Limits for Reaction networks with Multiple Scales and Spatial Heterogeneity

Lea PopovicConcordia University, Montreal

joint work with (part I)

Tom Kurtz

University of Wisconsin, Madison
and (part II)

Peter Pfaffelhuber

Freiburg University

Introduction

Modelling Reaction Networks

Multiple Scales

Example: Michaelis-Menten Kinetics

Spatial Heterogeneity

Example: Michaelis-Menten Kinetics

Future Developments

Reaction networks

Set-up:

- population consists of different types of 'particles'
- they are involved in a system of interactions
- rates of interactions depend on the current number of types

Examples:

- epidemic models, e.g. SIR or SIRS
- branching models, e.g. catalytic branching
- neutral genetic models, e.g. Moran model with mutation
- chemical reaction models,
 - e.g. molecular interactions in biological cells

Multiple scales and space

Scaling issues:

- amounts of particles are in different orders of abundance
- rates of interactions are of different orders of magnitude

Spatial issues:

- different spatial locations = discrete compartments
- each particle type **moves** between compartments

Goals:

- how can one reduce network complexity without losing essential randomness
- how does effect of spatial heterogeneity interact with the multiple scales on the network reaction dynamics

Notation

▶ Particles: \mathcal{I} distinct types $\mathbf{A}_1, \dots, \mathbf{A}_{\mathcal{I}}$

$$X(t) = (X_1(t), \dots, X_{\mathcal{I}}(t)) = \#$$
 of particles at time t

 \triangleright **Reactions**: \mathcal{K} distinct interactions

$$\sum_{i=1}^{\mathcal{K}} \nu_{ik} \mathbf{A_i} \ \mapsto \ \sum_{i=1}^{\mathcal{K}} \nu_{ik}' \mathbf{A_i}, \quad \nu_{ik}, \nu_{ik}' \in \mathbb{Z}^+ \ = \mathbf{interaction} \ \mathbf{k}$$

$$(\nu'_{1k} - \nu_{1k}, \dots, \nu'_{\mathcal{I}k} - \nu_{\mathcal{I}k}) = \text{change due to interaction } k$$

Rates: depend on current state of system

$$\lambda_k(t) = \lambda_k(X(t)) =$$
rate of reaction **k** at time t

Examples

► SIRS Model :

$$S + I \rightarrow 2I$$
 $\lambda_1 = c_I X_S X_I$ $\nu'_1 - \nu_1 = (-1, 1, 0)$
 $I \rightarrow R$ $\lambda_2 = c_R X_I$ $\nu'_2 - \nu_2 = (0, -1, 1)$
 $R \rightarrow S$ $\lambda_3 = c_S X_R$ $\nu'_3 - \nu_3 = (1, 0, -1)$

► Catalytic Branching Process :

$$C \to 2C \text{ or } 0$$
 $\lambda_1 = b_1 X_C X_R$ $\nu_1' - \nu_1 = (\pm 1, 0)$ $R \to 2R \text{ or } 0$ $\lambda_2 = b_2 X_C X_R$ $\nu_2' - \nu_2 = (0, \pm 1)$

Moran model with Mutations :

$$A+a
ightarrow 2A$$
 or $2a$ $\lambda_1 = X_A X_a$ $\nu_1' - \nu_1 = (\pm 1, -\pm 1)$ $a
ightarrow A$ $\lambda_2 = \mu_{a
ightarrow A} X_a$ $\nu_3' - \nu_3 = (-1, 1)$ $\lambda_3 = \mu_{A
ightarrow a} X_A$ $\nu_3' - \nu_3 = (1, -1)$

Stochastic dynamics

► Counting Reaction Occurrences:

 $R_k(t) = \#$ of times kth reaction occurs by time t

$$R_k(t) = Y_k(\int_0^t \lambda_k(X(s))ds)$$

 $\{Y_k\}_{k\in\mathcal{K}}$ = independent rate 1 Poisson processes

► Changes in Population Size of Components:

$$egin{aligned} X(t) &= X(0) + \sum_{k \in \mathcal{K}} \Delta_k R_k(t) \ &= X(0) + \sum_{k \in \mathcal{K}} \Delta_k Y_k(\int_0^t \lambda_k(X(s)) ds) \end{aligned}$$

