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Reed-Frost (SIR) Model
I Population Size N <∞
I Individuals susceptible (S), infected (I), or recovered (R).
I Recovered individuals immune from further infection.
I Infecteds recover in time 1.
I Infecteds infect susceptibles with probability p.

Critical Case: p = 1/N
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Reed-Frost and Random Graphs
Reed-Frost model is equivalent to the Erdös-Renyi random
graph model:

Individuals←→ Vertices
Infections←→ Edges
Epidemic←→ Connected Components
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Branching Envelope of an Epidemic
I Each epidemic has a branching envelope (GW process)
I Offspring distribution: Binomial-(N,p)

I Epidemic is dominated by its branching envelope
I When It � St , infected set grows ≈ branching envelope
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Example: SIS Epidemic and its Branching Envelope
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N = 80000
I0 = 200

p = 1/80000
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Critical Behavior: Reed-Frost (SIR) Epidemics
I # Infected in Generation t := IN

t
I # Recovered in Generation t : = RN

t
I Initial Condition: IN

0 ∼ bNα

Theorem: (Dolgoarshinnykh &L.) As population size N →∞,(
N−αIN

t
N−2αRN

t

)
D−→
(

I(t)
R(t)

)
The limit process satisfies I(0) = b and

dR(t) = I(t) dt

dI(t) = +
√

I(t) dBt if α < 1/3

dI(t) = +
√

I(t) dBt − I(t)R(t) dt if α = 1/3
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Critical Behavior: Reed-Frost (SIR) Epidemics
I Population size: N →∞
I # Infected in Generation t := IN

t
I # Recovered in Generation t : = RN

t
I Initial Condition: IN

0 ∼ bNα

Corollary: If α = 1/3 then

RN
∞/N

2/3 =⇒ τ(b)

where τ(b) = first passage time of B(t) + t2/2 to b.

(Martin-Lof; Aldous)
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Critical Behavior: Heuristics
I Critical Epidemic with I0 = m should last ≈ m generations.
I Number Rt recovered should be ≈ m2.
I Offspring in branching envelope :: attempted infections.
I Misfires: Infections of immunes not allowed.
I Critical Threshold: # misfires/generations ≈ O(1)

Critical SIR Epidemic:

E(#misfires in generation t + 1) ≈ ItRt/N

so there will be observable deviation from branching envelope
when

It ≈ N1/3 and Rt ≈ N2/3
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Spatial SIR Epidemic:
I Villages Vx at Sites x ∈ Zd

I Village Size:=N
I Nearest Neighbor Disease Propagation
I SIR Rules Locally:

I Infected individuals infect susceptibles at same or
neighboring site with probability pN

I Infecteds recover in time 1.
I Recovered individuals immune from further infection.
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Spatial SIR Epidemic:
I Villages Vx at Sites x ∈ Zd

I Village Size:=N
I Nearest Neighbor Disease Propagation
I SIR Rules Locally:

I Infected individuals infect susceptibles at same or
neighboring site with probability pN

I Infecteds recover in time 1.
I Recovered individuals immune from further infection.

Critical Case: Infection probability pN = 1/((2d + 1)N).

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3



Background: Mean Field Models
Spatial Epidemic Models

Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling
Branching Random Walk: Local Behavior
Spatial Extent of SuperBM (d = 1)

Percolation Representation
Spatial SIR epidemic is equivalent to critical bond percolation
on the graph GN := KN ×Zd with nearest neighbor connections:

I Vertex set [N]× Zd

I Edges connect vertices (i , x) and (j , y) if dist(x , y) ≤ 1

Problem: At critical point p = 1/(2d + 1)N,
I How does connectivity probability decay?
I How does size of largest connected cluster scale with N?
I Joint distribution of largest, 2nd largest,· · · ?

Conjecture: Let RN = maximum x such that a vertex (j , x) is
connected to a vertex (i ,0). Then RN/N4/(6−d) converges in
distribution as N →∞ in dimensions d = 1,2,3.
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Branching Envelope
The branching envelope of a spatial SIR epidemic is a
branching random walk: In each generation,

I A particle at x puts offspring at x or neighbors x + e.
I #Offspring are independent Binomial−(N,pN) or

Poisson-NpN

I Critical BRW : p = pN = 1/((2d + 1)N).
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Branching Envelope
The branching envelope of a spatial SIR epidemic is a
branching random walk: In each generation,

I A particle at x puts offspring at x or neighbors x + e.
I #Offspring are independent Binomial−(N,pN) or

Poisson-NpN

I Critical BRW : p = pN = 1/((2d + 1)N).

