Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3

Steve Lalley¹ and Xinghua Zheng²

¹University of Chicago

²University of Hong Kong

March 12, 2010

ヘロト 人間 ト ヘヨト ヘヨト

æ

Background: Mean Field Models

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Spatial Epidemic Models

Spatial SIR Models Superprocess Limits Spatial Epidemic Models: Critical Scaling Branching Random Walk: Local Behavior Spatial Extent of SuperBM (d = 1)

・聞き ・ヨト ・ヨト

Reed-Frost (SIR) Model

- Population Size $N < \infty$
- Individuals susceptible (S), infected (I), or recovered (R).
- Recovered individuals immune from further infection.
- Infecteds recover in time 1.
- Infecteds infect susceptibles with probability p.

ヘロト ヘアト ヘビト ヘビト

э.

Reed-Frost (SIR) Model

- Population Size $N < \infty$
- Individuals susceptible (S), infected (I), or recovered (R).
- Recovered individuals immune from further infection.
- Infecteds recover in time 1.
- Infecteds infect susceptibles with probability p.

Critical Case: p = 1/N

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

SIR Model:Example

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3

э

Reed-Frost and Random Graphs

Reed-Frost model is equivalent to the Erdös-Renyi random graph model:

Individuals \longleftrightarrow Vertices

Infections \longleftrightarrow Edges

Epidemic - Connected Components

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Reed-Frost and Random Graphs

Branching Envelope of an Epidemic

- Each epidemic has a branching envelope (GW process)
- Offspring distribution: Binomial-(N, p)
- Epidemic is dominated by its branching envelope
- When $I_t \ll S_t$, infected set grows \approx branching envelope

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Reed-Frost (SIR) Model Branching Envelopes Critical Behavior

Example: SIS Epidemic and its Branching Envelope

Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3

Critical Behavior: Reed-Frost (SIR) Epidemics

- # Infected in Generation $t := I_t^N$
- # Recovered in Generation t: = R_t^N
- Initial Condition: $I_0^N \sim b N^{\alpha}$

Theorem: (Dolgoarshinnykh &L.) As population size $N \rightarrow \infty$,

$$\begin{pmatrix} N^{-\alpha} I_t^N \\ N^{-2\alpha} R_t^N \end{pmatrix} \xrightarrow{\mathcal{D}} \begin{pmatrix} I(t) \\ R(t) \end{pmatrix}$$

The limit process satisfies I(0) = b and

$$dR(t) = I(t) dt$$

$$dI(t) = +\sqrt{I(t)} dB_t \qquad \text{if } \alpha < 1/3$$

$$dI(t) = +\sqrt{I(t)} dB_t - I(t)R(t) dt \qquad \text{if } \alpha = 1/3$$

1

Critical Behavior: Reed-Frost (SIR) Epidemics

- Population size: $N \to \infty$
- # Infected in Generation $t := I_t^N$
- # Recovered in Generation $t := R_t^N$
- Initial Condition: $I_0^N \sim b N^{\alpha}$

Corollary: If $\alpha = 1/3$ then

$$R_{\infty}^{N}/N^{2/3} \Longrightarrow au(b)$$

where $\tau(b) = \text{first passage time of } B(t) + t^2/2 \text{ to } b$. (Martin-Lof; Aldous)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Critical Behavior: Heuristics

- Critical Epidemic with $I_0 = m$ should last $\approx m$ generations.
- Number R_t recovered should be $\approx m^2$.
- Offspring in branching envelope :: attempted infections.
- Misfires: Infections of immunes not allowed.
- Critical Threshold: # misfires/generations $\approx O(1)$

Critical SIR Epidemic:

E(#misfires in generation $t + 1) \approx I_t R_t / N$

so there will be observable deviation from branching envelope when

$$I_t \approx N^{1/3}$$
 and $R_t \approx N^{2/3}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Spatial SIR Epidemic:

- ▶ Villages V_x at Sites $x \in \mathbb{Z}^d$
- Village Size:=N
- Nearest Neighbor Disease Propagation
- SIR Rules Locally:
 - Infected individuals infect susceptibles at same or neighboring site with probability p_N
 - Infecteds recover in time 1.
 - Recovered individuals immune from further infection.

イロト イポト イヨト イヨト

Spatial SIR Epidemic:

- ▶ Villages V_x at Sites $x \in \mathbb{Z}^d$
- Village Size:=N
- Nearest Neighbor Disease Propagation
- SIR Rules Locally:
 - Infected individuals infect susceptibles at same or neighboring site with probability p_N
 - Infecteds recover in time 1.
 - Recovered individuals immune from further infection.

