Random tridiagonal matrices, 3-ensembles and
random Schrodinger operators

Benedek Valké
(University of Wisconsin — Madison)

Joint with B. Virdg, E. Kritchevski (Toronto) and S. Jacquot (Cambridge)



Random eigenvalue problems

» Generalized 3-ensembles
(GOE, GUE, Wishart...)



Random eigenvalue problems

» Generalized (3-ensembles
(GOE, GUE, Wishart...)

» Discrete random Schrédinger operators (92 + V)



Random eigenvalue problems

» Generalized (3-ensembles
(GOE, GUE, Wishart...)

» Discrete random Schrédinger operators (92 + V)

Aim: local limit of the eigenvalue process



Random eigenvalue problems

» Generalized (3-ensembles
(GOE, GUE, Wishart...)

» Discrete random Schrédinger operators (92 + V)

Aim: local limit of the eigenvalue process

Method: scaling limit of random tridiagonal matrices
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X(n, m) = [Xk ] pcp1<pcm 1S @M N X m random matrix

Hermite ensemble: 12 (A+ A%) A~ X(n,n)
(GOE, GUE, GSE)

Laguerre ensemble: BB* B ~ X(n, m)
(Wishart)

Sl
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Classical Random Matrix Ensembles
Joint density of the eigenvalues:

Hermite: iA()\)‘B exp [—g Py )\i]

Laguerre: Zsfln, AN TTi—; Mg exp [—% Do /\k} 1ix>0)

A(N) =TLi;(A —A) B =1,2,4: real/complex/quaternion case
But these make sense for all 5 > 0!

These are the general -ensembles.



Tridiagonal representation



Tridiagonal representation

Dumitriu-Edelman (02):
tridiagonal matrix representation for the 3 ensembles

an bp—1 an
Az o bp—1  ap—1  bp—2 gt b1 E1
VB VB B
bp—2 ap—2 by_o> 3p_»

ak ~ N(0,2), b ~ Xk, 3k ~ XB(m—n+k)> by ~ Xk are independent



Tridiagonal representation

Dumitriu-Edelman (02):

tridiagonal matrix representation for the 3 ensembles

ak ~ N(0,2), bk ~ Xpk, 3k ~ Xs(m—n-+k)> bk ~

» Eigenvalues of A: Hermite-ensemble

Xgk are independent



Tridiagonal representation

Dumitriu-Edelman (02):
tridiagonal matrix representation for the 3 ensembles

an bp—1 an
Az o bp—1  ap—1  bp—2 gt b1 3,1
VB VB B
bp—2 ap—2 by_o> 3p_»

ak ~ N(0,2), b ~ Xk, 3k ~ XB(m—n+k)> by ~ Xk are independent

» Eigenvalues of A: Hermite-ensemble

» Eigenvalues of BBT: Laguerre ensemble
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Scaling limit of the spectrum

A random sample from the ensemble: A, = {A1,A2,..., Ap}
Question: what can we say about the scaling limit of A,?

Scaling limit of the empirical spectral measure:
1
Vp = n ZZ:]_ 6)\k/cn :>?
Point process limit of the spectrum:

bn(An — an) =7



Limit of the empirical spectral measure

Histogram for a Hermite ensemble with n = 1000
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Limit of the empirical spectral measure

Histogram for a Laguerre ensemble with n = 1000, m = 5000
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Limit of the empirical spectral measure

Thm: The properly normalized empirical spectral measure
converges to a deterministic measure.

Vn = 5 2kt O/, = 0(x)ax

Name normalization limit
. — 1
Hermite n 1/2 57V 4 — x2 1{|X|§2}

Laguerre n—1 ﬁ (b—x)(x — a)l{agxgb}

Laguerre: n/m — y € (0,1], a, b are functions of y.
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Local limit

We want to 'zoom' in to see a point process in the limit.

Covende
An
b(Ap-a)
An: the point process for n an, by scaling factors

bn(An — an) =7

One can guess the scaling parameters from the scaling of the
empirical spectral measure.

Bulk/soft edge/hard edge: different scalings
6 =1,2,4: known
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Random Schrodinger operator

1D Schrédinger operator: H = 02 + V
V: some random potential on the line or on a line segment
Question: what can we say about the spectrum of H?
Discretized version of the eigenvalue equation:

fu—1 — 2 + fep1 + Vi = Ay
If we have a finite interval with Dirichlet boundary conditions~~

vy 1
1V, 1
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1d Schrodinger operator

fk71+kak+fk+1:)\fk, k=1,...,n
Dirichlet boundary conditions, V) ~ %N(O, 1) i.i.d.
The eigenvalues are ‘sufficiently’ random, but not ‘too’ random.