Associated Measure-Valued Processes

X M
t = X M,N

t : measure that puts mass 1/M
at x/

√
M for each particle at

site x at time t .

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3



Background: Mean Field Models
Spatial Epidemic Models

Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling
Branching Random Walk: Local Behavior
Spatial Extent of SuperBM (d = 1)

Critical Spatial SIS Epidemic: Simulation
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Village Size: 20224
Initial State: 2048 infected at 0

Infection Probability: p = 1/20224
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Watanabe’s Theorem
Let X M

t be the measure-valued process associated to a critical
nearest neighbor branching random walk. If

X M
0 =⇒ X0

then
X M

Mt =⇒ Xt

where Xt is the Dawson-Watanabe process (superBM). The
DW process is a measure-valued diffusion.

Note 1: The total mass ‖Xt‖ is a Feller diffusion.
Note 2: Watanabe is the spatial analogue of Feller.
Note 3: In 1D, Xt has a continuous density X (t , x).
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Scaling Limits: SIR Spatial Epidemics in d = 1
Recall: X M,N

t is the measure that puts mass 1/M at x/
√

M for
each infected individual at site x at time t .

Theorem: Assume that the epidemic is critical and that
M = Nα. If X M,N

0 ⇒ X0 then

X M,N
Mt =⇒ Xt

where
I If α < 2/5 then Xt is the Dawson-Watanabe process.
I If α = 2/5 then Xt is the Dawson-Watanabe process with

killing rate ∫ t

0
X (s, x) ds
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Scaling Limits: SIR Spatial Epidemics in d = 2, 3
Recall: X M,N

t is the measure that puts mass 1/M at x/
√

M for
each infected individual at site x at time t .

Theorem: Assume that the epidemic is critical and that
M = Nα. If X M,N

0 ⇒ X0 and X0 satisfies a smoothness
condition then

X M,N
Mt =⇒ Xt

where
I If α < 2/(6− d) then Xt is the Dawson-Watanabe process.
I If α = 2/(6− d) then Xt is the Dawson-Watanabe process

with killing rate L(t , x) = Sugitani local time density.
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Sugitani’s Local Time

Theorem: Assume that d = 2 or 3 and that the initial
configuration X0 = µ of the super-BM Xt satisfies

Smoothness Condition:∫ t

0

∫
x∈Rd

φt (x − y) dµ(y)

is jointly continuous in t , x , where φt (x) is the heat kernel
(Gaussian density). Then for each t ≥ 0 the occupation
measure

Lt :=

∫ t

0
Xs ds

is absolutely continuous with jointly continuous density L(t , x).
Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3



Background: Mean Field Models
Spatial Epidemic Models

Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling
Branching Random Walk: Local Behavior
Spatial Extent of SuperBM (d = 1)

Critical Scaling: Heuristics (SIR Epidemics, d = 1)
I # Infected Per Generation: ≈ M
I Duration: ≈ M generations.
I # Infected Per Site: ≈

√
M

I # Recovered Per Site: ≈ M
√

M
I # Misfires Per Site: ≈ M2/N
I # Misfires Per Generation: ≈ M5/2/N

So if M ≈ N2/5 then # Misfires Per Generation ≈ 1.

But how do we know that the infected individuals in generation
n don’t “clump”?
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Critical Scaling: Heuristics (SIR Epidemics, d = 3)
I # Infected Per Generation ≈ Duration ≈ M
I # Sites Reachable ≈ M3/2.
I # Infected Per Infected Site: ≈ O(1)

I # Recovered Per Site: ≈ M2/M3/2 =
√

M
I # Misfires Per Generation: ≈ M ×

√
M/N

So if M ≈ N2/3 then # Misfires Per Generation ≈ 1.
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Proof Strategy I
Lemma: Assume that Ln and L are likelihood ratios under Pn
and P, and define Qn and Q by

dQn = Ln dPn,

dQ = L dP.

Assume that Xn and X are random variables whose
distributions under Pn and P satisfy

(Xn,Ln) =⇒ (X ,L).

Then the Qn−distribution of Xn converges weakly to the
Q−distribution of X .
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Proof Strategy II
Theorem: (Dawson) The law Q of the Dawson-Watanabe
process with location-dependent killing rate θ(x , t) is mutually
a.c. relative to the law P of the Dawson-Watanabe process with
no killing (superBM), and the likelihood ratio is

dQ/dP = exp
{
−
∫
θ(t , x) dM(t , x)− 1

2

∫
〈Xt , θ(t , ·)2〉dt

}
where M is the orthogonal martingale measure attached to the
superBM Xt .
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Proof Strategy III
PM = Law of Mth branching random walk.
QM,N = Law of corresponding spatial epidemic.

dQM,N

dPM =
∏

timest

∏
sitesx

(
1 + RM,N(t , x)

)
where RM,N(t , x) is a function of the number of misfires at site x
at time t . So the problem is to show that under PM , as M →∞,∑

t

∑
x

RM,N(t , x)

converges to the exponent in Dawson’s likelihood ratio.