Critical Case: Infection probability $p_N = 1/((2d + 1)N)$.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Percolation Representation

Spatial SIR epidemic is equivalent to critical bond percolation on the graph $G_N := K_N \times \mathbb{Z}^d$ with nearest neighbor connections:

- Vertex set [N] × Z^d
- Edges connect vertices (i, x) and (j, y) if dist $(x, y) \le 1$

イロト イポト イヨト イヨト

Percolation Representation

Spatial SIR epidemic is equivalent to critical bond percolation on the graph $G_N := K_N \times \mathbb{Z}^d$ with nearest neighbor connections:

- Vertex set [N] × Z^d
- Edges connect vertices (i, x) and (j, y) if dist $(x, y) \le 1$

Problem: At critical point p = 1/(2d + 1)N,

- How does connectivity probability decay?
- How does size of largest connected cluster scale with N?
- ► Joint distribution of largest, 2nd largest, · · · ?

・ロト ・ 理 ト ・ ヨ ト ・

э.

Percolation Representation

Spatial SIR epidemic is equivalent to critical bond percolation on the graph $G_N := K_N \times \mathbb{Z}^d$ with nearest neighbor connections:

- Vertex set [N] × Z^d
- Edges connect vertices (i, x) and (j, y) if dist $(x, y) \le 1$

Problem: At critical point p = 1/(2d + 1)N,

- How does connectivity probability decay?
- How does size of largest connected cluster scale with N?
- ► Joint distribution of largest, 2nd largest, · · · ?

Conjecture: Let R_N = maximum x such that a vertex (j, x) is connected to a vertex (i, 0). Then $R_N/N^{4/(6-d)}$ converges in distribution as $N \to \infty$ in dimensions d = 1, 2, 3.

・ロト ・ 理 ト ・ ヨ ト ・

1

Branching Envelope

The branching envelope of a spatial SIR epidemic is a branching random walk: In each generation,

- ► A particle at *x* puts offspring at *x* or neighbors *x* + *e*.
- ► #Offspring are independent Binomial-(N, p_N) or Poisson-Np_N
- Critical BRW : $p = p_N = 1/((2d + 1)N)$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Branching Envelope

The branching envelope of a spatial SIR epidemic is a branching random walk: In each generation,

- ► A particle at *x* puts offspring at *x* or neighbors *x* + *e*.
- #Offspring are independent Binomial-(N, p_N) or Poisson-Np_N
- Critical BRW : $p = p_N = 1/((2d + 1)N)$.

Associated Measure-Valued Processes

$$X_t^M = X_t^{M,N}$$
: measure that puts mass 1/M
at x/\sqrt{M} for each particle at
site x at time t.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Spatial SIR Models Superprocess Limits Spatial Epidemic Models: Critical Scaling Branching Random Walk: Local Behavior Spatial Extent of SuperBM (d = 1)

Critical Spatial SIS Epidemic: Simulation

Watanabe's Theorem

Let X_t^M be the measure-valued process associated to a critical nearest neighbor branching random walk. If

$$X_0^M \Longrightarrow X_0$$

then

$$X_{Mt}^M \Longrightarrow X_t$$

where X_t is the Dawson-Watanabe process (superBM). The DW process is a measure-valued diffusion.

Note 1: The total mass $||X_t||$ is a Feller diffusion. Note 2: Watanabe is the spatial analogue of Feller. Note 3: In 1*D*, X_t has a continuous density X(t, x).

ヘロト 人間 ト ヘヨト ヘヨト

Scaling Limits: SIR Spatial Epidemics in d = 1

Recall: $X_t^{M,N}$ is the measure that puts mass 1/M at x/\sqrt{M} for each infected individual at site *x* at time *t*.

Theorem: Assume that the epidemic is critical and that $M = N^{\alpha}$. If $X_0^{M,N} \Rightarrow X_0$ then

$$X_{Mt}^{M,N} \Longrightarrow X_t$$

where

- ▶ If $\alpha < 2/5$ then X_t is the Dawson-Watanabe process.
- If $\alpha = 2/5$ then X_t is the Dawson-Watanabe process with killing rate

$$\int_0^t X(s,x)\,ds$$

・ロン ・四 と ・ ヨ と ・ ヨ

Scaling Limits: SIR Spatial Epidemics in d = 2, 3

Recall: $X_t^{M,N}$ is the measure that puts mass 1/M at x/\sqrt{M} for each infected individual at site *x* at time *t*.