 $\Delta_k = (\nu'_{1k} - \nu_{1k}, \dots, \nu'_{\mathcal{I}k} - \nu_{\mathcal{I}k}) =$ change due to reaction k

Reaction rates

► Reaction rates

 $\lambda_k(X(t))$ depends on the state of the whole system when some input components are missing $\lambda_k=0$ at least some λ_k in the system are non-linear

Commonly used - mass action kinetics: based on uniform mixing assumption, infinitesimal rates of interactions come from collision probabilities:

$$\begin{split} \lambda_k(X) &= \kappa_k \binom{X_1 \cdots X_{\mathcal{I}}}{\nu_{1k} \cdots \nu_{\mathcal{I}k}} \\ &\approx N \kappa_k \prod_i \big(\frac{X_i}{N}\big)^{\nu_{ik}} \quad \text{(classical scaling)} \end{split}$$

Rescaling of reaction networks

► Scaling parameters: *N* = scaling paramter

For each type: $\alpha_i \geq 0$ chosen s.t.

$$V_i^N(t) := \mathbf{N}^{-\alpha_i} X_i(t) = \mathbf{O}(\mathbf{1})$$

For each reaction: $\beta_k \geq 0$ chosen s.t.

$$\mathsf{N}^{\boldsymbol{\beta}_{\mathsf{k}}}\lambda_k(X)=\mathbf{O}(1)$$

For time scale: speed-up/slow-down time by N^{γ}

► Normalized system:

$$V_i^N(t) = V_i^N(0) + \mathbf{N}^{-\alpha_i} \sum_k \Delta_k Y_k (\int_0^t \mathbf{N}^{\beta_k + \gamma} \lambda_k (V^N(s)) ds)$$

dynamics depends on the relationship between α_i & β_k

Separating scales

Goal: Reduction of Network Complexity exploit multiscale aspect to get simpler system in limit

Suppose on well chosen time scale γ the normalized components fall into two groups:

 $V_1^N = \text{vector of 'fast varying'} \text{ components}$

 V_2^N = the vector of 'slow varying' components

Let $\delta > 0$, be the scale along which the system separates:

•
$$\{1, 2, \dots, \mathcal{I}\} = \mathcal{I}_f + \mathcal{I}_s =$$
fast $+$ slow components s.t.:

$$V_f^N(t) = V_f^N(0) + \mathbf{N}^{-\alpha_{\mathbf{i_f}}} \sum_{k} \Delta_{k|f} Y_k (\mathbf{N}^{\alpha_{\mathbf{i_f}}} \mathbf{N}^{\delta} \int_0^t \lambda_k (V^N(s)) ds),$$

$$V_s^N(t) = V_s^N(0) + \sum_k \mathbf{N}^{-\alpha_{i_s}} \Delta_{k|s} Y_k(\mathbf{N}^{\alpha_{i_s}} \int_0^t \lambda_k(V^N(s)) ds),$$

Averaging of fast and LLN for slow subnetwork

- Suppose fast varying components have unique partial stationary measure, for each value of slow varying components
- ► then **limit of the slow varying components** depends only on the **partial stationary distribution** of the fast components

Theorem [Averaging and LLN]

If $\forall t > 0$, when $V_s^N(t) = v_s$ is fixed, V_f^N has a unique stationary distribution $\pi_{v_s}(v_f)$, then $\forall T > 0$:

$$\lim_{N\to\infty} P\big[\sup_{t\in[0,T]} |V_s^N(t)-V_s(t)| \geq \varepsilon\big] = 0, \quad \forall \epsilon>0$$

where V_s is the solution to the system of equations:

$$V_s(t) = V_s(0) + \sum_k \int_0^t \Delta_{k|s} \overline{\lambda_k}(\mathbf{V_s(au)}) d au$$

with averaged $\overline{\lambda}_k(V_s(\tau)) = \int \lambda_k(v_f, V_s(\tau)) \pi_{V_s(\tau)}(v_f)$.