If there is no noise:
spectrum = A, = {2cos(2k/(n+1)): k=1...n}

; .1
Asymptotic spectral measure: \/ﬁl[_zz]dx

Local limit (with noise): n(A, — p) =7
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Eigenvalue equations for tridiagonal matrices

ay by
by a b
M, = , M,u= \u
bn72 dn—1 bnfl
bnfl an
Three-term recursion:
bi—1uk—1 + akuk + bxuki1 = Aug, ug = tpy1 =0

Setting rx = ugy1/uk:

-1
bk,lrk_l—i—ak—i—bkrk =\, rn=o00,rn=>0



Eigenvalue equations for tridiagonal matrices
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bk,lrk_1+ak+bkrk :)\, n :oo,r,,:0
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Eigenvalue equations for tridiagonal matrices

be_irt, fak+ bk =X, =00, =0
We can solve this for any A with rp = 0.
A is an eigenvalue < r, y =0
Moreover:

If we can count the solutions of r, y =0

Y

we can count eigenvalues.

(Discrete version of Sturm-Liouville theory)
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Scaling limit

bk_lr/:_ll + ak + bire = A, rn=o00,rn=20

In our case:
One can derive an SDE limit for (a version of) the evolution of ry

limiting SDE

)

counting function of the limiting point process

If we can analyze the SDE then we can also understand the
limiting point process.
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Results

Theorem(V-Virag, '07):
The bulk scaling limit of the S-Hermite ensemble exists.

Theorem(V-Jacquot, '10):

The bulk scaling limit of the §-Laguerre ensemble exists and it has
the same distribution as the point process limit of the g-Hermite
ensemble.

Also: large deviation estimate for large gaps
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The limiting process

The limit is described by the SDE

doy = A%e‘ﬁ/‘”dH—Re [(e™* —1)d(B1 + iB2)],  ax(0)=0

B, B> are ind. standard Brownian motions

N(A) = lim—oo 0%7(:) is the counting function of the point process
Also: geometric description of the process (Brownian carousel)

Killip-Stoiciu '06: similar equation for the limit of circular
ensembles
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1d Schrodinger operator

Thm(Kritchevski-V-Virdg, '10):
Local limit of the spectrum (along an appropriate subsequence).

dpy = At + o Re [e7'?d(By + iBy)] +0dBs,  ¢A(0) = —7

N(\) = L%J gives the counting function of the point process
(b depends on the subsequence)

Also:
» Large gap estimates (~ (3-ensembles)
» Eigenvalue repulsion (> (-ensembles)

» CLT for number of points in a large interval
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Outline of the proof

o A
fk—1 + fit1 — \fgfk = <M + n> fi

1<k<n, & ~N(0,1), pe(-2,2)\{0}
Rewriting the recursion:

fk . fk+1 . Xk -1 o A O'fk

Tk|:fk—1:|_|: fi |’ Te=11 o |» X=wt,t4

M = Ty Ti_1 ... Ty1: transfer matrix

1 0 .
Mn{o}—[c}ﬁu—i-)\/nlsanev

Ty is close to T = [ /f _01 } = We should follow Y, = T—%M,!
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Outline of the proof

M= TiTe_1...T1
Evolution of Y, = T—KM,:

Yi— Y1 = THFT T — Y
o]
= Tk n T TXY,—1 — Yi_y
0 1
e
AR
0 0
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k k—1 [0 0
T can be diagonalized:
T:Z[Z 9}2—1, 7 =
0 z

z=p/2+iyI— (u/2)




Outline of the proof

Yi— Y1 =T * [

T can be diagonalized:

z=p/2+i/I— (uf2P
Explicit computation:

A 23
0 A+ %
0 0

Tk Th=2

i

o O

1
4—p

A
72E+
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Outline of the proof

SDE limit for Xy = Z71Y}:

X

dX = i(Adt—odBy) [ -

} X+t io { 1 dB; + idBs

V3 | —dBs +idBs 1

X encodes the limit of the eigenvalue equation

4

scaling limit of the counting function
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Final comments

» V.-Virdg: multidimensional version (long boxes)

» Proof for the 3-ensembles is a bit more tricky
(several regions)



THANK YOU!