Theorem: Assume that the epidemic is critical and that $M = N^{\alpha}$. If $X_0^{M,N} \Rightarrow X_0$ and X_0 satisfies a smoothness condition then

$$X_{Mt}^{M,N} \Longrightarrow X_t$$

where

- ▶ If $\alpha < 2/(6 d)$ then X_t is the Dawson-Watanabe process.
- ► If $\alpha = 2/(6 d)$ then X_t is the Dawson-Watanabe process with killing rate L(t, x) = Sugitani local time density.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Sugitani's Local Time

Theorem: Assume that d = 2 or 3 and that the initial configuration $X_0 = \mu$ of the super-BM X_t satisfies

Smoothness Condition:

$$\int_0^t \int_{x \in \mathbb{R}^d} \phi_t(x - y) \, d\mu(y)$$

is jointly continuous in t, x, where $\phi_t(x)$ is the heat kernel (Gaussian density). Then for each $t \ge 0$ the occupation measure

$$L_t := \int_0^t X_s \, ds$$

is absolutely continuous with jointly continuous density L(t, x).

Critical Scaling: Heuristics (SIR Epidemics, d = 1)

- ▶ # Infected Per Generation: ≈ M
- Duration: $\approx M$ generations.
- # Infected Per Site: $\approx \sqrt{M}$
- # Recovered Per Site: $\approx M\sqrt{M}$
- # Misfires Per Site: $\approx M^2/N$
- # Misfires Per Generation: $\approx M^{5/2}/N$

So if $M \approx N^{2/5}$ then # Misfires Per Generation ≈ 1 .

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Critical Scaling: Heuristics (SIR Epidemics, d = 1)

- ▶ # Infected Per Generation: ≈ M
- Duration: $\approx M$ generations.
- # Infected Per Site: $\approx \sqrt{M}$
- # Recovered Per Site: $\approx M\sqrt{M}$
- # Misfires Per Site: $\approx M^2/N$
- # Misfires Per Generation: $\approx M^{5/2}/N$

So if $M \approx N^{2/5}$ then # Misfires Per Generation ≈ 1 .

But how do we know that the infected individuals in generation *n* don't "clump"?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Critical Scaling: Heuristics (SIR Epidemics, d = 3)

- # Infected Per Generation \approx Duration \approx M
- # Sites Reachable $\approx M^{3/2}$.
- # Infected Per Infected Site: $\approx O(1)$
- # Recovered Per Site: $\approx M^2/M^{3/2} = \sqrt{M}$
- # Misfires Per Generation: $\approx M \times \sqrt{M}/N$

So if $M \approx N^{2/3}$ then # Misfires Per Generation ≈ 1 .

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Proof Strategy I

Lemma: Assume that L_n and L are likelihood ratios under P_n and P, and define Q_n and Q by

 $dQ_n = L_n dP_n,$ dQ = L dP.

Assume that X_n and X are random variables whose distributions under P_n and P satisfy

$$(X_n, L_n) \Longrightarrow (X, L).$$

Then the Q_n -distribution of X_n converges weakly to the Q-distribution of X.

ヘロト ヘアト ヘビト ヘビト

э.

Proof Strategy II

Theorem: (Dawson) The law Q of the Dawson-Watanabe process with location-dependent killing rate $\theta(x, t)$ is mutually a.c. relative to the law P of the Dawson-Watanabe process with no killing (superBM), and the likelihood ratio is

$$dQ/dP = \exp\left\{-\int \theta(t,x) \, dM(t,x) - \frac{1}{2} \int \langle X_t, \theta(t,\cdot)^2 \rangle \, dt\right\}$$

where *M* is the orthogonal martingale measure attached to the superBM X_t .

イロト イポト イヨト イヨト

Proof Strategy III

 P^M = Law of *M*th branching random walk. $Q^{M,N}$ = Law of corresponding spatial epidemic.

$$\frac{dQ^{M,N}}{dP^{M}} = \prod_{\text{times } t} \prod_{\text{sites } x} \left(1 + R^{M,N}(t,x) \right)$$

where $R^{M,N}(t,x)$ is a function of the number of misfires at site x at time t. So the problem is to show that under P^M , as $M \to \infty$,

$$\sum_{t}\sum_{x}R^{M,N}(t,x)$$

converges to the exponent in Dawson's likelihood ratio.

Local Behavior for Branching Random Walk: d = 1

 $Y_n^k(\cdot) =$

branching random walk on \mathbb{Z} with Poisson-1 offspring distribution and initial state Y_0^k scaling as in Watanabe's theorem.

イロト イポト イヨト イヨト

Local Behavior for Branching Random Walk: d = 1

 $Y_n^k(\cdot) =$ branching random walk on \mathbb{Z} with Poisson-1 offspring distribution and initial state Y_0^k scaling as in Watanabe's theorem.

Theorem: If $Y_0^k([\sqrt{k}x]) \to Y_0(x)$ where $Y_0(x)$ is continuous with compact support then

$$\frac{Y_{kt}^k([\sqrt{k}x])}{\sqrt{k}} \Longrightarrow X(t,x)$$

where X(t, x) is the Dawson-Watanabe density process.