FCLT limit for slow subnetwork

For the fluctuations of the slow varying components:

- follow a centered Gaussian process
- ▶ diffusion coefficient of this process depends on the interaction of slow and fast components

Theorem [FCLT]

$$\begin{split} \textit{If} \ U_s^N(t) &= N^{\delta/2} \big(V_s^N(t) - V_s(t) \big), \ \textit{then} \ \forall \, T > 0 : \\ & \big(U_s^N(t), t \in [0,T] \big) \Rightarrow \big(U_s(t), t \in [0,T] \big) \end{split}$$

where U_2 is the Gaussian process:

$$U_{s}(t) = \int_{0}^{t} \overline{\sigma}(\mathbf{V}_{s}(\tau)) dW(\tau) + \int_{0}^{t} \overline{\mu}(\mathbf{V}_{s}(\tau)) U_{s}(\tau) d\tau$$

with $W=|\mathcal{I}_s|$ -dimensional BM, $\overline{\sigma}(v_s), \overline{\mu}(v_s)$ are averaged

Note:

- ightharpoonup expression for $\overline{\mu}(v_s)$ is simple ightharpoonup gradient of the drift of V_s
- expression for $\overline{\sigma}(\mathbf{v}_s)$ is more complicated \rightarrow combines the fluctuations of V_s^N about its mean V_s with the **gradient of** the solution of Poisson equation for the generator of V_f w.r.t. to the drift of V_s , i.e. the fluctuations of the partial stationary distribution $\pi_{V_s}(v_f)$ of V_f in drift direction of V_s

General Theorems:

- ▶ fclt results for general multiscale Markov Chain models by: an iterative application of separation of the network into subnetworks on progressive time scales - Kurtz-Popovic '11
- ▶ analogous fclt results for two time scale SDEs -Pardoux-Veretennikov '01, '03, '05

Example: Michaelis-Menten enzymatic reactions

Reactions:
$$S + E \longrightarrow SE$$
 Rates: $\kappa_1 X_1 X_2$
 $S + E \longleftarrow SE$ $\kappa_{-1} (M - X_1)$
 $P + E \longleftarrow SE$ $\kappa_2 (M - X_1)$

```
Species: X_1 = \# of unbound enzymes E

X_2 = \# of unbound substrate S

X_3 = \# of enzymatic product P

M - X_1 = \# of bound enzymes SE
```

```
# of unbound enzymes + # of bound enzymes = M
\kappa_{-1}, \kappa_2 >> \kappa_1, then N = O(X_2) >> M while X_1 + X_3 = M
```

Fast species: bound & unbound enzymes *SE*, *E* **Slow species:** unbound substrate *S*

Stationary distribution for $V_1^N(s)$ (# of unbound enzymes) is:

$$\pi_{V_2(s)}(v_1) \sim \mathsf{Binomial}(M, p(V_2(s)))$$
 $p(V_2(s)) = (\kappa_{-1} + \kappa_2)/(\kappa_{-1} + \kappa_2 + \kappa_1 V_2(s))$

LLN limit for V_2^N (# of unbound substrate) is:

$$V_2(t) = V_2(0) - M \int_0^t \frac{\kappa_1 \kappa_2 V_2(s)}{\kappa_{-1} + \kappa_2 + \kappa_1 V_2(s)} ds$$

FCLT for the deviation of V_2^N from V_2 satisfies:

$$U_2(t) = \int_0^t \sqrt{\sigma^2(V_2(s))} dW(s) + \int_0^t \mu(V_2(s)) U_2(s) ds$$

$$\mu(v_2) = \frac{-M\kappa_1\kappa_2(\kappa_{-1} + \kappa_2)}{(\kappa_{-1} + \kappa_2 + \kappa_1 v_2)^2}$$

$$\sigma^2(v_2) = M \int_0^t (1 + u_1(v_2)^2) \Big(v_2\kappa_1 p(s) + \kappa_{-1}(1 - p(s)) \Big) ds$$

$$+ M \int_0^t u_1(v_2)^2 \kappa_2 (1 - p(s)) ds, \quad u_1(v_2) = \frac{(\kappa_1 v_2 + \kappa_{-1})}{(\kappa_1 v_2 + \kappa_{-1} + \kappa_2)}$$

 $u(v_1, v_2) = u_1(v_2)v_1$ solves **Poisson equation** $Lu(v_1, v_2) = F - \bar{F}$,

$$F = -\kappa_1 v_1 v_2 + \kappa_{-1} (M - v_1) + M \frac{\kappa_1 \kappa_2 v_2}{\kappa_{-1} + \kappa_2 + \kappa_1 v_2}, \ \bar{F} = \int F \pi_{v_2}(v_1)$$