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3



Background: Mean Field Models
Spatial Epidemic Models

Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling
Branching Random Walk: Local Behavior
Spatial Extent of SuperBM (d = 1)

Local Behavior for Branching Random Walk: d = 1

Y k
n (·) = branching random walk on Z with Poisson-1

offspring distribution and initial state Y k
0

scaling as in Watanabe’s theorem.

Theorem: If Y k
0 ([
√

kx ])→ Y0(x) where Y0(x) is continuous with
compact support then

Y k
kt ([
√

kx ])
√

k
=⇒ X (t , x)

where X (t , x) is the Dawson-Watanabe density process.
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Local Time for Branching Random Walk: d = 2, 3

Y k
n (·) = branching random walk on Zd with Poisson-1

offspring distribution and initial state Y k
0

scaling as in Watanabe’s theorem.

Uk
n (·) =

∑t
i=0 Y k

i (·)

Theorem: If Y k
0 ([
√

kx ])→ Y0(x) where Y0 satisfies hypotheses
of Sugitani then in d = 2,3,

Uk
kt ([
√

kx ])

k2−d/2 =⇒ L(t , x)

where L(t , x) is Sugitani local time.
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Occupation Statistics in d = 2
For branching random walk with Poisson-1 offspring distribution
and nearest neighbor steps initiated by a single particle at
(0,0), let

Gn = {process survives to generation n}
G0

n = {∃ particle at origin in generation n}
Ωn = #{occupied sites in generation n}

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3



Background: Mean Field Models
Spatial Epidemic Models

Spatial SIR Models
Superprocess Limits
Spatial Epidemic Models: Critical Scaling
Branching Random Walk: Local Behavior
Spatial Extent of SuperBM (d = 1)

Occupation Statistics in d = 2
For branching random walk with Poisson-1 offspring distribution
and nearest neighbor steps initiated by a single particle at
(0,0), let

Gn = {process survives to generation n}
G0

n = {∃ particle at origin in generation n}
Ωn = #{occupied sites in generation n}

Theorem: Conditional on Gn, the number Ωn of occupied sites
is Op(n/ log n), that is, the conditional distributions of Ωn log n/n
are tight.
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Occupation Statistics in d = 2
For branching random walk with Poisson-1 offspring distribution
and nearest neighbor steps initiated by a single particle at
(0,0), let

Gn = {process survives to generation n}
G0

n = {∃ particle at origin in generation n}
Ωn = #{occupied sites in generation n}

Theorem: Conditional on G0
n, the trajectory of a particle

randomly chosen from those particles at the origin in
generation n is not a pinned random walk.
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Spatial Extent of Super-BM in d = 1
I Xt = Dawson-Watanabe process,
I R :=

⋃
t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )
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Spatial Extent of Super-BM in d = 1
I Xt = Dawson-Watanabe process,
I R :=

⋃
t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )

Theorem (Dynkin): For any finite interval D, uD(x) is the
maximal nonnegative solution in D of the differential equation

u′′ = u2
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Spatial Extent of Super-BM in d = 1
I Xt = Dawson-Watanabe process,
I R :=

⋃
t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )

Solution: Weierstrass P− Function

uD(x) = PL(x/
√

6) =
1

6x2 +
∑
ω∈L∗

{
1

6(x − ω)2 −
1

6ω2

}

where the period lattice L is generated by Ceπi/3 for C > 0
depending on D = [0,a] as follows:

C =
√

6a
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Spatial Extent of Super-BM in d = 1
I Xt = Dawson-Watanabe process,
I R :=

⋃
t≥0 support(Xt )

I uD(x) := − log P(R ⊂ D |X0 = δx )

General Initial Conditions: For any finite Borel measure µ with
support ⊂ D,

− log P(R ⊂ D |X0 = µ) =

∫
uD(x) µ(dx)

=

∫
PL(x/

√
6)µ(dx)

Steve Lalley and Xinghua Zheng Spatial Epidemics: Critical Behavior in Dimensions 1, 2, and 3


	Background: Mean Field Models
	Reed-Frost (SIR) Model
	Branching Envelopes
	Critical Behavior

	Spatial Epidemic Models
	Spatial SIR Models
	Superprocess Limits
	Spatial Epidemic Models: Critical Scaling
	Branching Random Walk: Local Behavior
	Spatial Extent of SuperBM (d=1)


