Large deviations and fluctuation exponents for some polymer models

Timo Seppäläinen

Department of Mathematics
University of Wisconsin-Madison

2011
(2) Large deviations
(3) Fluctuation exponents

- KPZ equation
- Log-gamma polymer

Directed polymer in a random environment

simple random walk path $(x(t), t), t \in \mathbb{Z}_{+}$

Directed polymer in a random environment

simple random walk path $(x(t), t), t \in \mathbb{Z}_{+}$ space-time environment $\left\{\omega(x, t): x \in \mathbb{Z}^{d}, t \in \mathbb{N}\right\}$

Directed polymer in a random environment

simple random walk path $(x(t), t), t \in \mathbb{Z}_{+}$ space-time environment $\left\{\omega(x, t): x \in \mathbb{Z}^{d}, t \in \mathbb{N}\right\}$ inverse temperature $\beta>0$

Directed polymer in a random environment

simple random walk path $(x(t), t), t \in \mathbb{Z}_{+}$ space-time environment $\left\{\omega(x, t): x \in \mathbb{Z}^{d}, t \in \mathbb{N}\right\}$ inverse temperature $\beta>0$
quenched probability measure on paths

$$
Q_{n}\{x(\cdot)\}=\frac{1}{Z_{n}} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
$$

Directed polymer in a random environment

simple random walk path $(x(t), t), t \in \mathbb{Z}_{+}$ space-time environment $\left\{\omega(x, t): x \in \mathbb{Z}^{d}, t \in \mathbb{N}\right\}$ inverse temperature $\beta>0$
quenched probability measure on paths

$$
Q_{n}\{x(\cdot)\}=\frac{1}{Z_{n}} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
$$

partition function $\quad Z_{n}=\sum_{x(\cdot)} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$
(summed over all n-paths)

Directed polymer in a random environment

simple random walk path $(x(t), t), t \in \mathbb{Z}_{+}$
space-time environment $\left\{\omega(x, t): x \in \mathbb{Z}^{d}, t \in \mathbb{N}\right\}$ inverse temperature $\beta>0$
quenched probability measure on paths

$$
Q_{n}\{x(\cdot)\}=\frac{1}{Z_{n}} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}
$$

partition function $\quad Z_{n}=\sum_{x(\cdot)} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$
(summed over all n-paths)
\mathbb{P} probability distribution on ω, often $\{\omega(x, t)\}$ i.i.d.

Key quantities again:

- Quenched measure $Q_{n}\{x(\cdot)\}=Z_{n}^{-1} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$
- Partition function $Z_{n}=\sum_{x(\cdot)} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$

Key quantities again:

- Quenched measure $Q_{n}\{x(\cdot)\}=Z_{n}^{-1} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$
- Partition function $Z_{n}=\sum_{x(\cdot)} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$

Questions:

- Behavior of walk $x(\cdot)$ under Q_{n} on large scales: fluctuation exponents, central limit theorems, large deviations

Key quantities again:

- Quenched measure $Q_{n}\{x(\cdot)\}=Z_{n}^{-1} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$
- Partition function $Z_{n}=\sum_{x(\cdot)} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$

Questions:

- Behavior of walk $x(\cdot)$ under Q_{n} on large scales: fluctuation exponents, central limit theorems, large deviations
- Behavior of $\log Z_{n}$ (now also random as a function of ω)

Key quantities again:

- Quenched measure $Q_{n}\{x(\cdot)\}=Z_{n}^{-1} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$
- Partition function $Z_{n}=\sum_{x(\cdot)} \exp \left\{\beta \sum_{t=1}^{n} \omega(x(t), t)\right\}$

Questions:

- Behavior of walk $x(\cdot)$ under Q_{n} on large scales: fluctuation exponents, central limit theorems, large deviations
- Behavior of $\log Z_{n}$ (now also random as a function of ω)
- Dependence on β and d

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}$-a.s.)

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}$-a.s. $)$
Large deviation perspective.

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}-$ a.s.)
Large deviation perspective.
Generalize: $E_{0}=$ expectation under background $\operatorname{RW} X_{n}$ on \mathbb{Z}^{ν}.

