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Classical Random Matrix Ensembles

xk,`: i.i.d. sequence of standard normals (real/complex/quaternion)

X (n,m) = [xk,`]1≤k≤n,1≤`≤m is an n ×m random matrix

Hermite ensemble: 1√
2

(A + A∗) A ∼ X (n, n)

(GOE, GUE, GSE)

Laguerre ensemble: BB∗ B ∼ X (n,m)
(Wishart)



Classical Random Matrix Ensembles

xk,`: i.i.d. sequence of standard normals (real/complex/quaternion)

X (n,m) = [xk,`]1≤k≤n,1≤`≤m is an n ×m random matrix

Hermite ensemble: 1√
2

(A + A∗) A ∼ X (n, n)

(GOE, GUE, GSE)

Laguerre ensemble: BB∗ B ∼ X (n,m)
(Wishart)



Classical Random Matrix Ensembles

xk,`: i.i.d. sequence of standard normals (real/complex/quaternion)

X (n,m) = [xk,`]1≤k≤n,1≤`≤m is an n ×m random matrix

Hermite ensemble: 1√
2

(A + A∗) A ∼ X (n, n)

(GOE, GUE, GSE)

Laguerre ensemble: BB∗ B ∼ X (n,m)
(Wishart)



Classical Random Matrix Ensembles

Joint density of the eigenvalues:

Hermite: 1
Zβ,n

∆(λ)β exp
[
−β

4

∑n
k=1 λ

2
k

]

Laguerre: 1
Zβ,n,m

∆(λ)β
∏n

k=1 λ
α
k exp

[
−β

2

∑n
k=1 λk

]
1{λi≥0}

α = β
2 (m − n + 1)− 1

∆(λ) =
∏

i<j(λj − λi ) β = 1, 2, 4: real/complex/quaternion case

But these make sense for all β > 0!

These are the general β-ensembles.
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Tridiagonal representation

Dumitriu-Edelman (02):
tridiagonal matrix representation for the β ensembles

A =
1
√
β

0BBBBBBBBBBBB@

an bn−1

bn−1 an−1 bn−2

bn−2 an−2

. . .

. . .
. . .

1CCCCCCCCCCCCA
, B =

1
√
β

0BBBBBBBBBBBB@

ãn

b̃n−1 ãn−1

b̃n−2 ãn−2

. . .
. . .

1CCCCCCCCCCCCA

ak ∼ N(0, 2), bk ∼ χβk , ãk ∼ χβ(m−n+k), b̃k ∼ χβk are independent

I Eigenvalues of A: Hermite-ensemble

I Eigenvalues of BBT : Laguerre ensemble
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ãn

b̃n−1 ãn−1
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Scaling limit of the spectrum

A random sample from the ensemble: Λn = {λ1, λ2, . . . , λn}

Question: what can we say about the scaling limit of Λn?

Scaling limit of the empirical spectral measure:

νn = 1
n

∑n
k=1 δλk/cn

⇒?

Point process limit of the spectrum:

bn(Λn − an)⇒?
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Limit of the empirical spectral measure

Histogram for a Hermite ensemble with n = 1000
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Limit of the empirical spectral measure

Histogram for a Laguerre ensemble with n = 1000,m = 5000
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Limit of the empirical spectral measure

Thm: The properly normalized empirical spectral measure
converges to a deterministic measure.

νn = 1
n

∑n
k=1 δλk/cn

⇒ σ(x)dx

Name normalization limit

Hermite n−1/2 1
2π

√
4− x2 1{|x |≤2}

Laguerre n−1 1
2πx

√
(b − x)(x − a)1{a≤x≤b}

Laguerre: n/m→ y ∈ (0, 1], a, b are functions of y .
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Local limit
We want to ’zoom’ in to see a point process in the limit.

Ln

b HLn - aL

Λn: the point process for n an, bn: scaling factors

bn(Λn − an)⇒?

One can guess the scaling parameters from the scaling of the
empirical spectral measure.

Bulk/soft edge/hard edge: different scalings

β = 1, 2, 4: known
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Random Schrödinger operator

1D Schrödinger operator: H = ∂2
x + V

V : some random potential on the line or on a line segment

Question: what can we say about the spectrum of H?

Discretized version of the eigenvalue equation:

fk−1 − 2fk + fk+1 + Vk fk = λfk

If we have a finite interval with Dirichlet boundary conditions 

Mn =


V1 1
1 V2 1

. . .
. . .

