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Reaction networks

I Set-up:
- population consists of different types of ’particles’
- they are involved in a system of interactions
- rates of interactions depend on the current number of types

I Examples:
- epidemic models, e.g. SIR or SIRS
- branching models, e.g. catalytic branching
- neutral genetic models, e.g. Moran model with mutation
- chemical reaction models,

e.g. molecular interactions in biological cells



Multiple scales and space

I Scaling issues:
- amounts of particles are in different orders of abundance
- rates of interactions are of different orders of magnitude

I Spatial issues:
- different spatial locations = discrete compartments
- each particle type moves between compartments

Goals:

I how can one reduce network complexity without losing
essential randomness

I how does effect of spatial heterogeneity interact with the
multiple scales on the network reaction dynamics



Notation

I Particles: I distinct types A1, . . . ,AI

X (t) = (X1(t), . . . ,XI(t)) = # of particles at time t

I Reactions: K distinct interactions
K∑

i=1

νikAi 7→
K∑

i=1

ν ′ikAi, νik , ν ′ik ∈ Z+ = interaction k

(ν ′1k − ν1k , . . . , ν ′Ik − νIk) = change due to interaction k

I Rates: depend on current state of system

λk(t) = λk(X (t)) = rate of reaction k at time t



Examples
I SIRS Model :

S + I → 2I λ1 = cIXSXI ν ′1 − ν1 = (−1, 1, 0)

I → R λ2 = cRXI ν ′2 − ν2 = (0,−1, 1)

R → S λ3 = cSXR ν ′3 − ν3 = (1, 0,−1)

I Catalytic Branching Process :

C → 2C or 0 λ1 = b1XCXR ν ′1 − ν1 = (±1, 0)

R → 2R or 0 λ2 = b2XCXR ν ′2 − ν2 = (0,±1)

I Moran model with Mutations :

A + a→ 2A or 2a λ1 = XAXa ν ′1 − ν1 = (±1,−± 1)

a→ A λ2 = µ
a→A

Xa ν ′3 − ν3 = (−1, 1)

A→ a λ3 = µ
A→a

XA ν ′3 − ν3 = (1,−1)



Stochastic dynamics

I Counting Reaction Occurrences:

Rk(t) = # of times kth reaction occurs by time t

Rk(t) = Yk(

∫ t

0
λk(X (s))ds)

{Yk}k∈K= independent rate 1 Poisson processes

I Changes in Population Size of Components:

X (t) = X (0) +
∑
k∈K

∆kRk(t)

= X (0) +
∑
k∈K

∆kYk(

∫ t

0
λk(X (s))ds)

∆k = (ν ′1k − ν1k , . . . , ν ′Ik − νIk)= change due to reaction k



Reaction rates

I Reaction rates:
λk(X (t)) depends on the state of the whole system
when some input components are missing λk = 0
at least some λk in the system are non-linear

I Commonly used - mass action kinetics:
based on uniform mixing assumption, infinitesimal rates of
interactions come from collision probabilities:

λk(X ) = κk

(
X1 · · ·XI
ν1k · · · νIk

)
≈ Nκk

∏
i

(Xi

N

)νik (classical scaling)



Rescaling of reaction networks

I Scaling parameters: N = scaling paramter

For each type: αi ≥ 0 chosen s.t.

V N
i (t) := N−αiXi (t) = O(1)

For each reaction: βk ≥ 0 chosen s.t.