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}$-a.s.)
Large deviation perspective.
Generalize: $E_{0}=$ expectation under background $\mathrm{RW} X_{n}$ on \mathbb{Z}^{ν}.
$n^{-1} \log Z_{n}=n^{-1} \log E_{0}\left[e^{\beta \sum_{k=0}^{n-1} \omega x_{k}}\right]$

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}$-a.s.)
Large deviation perspective.
Generalize: $E_{0}=$ expectation under background $\operatorname{RW} X_{n}$ on \mathbb{Z}^{ν}.

$$
\begin{aligned}
n^{-1} \log Z_{n} & =n^{-1} \log E_{0}\left[e^{\beta \sum_{k=0}^{n-1} \omega x_{k}}\right] \\
& =n^{-1} \log E_{0}\left[e^{\sum_{k=0}^{n-1} g\left(\omega x_{k}\right)}\right]
\end{aligned}
$$

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}$-a.s.)
Large deviation perspective.
Generalize: $E_{0}=$ expectation under background $\operatorname{RW} X_{n}$ on \mathbb{Z}^{ν}.

$$
\begin{aligned}
n^{-1} \log Z_{n} & =n^{-1} \log E_{0}\left[e^{\beta \sum_{k=0}^{n-1} \omega x_{k}}\right] \\
& =n^{-1} \log E_{0}\left[e^{\sum_{k=0}^{n-1} g\left(\omega_{x_{k}}\right)}\right] \\
& =n^{-1} \log E_{0}\left[e^{\sum_{k=0}^{n-1} g\left(T_{X_{k}} \omega, Z_{k+1, k+\ell}\right)}\right]
\end{aligned}
$$

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}$-a.s.)
Large deviation perspective.
Generalize: $E_{0}=$ expectation under background $\operatorname{RW} X_{n}$ on \mathbb{Z}^{ν}.

$$
\begin{aligned}
n^{-1} \log Z_{n} & =n^{-1} \log E_{0}\left[e^{\beta \sum_{k=0}^{n-1} \omega x_{k}}\right] \\
& =n^{-1} \log E_{0}\left[e^{\sum_{k=0}^{n-1} g\left(\omega_{x_{k}}\right)}\right] \\
& =n^{-1} \log E_{0}\left[e^{\sum_{k=0}^{n-1} g\left(T_{X_{k}} \omega, Z_{k+1, k+\ell}\right)}\right]
\end{aligned}
$$

Introduced shift $\left(T_{x} \omega\right)_{y}=\omega_{x+y}$, steps $Z_{k}=X_{k}-X_{k-1} \in \mathcal{R}$, $Z_{1, \ell}=\left(Z_{1}, Z_{2}, \ldots, Z_{\ell}\right)$.

Question: describe quenched limit $\lim _{n \rightarrow \infty} n^{-1} \log Z_{n} \quad(\mathbb{P}$-a.s.)
Large deviation perspective.
Generalize: $E_{0}=$ expectation under background $\operatorname{RW} X_{n}$ on \mathbb{Z}^{ν}.

$$
\begin{aligned}
n^{-1} \log Z_{n} & =n^{-1} \log E_{0}\left[e^{\beta \sum_{k=0}^{n-1} \omega x_{k}}\right] \\
& =n^{-1} \log E_{0}\left[e^{\sum_{k=0}^{n-1} g\left(\omega_{x_{k}}\right)}\right] \\
& =n^{-1} \log E_{0}\left[e^{\sum_{k=0}^{n-1} g\left(T_{X_{k}} \omega, Z_{k+1, k+\ell}\right)}\right]
\end{aligned}
$$

Introduced shift $\left(T_{x} \omega\right)_{y}=\omega_{x+y}$, steps $Z_{k}=X_{k}-X_{k-1} \in \mathcal{R}$,
$Z_{1, \ell}=\left(Z_{1}, Z_{2}, \ldots, Z_{\ell}\right)$.
$g\left(\omega, z_{1, \ell}\right)$ is a function on $\boldsymbol{\Omega}_{\ell}=\Omega \times \mathcal{R}^{\ell}$.

Define empirical measure $R_{n}=n^{-1} \sum_{k=0}^{n-1} \delta_{T_{X_{k}} \omega, Z_{k+1, k+\ell}}$.
It is a probability measure on $\boldsymbol{\Omega}_{\ell}$.