・ロト ・ 理 ト ・ ヨ ト ・

3

Local Time for Branching Random Walk: d = 2,3

 $Y_n^k(\cdot) =$ branching random walk on \mathbb{Z}^d with Poisson-1 offspring distribution and initial state Y_0^k scaling as in Watanabe's theorem.

 $U_n^k(\cdot) = \sum_{i=0}^t Y_i^k(\cdot)$

イロト イポト イヨト イヨト

Local Time for Branching Random Walk: d = 2, 3

 $Y_n^k(\cdot) =$ branching random walk on \mathbb{Z}^d with Poisson-1 offspring distribution and initial state Y_0^k scaling as in Watanabe's theorem.

$$U_n^k(\cdot) = \sum_{i=0}^t Y_i^k(\cdot)$$

Theorem: If $Y_0^k([\sqrt{k}x]) \rightarrow Y_0(x)$ where Y_0 satisfies hypotheses of Sugitani then in d = 2, 3,

$$\frac{U_{kt}^k([\sqrt{k}x])}{k^{2-d/2}} \Longrightarrow L(t,x)$$

where L(t, x) is Sugitani local time.

イロン 不得 とくほ とくほ とうほ

Occupation Statistics in d = 2

For branching random walk with Poisson-1 offspring distribution and nearest neighbor steps initiated by a single particle at (0,0), let

- $G_n = \{ \text{process survives to generation } n \}$
- $G_n^0 = \{\exists \text{ particle at origin in generation } n\}$
- $\Omega_n = \#\{\text{occupied sites in generation } n\}$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Occupation Statistics in d = 2

For branching random walk with Poisson-1 offspring distribution and nearest neighbor steps initiated by a single particle at (0,0), let

- $G_n = \{ \text{process survives to generation } n \}$
- $G_n^0 = \{\exists \text{ particle at origin in generation } n\}$
- $\Omega_n = \#\{\text{occupied sites in generation } n\}$

Theorem: Conditional on G_n , the number Ω_n of occupied sites is $O_p(n/\log n)$, that is, the conditional distributions of $\Omega_n \log n/n$ are tight.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Occupation Statistics in d = 2

For branching random walk with Poisson-1 offspring distribution and nearest neighbor steps initiated by a single particle at (0,0), let

- $G_n = \{ \text{process survives to generation } n \}$
- $G_n^0 = \{\exists \text{ particle at origin in generation } n\}$
- $\Omega_n = \#\{\text{occupied sites in generation } n\}$

Theorem: Conditional on G_n^0 , the trajectory of a particle randomly chosen from those particles at the origin in generation *n* is not a pinned random walk.

イロン 不良 とくほう 不良 とうほ

- X_t = Dawson-Watanabe process,
- $\mathcal{R} := \bigcup_{t \ge 0} \operatorname{support}(X_t)$
- $\blacktriangleright u_D(x) := -\log P(\mathcal{R} \subset D \mid X_0 = \delta_x)$

ヘロン 人間 とくほ とくほ とう

э.

- X_t = Dawson-Watanabe process,
- $\mathcal{R} := \bigcup_{t \ge 0} \operatorname{support}(X_t)$
- $\bullet \ u_D(x) := -\log P(\mathcal{R} \subset D \,|\, X_0 = \delta_x)$

Theorem (Dynkin): For any finite interval D, $u_D(x)$ is the maximal nonnegative solution in D of the differential equation

$$u'' = u^2$$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

- X_t = Dawson-Watanabe process,
- $\mathcal{R} := \bigcup_{t>0} \operatorname{support}(X_t)$
- $\bullet \ u_D(x) := -\log P(\mathcal{R} \subset D \,|\, X_0 = \delta_x)$

Solution: Weierstrass \mathcal{P} -Function

$$u_D(x) = \mathcal{P}_L(x/\sqrt{6}) = \frac{1}{6x^2} + \sum_{\omega \in L^*} \left\{ \frac{1}{6(x-\omega)^2} - \frac{1}{6\omega^2} \right\}$$

where the period lattice *L* is generated by $Ce^{\pi i/3}$ for C > 0 depending on D = [0, a] as follows:

$$C=\sqrt{6}a$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- X_t = Dawson-Watanabe process,
- $\mathcal{R} := \bigcup_{t>0} \operatorname{support}(X_t)$
- $\bullet \ u_D(x) := -\log P(\mathcal{R} \subset D \,|\, X_0 = \delta_x)$

General Initial Conditions: For any finite Borel measure μ with support $\subset D$,

$$-\log P(\mathcal{R} \subset D \,|\, X_0 = \mu) = \int u_{D(x)} \,\mu(dx)$$
$$= \int \mathcal{P}_L(x/\sqrt{6}) \,\mu(dx)$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