Nβkλk(X ) = O(1)

For time scale: speed-up/slow-down time by Nγ

I Normalized system:

V N
i (t) = V N

i (0) + N−αi
∑
k

∆kYk(

∫ t

0
Nβk+γλk(V N(s))ds)

dynamics depends on the relationship between αi & βk



Separating scales

I Goal: Reduction of Network Complexity
exploit multiscale aspect to get simpler system in limit

Suppose on well chosen time scale γ the normalized components
fall into two groups:

V N
1 = vector of ’fast varying’ components

V N
2 = the vector of ’slow varying’ components

Let δ > 0, be the scale along which the system separates:

I {1, 2, . . . , I} = If + Is = fast + slow components s.t.:

V N
f (t) =V N

f (0) + N−αif

∑
k

∆k|f Yk(Nαif Nδ

∫ t

0
λk(V N(s))ds),

V N
s (t) =V N

s (0) +
∑
k

N−αis ∆k|sYk(Nαis

∫ t

0
λk(V N(s))ds),



Averaging of fast and LLN for slow subnetwork

I Suppose fast varying components have unique partial
stationary measure, for each value of slow varying components

I then limit of the slow varying components depends only on
the partial stationary distribution of the fast components

Theorem [Averaging and LLN]

If ∀t > 0, when V N
s (t) = vs is fixed, V N

f has a unique stationary
distribution πvs(vf), then ∀T > 0:

lim
N→∞

P
[

sup
t∈[0,T]

|VN
s (t) − Vs(t)| ≥ ε

]
= 0, ∀ε > 0

where Vs is the solution to the system of equations:

Vs(t) = Vs(0) +
∑
k

∫ t

0
∆k|sλk(Vs(τ ))dτ

with averaged λk(Vs(τ )) =
∫

λk(vf , Vs(τ ))πVs(τ )(vf).



FCLT limit for slow subnetwork

For the fluctuations of the slow varying components:

I follow a centered Gaussian process

I diffusion coefficient σ of this process depends on the
interaction of slow and fast components

Theorem [FCLT]

If UN
s (t) = Nδ/2

(
VN

s (t) − Vs(t)
)
, then ∀T > 0:

(UN
s (t), t ∈ [0, T]) ⇒ (Us(t), t ∈ [0, T])

where U2 is the Gaussian process:

Us(t) =

∫ t

0
σ(Vs(τ ))dW (τ) +

∫ t

0
µ(Vs(τ ))Us(τ)dτ

with W = |Is |-dimensional BM, σ(vs),µ(vs) are averaged



Note:

I expression for µ(vs) is simple → gradient of the drift of Vs

I expression for σ(vs) is more complicated → combines the
fluctuations of V N

s about its mean Vs with the gradient of
the solution of Poisson equation for the generator of Vf

w.r.t. to the drift of Vs , i.e. the fluctuations of the partial
stationary distribution πVs (vf ) of Vf in drift direction of Vs

General Theorems:

I fclt results for general multiscale Markov Chain models by:
an iterative application of separation of the network into
subnetworks on progressive time scales - Kurtz-Popovic ’11

I analogous fclt results for two time scale SDEs -
Pardoux-Veretennikov ’01, ’03, ’05



Example: Michaelis-Menten enzymatic reactions

Reactions: S + E −→SE Rates: κ1X1X2

S + E←−SE κ−1(M − X1)
P + E←−SE κ2(M − X1)

Species: X1 = # of unbound enzymes E
X2 = # of unbound substrate S
X3 = # of enzymatic product P
M − X1 = # of bound enzymes SE

# of unbound enzymes + # of bound enzymes = M
κ−1, κ2 >> κ1, then N = O(X2) >> M while X1 + X3 = M

Fast species: bound & unbound enzymes SE ,E
Slow species: unbound substrate S



Stationary distribution for V N
1 (s) (# of unbound enzymes) is:

πV2(s)(v1) ∼ Binomial(M, p(V2(s)))

p(V2(s)) = (κ−1 + κ2)/(κ−1 + κ2 + κ1V2(s))

LLN limit for V N
2 (# of unbound substrate) is:

V2(t) = V2(0)−M

∫ t

0

κ1κ2V2(s)

κ−1 + κ2 + κ1V2(s)
ds

FCLT for the deviation of V N
2 from V2 satisfies:

U2(t) =

∫ t

0

√
σ2(V2(s))dW (s) +

∫ t

0
µ(V2(s))U2(s)ds



µ(v2) =
−Mκ1κ2(κ−1 + κ2)

(κ−1 + κ2 + κ1v2)2

σ2(v2) = M

∫ t

0
(1 + u1(v2)

2)
(
v2κ1p(s) + κ−1(1− p(s))

)
ds

+ M

∫ t

0
u1(v2)

2κ2(1− p(s))ds, u1(v2) =
(κ1v2 + κ−1)

(κ1v2 + κ−1 + κ2)

u(v1, v2) = u1(v2)v1 solves Poisson equation Lu(v1, v2) = F − F̄ ,

F = −κ1v1v2+κ−1(M−v1)+M
κ1κ2v2

κ−1 + κ2 + κ1v2
, F̄ =

∫
Fπv2(v1)

= drift of the limitting slow subnetwork, and averaged drift

Lf (v1, v2) =
[
κ1v1v2

(
f (v1−1)−f

)
+(κ−1+κ2)(M−v1)

(
f (v1+1)−f

)]
= generator for fast subnetwork with fixed slow vars



Spatial heterogeneity in dynamics

I Spatial compartments: D distinct subdivisions of space

X·d(t) = (X1d(t), . . . ,XId(t)) = particles in compartment d

λkd(X·d(t)) = spatially dependent rate of reaction k

I Movement between compartments:

µi = movement rate per particle of type i

pi (d
′, d ′′) = probability of movement from d ′ 7→ d ′′

ρi = (ρi (d))d∈D = stationary distribution of {pi (d
′, d ′′)}d ′,d ′′∈D

I Speed of movement:
For each type i ∈ I: ai > 0 chosen s.t. NaiµN

i = O(1)



I System sums: SN
i (t) :=

∑
d V N

id (t)

SN
i (t) = SN

i (0) + N−αi
∑
d

∑
k

∆kYk(

∫ t

0
Nβk+γλk(VN(s))ds)

but dynamics depends on relationship between αi, βk and ai

I Mass action kinetics: If reaction rates have mass action
form on a single scale and movement is and on a faster scale

Si (t) = Si (0) +
∑
k∈K

∆ikYk

( ∫ t

0
κ̃k

(
S1 · · ·SI

ν1k · · · νIk

)
κ̃k

(
S1 · · ·SI

ν1k · · · νIk

)
κ̃k

(
S1 · · ·SI

ν1k · · · νIk

)
dτ

)
κ̃k =

∑
d

κkd

∏
i

ρi (d)νikκ̃k =
∑
d

κkd

∏
i

ρi (d)νikκ̃k =
∑
d

κkd

∏
i

ρi (d)νik

if all species move faster than they interact, mass action in
compartments becomes mass action of system sums



Spatially heterogeneous multi-scale networks

I Reactions: dynamics of reactions separate species into ’fast’
and ’slow’ components: the normalized amounts change due
to reactions at rates O(Nδ)O(Nδ)O(Nδ) and O(1)O(1)O(1), respectively

I Movement: ’fast’ and ’slow’ components move between
compartments at speeds O(Naf )O(Naf )O(Naf ) and O(Nas )O(Nas )O(Nas ), respectively

V N = (V N
f ,V N

s ) with values in ⊗d

(
Efd × Esd

)
has generator:

LN ”≈ ”
∑
d∈D

(
NδNδNδLcr

fd + Lcr
sd

)
+ NafNafNaf Lmov

f + NasNasNas Lmov
s

where D(Lcr
fd) ⊂ Cc(Efd × Esd), while D(Lcr

sd) ⊂ Cc(Esd) only, and:

Lcr
sd = Fd · ∇, with Fd =

∑
k∈K

∆kλkd



I Assumption on the reactions: reaction dynamics in each
compartment is s.t., when the normalized amount of slow
components is kept fixed, the fast components have a
unique partial stationary distribution ⊗dπvsd