Define empirical measure $R_{n}=n^{-1} \sum_{k=0}^{n-1} \delta_{T_{x_{k} \omega}, z_{k+1, k+\ell}}$.
It is a probability measure on $\boldsymbol{\Omega}_{\ell}$.
Then $n^{-1} \log Z_{n}=n^{-1} \log E_{0}\left[e^{n R_{n}(g)}\right]$

Define empirical measure $R_{n}=n^{-1} \sum_{k=0}^{n-1} \delta_{T_{x_{k} \omega}, Z_{k+1, k+\ell}}$.
It is a probability measure on $\boldsymbol{\Omega}_{\ell}$.
Then $n^{-1} \log Z_{n}=n^{-1} \log E_{0}\left[e^{n R_{n}(g)}\right]$
Task: understand large deviations of $P_{0}\left\{R_{n} \in \cdot\right\}$ under \mathbb{P}-a.e. fixed ω (quenched).

Define empirical measure $R_{n}=n^{-1} \sum_{k=0}^{n-1} \delta_{T_{x_{k}} \omega, Z_{k+1, k+\ell}}$.
It is a probability measure on $\boldsymbol{\Omega}_{\ell}$.
Then $n^{-1} \log Z_{n}=n^{-1} \log E_{0}\left[e^{n R_{n}(g)}\right]$
Task: understand large deviations of $P_{0}\left\{R_{n} \in \cdot\right\}$ under \mathbb{P}-a.e. fixed ω (quenched).

Process on Ω_{ℓ} is $\left(T_{X_{n}} \omega, Z_{n+1, n+\ell}\right)$, under a fixed ω.

Define empirical measure $R_{n}=n^{-1} \sum_{k=0}^{n-1} \delta_{T_{x_{k}} \omega, Z_{k+1, k+\ell}}$.
It is a probability measure on $\boldsymbol{\Omega}_{\ell}$.
Then $n^{-1} \log Z_{n}=n^{-1} \log E_{0}\left[e^{n R_{n}(g)}\right]$
Task: understand large deviations of $P_{0}\left\{R_{n} \in \cdot\right\}$ under \mathbb{P}-a.e. fixed ω (quenched).

Process on Ω_{ℓ} is ($\left.T_{X_{n}} \omega, Z_{n+1, n+\ell}\right)$, under a fixed ω.
Evolution: pick random step z from \mathcal{R}, then execute move $S_{z}:\left(\omega, z_{1, \ell}\right) \rightarrow\left(T_{z_{1}} \omega, z_{2, \ell} z\right)$.

Define empirical measure $R_{n}=n^{-1} \sum_{k=0}^{n-1} \delta_{T_{x_{k}} \omega, Z_{k+1, k+\ell}}$.
It is a probability measure on $\boldsymbol{\Omega}_{\ell}$.
Then $n^{-1} \log Z_{n}=n^{-1} \log E_{0}\left[e^{n R_{n}(g)}\right]$
Task: understand large deviations of $P_{0}\left\{R_{n} \in \cdot\right\}$ under \mathbb{P}-a.e. fixed ω (quenched).

Process on Ω_{ℓ} is $\left(T_{X_{n}} \omega, Z_{n+1, n+\ell}\right)$, under a fixed ω.
Evolution: pick random step z from \mathcal{R}, then execute move $S_{z}:\left(\omega, z_{1, \ell}\right) \rightarrow\left(T_{z_{1}} \omega, z_{2, \ell} z\right)$.

Defines kernel p on $\Omega_{\ell}: p\left(\eta, S_{z} \eta\right)=|\mathcal{R}|^{-1}$.

Entropy

Let $\mu_{0}=\Omega$-marginal of $\mu \in \mathcal{M}_{1}\left(\Omega_{\ell}\right)$. Define

$$
H_{\mathbb{P}}(\mu)= \begin{cases}\inf \{H(\mu \times q \mid \mu \times p): \mu q=\mu\} & \text { if } \mu_{0} \ll \mathbb{P} \\ \infty & \text { otherwise }\end{cases}
$$

Infimum over Markov kernels q that fix μ.