1 Vn−1 1
1 Vn
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1d Schrödinger operator

fk−1 + Vk fk + fk+1 = λfk , k = 1, . . . , n

Dirichlet boundary conditions, Vk ∼ σ√
n
N(0, 1) i.i.d.

The eigenvalues are ‘sufficiently’ random, but not ‘too’ random.

If there is no noise:

spectrum = Λn = {2 cos(2πk/(n + 1)) : k = 1 . . . n}

Asymptotic spectral measure: 1√
4−x2

1[−2,2]dx

Local limit (with noise): n(Λn − µ)⇒?
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Eigenvalue equations for tridiagonal matrices

Mn =


a1 b1

b1 a2 b2

. . .
. . .

bn−2 an−1 bn−1

bn−1 an

 , Mnu = λu

Three-term recursion:

bk−1uk−1 + akuk + bkuk+1 = λuk , u0 = un+1 = 0

Setting rk = uk+1/uk :

bk−1r
−1
k−1 + ak + bk rk = λ, r0 =∞, rn = 0
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Eigenvalue equations for tridiagonal matrices

bk−1r
−1
k−1 + ak + bk rk = λ, r0 =∞, rn = 0

We can solve this for any λ with r0 =∞.

λ is an eigenvalue ⇔ rn,λ = 0

Moreover:

If we can count the solutions of rn,λ = 0
⇓

we can count eigenvalues.

(Discrete version of Sturm-Liouville theory)
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Scaling limit

bk−1r
−1
k−1 + ak + bk rk = λ, r0 =∞, rn = 0

In our case:
One can derive an SDE limit for (a version of) the evolution of rk,λ

limiting SDE
m

counting function of the limiting point process

If we can analyze the SDE then we can also understand the
limiting point process.
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Results

Theorem(V-Virág, ’07):
The bulk scaling limit of the β-Hermite ensemble exists.

Theorem(V-Jacquot, ’10):
The bulk scaling limit of the β-Laguerre ensemble exists and it has
the same distribution as the point process limit of the β-Hermite
ensemble.

Also: large deviation estimate for large gaps



Results

Theorem(V-Virág, ’07):
The bulk scaling limit of the β-Hermite ensemble exists.

Theorem(V-Jacquot, ’10):
The bulk scaling limit of the β-Laguerre ensemble exists and it has
the same distribution as the point process limit of the β-Hermite
ensemble.

Also: large deviation estimate for large gaps



Results

Theorem(V-Virág, ’07):
The bulk scaling limit of the β-Hermite ensemble exists.

Theorem(V-Jacquot, ’10):
The bulk scaling limit of the β-Laguerre ensemble exists and it has
the same distribution as the point process limit of the β-Hermite
ensemble.

Also: large deviation estimate for large gaps



The limiting process

The limit is described by the SDE

dαλ = λ
β

4
e−β/4 tdt+Re

[
(e−iαλ − 1)d(B1 + iB2)

]
, αλ(0) = 0

B1,B2 are ind. standard Brownian motions

N(λ) = limt→∞
αλ(t)

2π is the counting function of the point process

Also: geometric description of the process (Brownian carousel)

Killip-Stoiciu ’06: similar equation for the limit of circular
ensembles
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1d Schrödinger operator

Thm(Kritchevski-V-Virág, ’10):
Local limit of the spectrum (along an appropriate subsequence).

dϕλ = λdt + σ Re
[
e−iϕλd(B1 + iB2)

]
+ σdB3, ϕλ(0) = −π

N(λ) = bαλ(1)−b
2π c gives the counting function of the point process

(b depends on the subsequence)

Also:

I Large gap estimates (∼ β-ensembles)

I Eigenvalue repulsion (� β-ensembles)

I CLT for number of points in a large interval
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(
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)
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1 ≤ k ≤ n, ξk ∼ N(0, 1), µ ∈ (−2, 2) \ {0}

Rewriting the recursion:

Tk

[
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fk−1

]
=

[
fk+1

fk

]
, Tk =

[
xk −1
1 0

]
, x = µ+

λ

n
+
σξk√

n

Mk = TkTk−1 . . .T1: transfer matrix

Mn

[
1
0

]
=

[
0
c

]
⇔ µ+ λ/n is an ev

Tk is close to T =

[
µ −1
1 0

]
⇒ We should follow Yk = T−kMk !
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]
X

X encodes the limit of the eigenvalue equation
⇓

scaling limit of the counting function
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THANK YOU!