(vfd)⊗dπvsd
(vfd)⊗dπvsd
(vfd)

I Assumption on the effect of movement on reactions:
movement has a stationary distribution ρ = ρf ⊗ ρsρ = ρf ⊗ ρsρ = ρf ⊗ ρs s.t., when
all the components, as well as, when only the fast components
are distributed over compartments according to ρρρ, reaction
dynamics still has unique partial stationary distributions
πss (sf )πss (sf )πss (sf ), and

∫
(⊗dπvsd

(vfd)) ρf (vfd)
∫

(⊗dπvsd
(vfd)) ρf (vfd)

∫
(⊗dπvsd

(vfd)) ρf (vfd), respectively



I Theorem [Spatial limits]: Under assumptions, ∀T > 0 the
normalized sum of slow components SN

s converges on [0,T ]
to the solution of:

Ss(t) = Ss(0) +
∑
k∈K

∫ t

0
∆kλ̄

cr
kλ̄cr
kλ̄cr
k (Ss(τ))dτ

where if as > 0, af > δas > 0, af > δas > 0, af > δ then:

λ̄cr
k (ss) =

∫ ( ∑
d∈D

∫
λcr

kd(vfd , vsd)ρf (vfd)ρs(vsd)
)

πss (sf )πss (sf )πss (sf )

while if as > 0, af < δas > 0, af < δas > 0, af < δ then:

λ̄cr
k (ss) =

∑
d∈D

∫ ( ∫
λcr

kd(vfd , vsd) πvsd
(vfd)πvsd
(vfd)πvsd
(vfd)

)
ρf (vfd)ρs(vsd)



I Interplay of scales: The dynamics of total normalized
amount of slow particles depends on how speed scale afafaf of
fast components compares to the scale of separation of
reactions δδδ, and not on speed scale asasas of slow components.

I Theorem [Spatially heterogeneous mass action kinetics]:
If reaction rates have mass action form, then:

if af > δaf > δaf > δ, the dynamics of sum of slow components takes
on the same form as the dynamics in a homogeneous
environment with rate constants κ̃k =

∑
d κkd

∏
i∈Is

ρi (d)νikκ̃k =
∑

d κkd
∏

i∈Is

ρi (d)νikκ̃k =
∑

d κkd
∏

i∈Is

ρi (d)νik ;

if af < δaf < δaf < δ the dynamics of sum of slow components can take
on a completely different form from that in a homogeneous
environment (unless all the reactions are linear).



Example: heterogeneous Michaelis-Menten

I Michaelis-Menten in compartment d :
X1d ,X3d are ’fast’ components, X1d + X3d = Md

V N
2d = N−1X2d is ’slow’ component

λkd are mass action with parameters κ1d , κ−1d , κ2d

I Without movement: V N
2d converges to the solution of:

V2d(t) = V2d(0)−Md

∫ t

0

κ1dκ2dV2d(s)

κ−1d + κ2d + κ1dV2d(s)
ds

I Separation of scales in reaction dynamics: δ = 1

I Speed of movement: α1, α3 > 0, and
α2 < 1 vs α2 > 1



M :=
∑

d Md is conserved
ρ1(d) = ρ3(d), ρ2(d) are stationary distributions of movement

SN
2 =

∑
d V N

2d converges to the solution of:

I If α2 > 1α2 > 1α2 > 1, then

S2(t) = S2(0)−M

∫ t

0

∑
d

κ1dρ2(d)ρ1(d)
∑
d

κ2dρ1(d) S2(s)∑
d

(
κ−1d + κ2d

)
ρ1(d) +

∑
d

κ1dρ2(d)ρ1(d) S2(s)
ds

I If α2 < 1α2 < 1α2 < 1, then

S2(t) = S2(0)−M

∫ t

0

∑
d

( κ1dκ2dρ2(d)S2(s)

κ−1d + κ2d + κ1dρ2(d)S2(s)

)
ρ1(d)ds
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