= drift of the limitting slow subnetwork, and averaged drift

$$Lf(v_1, v_2) = \left[\kappa_1 v_1 v_2 (f(v_1 - 1) - f) + (\kappa_{-1} + \kappa_2) (M - v_1) (f(v_1 + 1) - f)\right]$$

= generator for fast subnetwork with fixed slow vars

Spatial heterogeneity in dynamics

▶ Spatial compartments: \mathcal{D} distinct subdivisions of space $X_{\cdot d}(t) = (X_{1d}(t), \dots, X_{\mathcal{I}d}(t)) = \text{particles in compartment d}$ $\lambda_{kd}(X_{\cdot d}(t)) = \text{spatially dependent rate of reaction } k$

► Movement between compartments:

$$\mu_i = \text{ movement rate per particle of type } i$$

$$p_i(d',d'') = \text{probability of movement from } d' \mapsto d''$$

$$\rho_i = (\rho_i(d))_{d \in \mathcal{D}} = \text{ stationary distribution of } \{p_i(d',d'')\}_{d',d'' \in \mathcal{D}}$$

▶ Speed of movement: For each type $i \in \mathcal{I}$: $a_i > 0$ chosen s.t. $\mathbf{N}^{\mathbf{a}_i} \mu_i^N = \mathbf{O}(\mathbf{1})$ **System sums**: $S_i^N(t) := \sum_d V_{id}^N(t)$

$$S_i^N(t) = S_i^N(0) + \mathbf{N}^{-lpha_i} \sum_d \sum_k \Delta_k Y_k (\int_0^t \mathbf{N}^{oldsymbol{eta_k}+\gamma} \lambda_k (\mathbf{V}^\mathbf{N}(s)) ds)$$

but dynamics depends on relationship between α_i, β_k and a_i

Mass action kinetics: If reaction rates have mass action form on a single scale and movement is and on a faster scale

$$S_{i}(t) = S_{i}(0) + \sum_{k \in \mathcal{K}} \Delta_{ik} Y_{k} \left(\int_{0}^{t} \widetilde{\kappa}_{k} \binom{S_{1} \cdots S_{I}}{\nu_{1k} \cdots \nu_{Ik}} d\tau \right)$$

$$\widetilde{\kappa}_{k} = \sum_{d} \kappa_{kd} \prod_{i} \rho_{i}(d)^{\nu_{ik}}$$

if all species move faster than they interact, mass action in compartments becomes mass action of system sums

Spatially heterogeneous multi-scale networks

- ▶ Reactions: dynamics of reactions separate species into 'fast' and 'slow' components: the normalized amounts change due to reactions at rates $O(N^{\delta})$ and O(1), respectively
- Movement: 'fast' and 'slow' components move between compartments at speeds O(N^{af}) and O(N^{as}), respectively

$$V^N = (V_f^N, V_s^N)$$
 with values in $\otimes_d (E_{fd} \times E_{sd})$ has generator:
$$L_N \, " \approx " \, \sum_{d \in \mathcal{D}} \left(N^\delta L_{fd}^{cr} + L_{sd}^{cr} \right) + N^{a_f} \, L_f^{mov} + N^{a_s} \, L_s^{mov}$$
 where $\mathcal{D}(L_{fd}^{cr}) \subset \mathcal{C}_c(E_{fd} \times E_{sd})$, while $\mathcal{D}(L_{sd}^{cr}) \subset \mathcal{C}_c(E_{sd})$ only, and:
$$L_{sd}^{cr} = F_d \cdot \nabla, \qquad \text{with } F_d = \sum \Delta_k \lambda_{kd}$$

- ► Assumption on the reactions: reaction dynamics in each compartment is s.t., when the normalized amount of slow components is kept fixed, the fast components have a unique partial stationary distribution $\otimes_d \pi_{v_{sd}}(v_{fd})$
- Assumption on the effect of movement on reactions: movement has a stationary distribution $\rho = \rho_f \otimes \rho_s$ s.t., when all the components, as well as, when only the fast components are distributed over compartments according to ρ , reaction dynamics still has unique partial stationary distributions $\pi_{s_s}(s_f)$, and $\int (\otimes_d \pi_{v_{st}}(v_{fd})) \rho_f(v_{fd})$, respectively

