic Models

Occupation Statistics in d = 2

For branching random walk with Poisson-1 offspring distribution
and nearest neighbor steps initiated by a single particle at
(0,0), let

Gp = {process survives to generation n}
G® = {3 particle at origin in generation n}
Q, = #{occupied sites in generation n}
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Spatial Epidemic Models

Occupation Statistics in d = 2

For branching random walk with Poisson-1 offspring distribution
and nearest neighbor steps initiated by a single particle at
(0,0), let

Gp = {process survives to generation n}
G® = {3 particle at origin in generation n}
Q, = #{occupied sites in generation n}

Theorem: Conditional on G, the number Q, of occupied sites
is Op(n/log n), that is, the conditional distributions of Q2,log n/n
are tight.
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Spatial Epidemic Models

Occupation Statistics in d = 2

For branching random walk with Poisson-1 offspring distribution
and nearest neighbor steps initiated by a single particle at
(0,0), let

Gp = {process survives to generation n}
G® = {3 particle at origin in generation n}
Q, = #{occupied sites in generation n}

Theorem: Conditional on G9, the trajectory of a particle
randomly chosen from those particles at the origin in
generation nis not a pinned random walk.
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Spatial Extent of Super-BM in d = 1

» X; = Dawson-Watanabe process,

> R = Upso SUpport(X:)
> UD(X) = —|Og P(R C D‘Xo = (5)()

Spatial Epidemic Models
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Spatial Extent of Super-BM in d = 1

» X; = Dawson-Watanabe process,
> R = Upso SUpport(X:)
> UD(X) = —|Og P(R C D‘Xo = (5)()

Theorem (Dynkin): For any finite interval D, up(x) is the
maximal nonnegative solution in D of the differential equation

Spatial Epidemic Models

" 2

u =u
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Spatial Extent of Super-BM in d = 1

» X; = Dawson-Watanabe process,

> R := U0 SUpport(X:)
> Up(x) :=—log P(R C D| Xy = dx)

Solution: Weierstrass P— Function

1 1 1
up(x) = PL(X/\/) 67 Z {6(X—w)2 B 6w2}

welL*

Spatial Epidemic Models

where the period lattice L is generated by Ce™/3 for C > 0
depending on D = [0, g] as follows:

C =+6a
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Spatial Extent of Super-BM in d = 1

» X; = Dawson-Watanabe process,
> R = Upso SUpport(X:)
> UD(X) = —|Og P(R C D‘Xo = (5)()

General Initial Conditions: For any finite Borel measure p with
support C D,

Spatial Epidemic Models

—|09P(RCD\XOZM)Z/UD(x)M(dX)

— [ Pux/ V) (e
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