▶ Theorem [Spatial limits]: Under assumptions, $\forall T > 0$ the normalized sum of slow components S_s^N converges on [0, T] to the solution of:

$$S_s(t) = S_s(0) + \sum_{k \in \mathcal{K}} \int_0^t \Delta_k \overline{\lambda}_k^{cr}(S_s(\tau)) d\tau$$

where if $a_s > 0$, $a_f > \delta$ then:

$$ar{\lambda}_k^{cr}(s_s) = \int \left(\sum_{d \in \mathcal{D}} \int \lambda_{kd}^{cr}(v_{fd}, v_{sd})
ho_f(v_{fd})
ho_s(v_{sd})\right) \pi_{s_s}(s_f)$$

while if $a_s > 0$, $a_f < \delta$ then:

$$\bar{\lambda}_{k}^{cr}(s_{s}) = \sum_{d \in \mathcal{D}} \int \left(\int \lambda_{kd}^{cr}(v_{fd}, v_{sd}) \, \pi_{\mathbf{v}_{sd}}(\mathbf{v}_{fd}) \right) \, \rho_{f}(v_{fd}) \rho_{s}(v_{sd})$$

- Interplay of scales: The dynamics of total normalized amount of slow particles depends on how speed scale a_f of fast components compares to the scale of separation of reactions δ, and not on speed scale a_s of slow components.
- ► Theorem [Spatially heterogeneous mass action kinetics]: If reaction rates have mass action form, then:

if $a_f > \delta$, the dynamics of sum of slow components takes on the same form as the dynamics in a homogeneous environment with rate constants $\widetilde{\kappa}_k = \sum_d \kappa_{kd} \prod_{i \in \mathcal{I}_s} \rho_i(d)^{\nu_{ik}}$;

if $a_f < \delta$ the dynamics of sum of slow components can take on a completely **different form** from that in a homogeneous environment (unless all the reactions are linear).

Example: heterogeneous Michaelis-Menten

- ▶ Michaelis-Menten in compartment d: X_{1d}, X_{3d} are 'fast' components, $X_{1d} + X_{3d} = M_d$ $V_{2d}^N = N^{-1}X_{2d}$ is 'slow' component λ_{kd} are mass action with parameters $\kappa_{1d}, \kappa_{-1d}, \kappa_{2d}$
- ▶ Without movement: V_{2d}^N converges to the solution of:

$$V_{2d}(t) = V_{2d}(0) - M_d \int_0^t \frac{\kappa_{1d}\kappa_{2d}V_{2d}(s)}{\kappa_{-1d} + \kappa_{2d} + \kappa_{1d}V_{2d}(s)} ds$$

- ▶ Separation of scales in reaction dynamics: $\delta = 1$
- ► Speed of movement: $\alpha_1, \alpha_3 > 0$, and $\alpha_2 < 1$ vs $\alpha_2 > 1$

 $M:=\sum_d M_d$ is conserved $ho_1(d)=
ho_3(d),
ho_2(d)$ are stationary distributions of movement

 $S_2^N = \sum_d V_{2d}^N$ converges to the solution of:

▶ If $\alpha_2 > 1$, then

$$S_{2}(t) = S_{2}(0) - M \int_{0}^{t} \frac{\sum_{d} \kappa_{1d} \rho_{2}(d) \rho_{1}(d) \sum_{d} \kappa_{2d} \rho_{1}(d) S_{2}(s)}{\sum_{d} (\kappa_{-1d} + \kappa_{2d}) \rho_{1}(d) + \sum_{d} \kappa_{1d} \rho_{2}(d) \rho_{1}(d) S_{2}(s)} ds$$

If α₂ < 1, then</p>

$$S_2(t) = S_2(0) - M \int_0^t \sum_{d} \left(\frac{\kappa_{1d} \kappa_{2d} \rho_2(d) S_2(s)}{\kappa_{-1d} + \kappa_{2d} + \kappa_{1d} \rho_2(d) S_2(s)} \right) \frac{\rho_1(d) ds}{\rho_1(d) ds}$$