Entropy

Let $\mu_{0}=\Omega$-marginal of $\mu \in \mathcal{M}_{1}\left(\Omega_{\ell}\right)$. Define

$$
H_{\mathbb{P}}(\mu)= \begin{cases}\inf \{H(\mu \times q \mid \mu \times p): \mu q=\mu\} & \text { if } \mu_{0} \ll \mathbb{P} \\ \infty & \text { otherwise }\end{cases}
$$

Infimum over Markov kernels q that fix μ.
Inside the braces the familiar relative entropy

$$
H(\mu \times q \mid \mu \times p)=\int_{\Omega_{\ell}} \sum_{z \in \mathcal{R}} q\left(\eta, S_{z} \eta\right) \log \frac{q\left(\eta, S_{z} \eta\right)}{p\left(\eta, S_{z} \eta\right)} \mu(d \eta) .
$$

Entropy

Let $\mu_{0}=\Omega$-marginal of $\mu \in \mathcal{M}_{1}\left(\Omega_{\ell}\right)$. Define

$$
H_{\mathbb{P}}(\mu)= \begin{cases}\inf \{H(\mu \times q \mid \mu \times p): \mu q=\mu\} & \text { if } \mu_{0} \ll \mathbb{P} \\ \infty & \text { otherwise }\end{cases}
$$

Infimum over Markov kernels q that fix μ.
Inside the braces the familiar relative entropy

$$
H(\mu \times q \mid \mu \times p)=\int_{\Omega_{\ell}} \sum_{z \in \mathcal{R}} q\left(\eta, S_{z} \eta\right) \log \frac{q\left(\eta, S_{z} \eta\right)}{p\left(\eta, S_{z} \eta\right)} \mu(d \eta) .
$$

$H_{\mathbb{P}}$ is convex but not lower semicontinuous.

Assumptions.

- Environment $\left\{\omega_{x}\right\}$ IID under \mathbb{P}.
- g local function on Ω_{ℓ} s.t. $\mathbb{E}|g|^{p}<\infty$ for some $p>2(\nu+1)$.

Assumptions.

- Environment $\left\{\omega_{x}\right\}$ IID under \mathbb{P}.
- g local function on Ω_{ℓ} s.t. $\mathbb{E}|g|^{p}<\infty$ for some $p>2(\nu+1)$.

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

$$
\Lambda(g)=\lim _{n \rightarrow \infty} n^{-1} \log E_{0}\left[e^{n R_{n}(g)}\right]
$$

exists \mathbb{P}-a.s. and

$$
\Lambda(g)=H_{\mathbb{P}}^{\#}(g) \equiv \sup _{\mu} \sup _{c>0}\left\{E^{\mu}[g \wedge c]-H_{\mathbb{P}}(\mu)\right\} .
$$

Assumptions.

- Environment $\left\{\omega_{x}\right\}$ IID under \mathbb{P}.
- g local function on Ω_{ℓ} s.t. $\mathbb{E}|g|^{p}<\infty$ for some $p>2(\nu+1)$.

Theorem. (Rassoul-Agha, S, Yilmaz) Deterministic limit

$$
\Lambda(g)=\lim _{n \rightarrow \infty} n^{-1} \log E_{0}\left[e^{n R_{n}(g)}\right]
$$

exists \mathbb{P}-a.s. and

$$
\Lambda(g)=H_{\mathbb{P}}^{\#}(g) \equiv \sup _{\mu} \sup _{c>0}\left\{E^{\mu}[g \wedge c]-H_{\mathbb{P}}(\mu)\right\} .
$$

Remark. True more generally, e.g. ergodic \mathbb{P} if g is bounded.

Quenched weak LDP (large deviation principle) under Q_{n}.

$$
Q_{n}(A)=\frac{1}{E_{0}\left[e^{n R_{n}(g)}\right]} E_{0}\left[e^{n R_{n}(g)} \mathbf{1}_{A}\left(\omega, Z_{1, \infty}\right)\right]
$$

Quenched weak LDP (large deviation principle) under Q_{n}.

$$
Q_{n}(A)=\frac{1}{E_{0}\left[e^{n R_{n}(g)}\right]} E_{0}\left[e^{n R_{n}(g)} \mathbf{1}_{A}\left(\omega, Z_{1, \infty}\right)\right]
$$

Rate function $\quad I(\mu)=\sup _{\varphi \in \mathcal{U}\left(\Omega_{\ell}\right)}\left\{E^{\mu}(\varphi)-\Lambda(\varphi+g)\right\}+\Lambda(g)$.

Quenched weak LDP (large deviation principle) under Q_{n}.

$$
Q_{n}(A)=\frac{1}{E_{0}\left[e^{n R_{n}(g)}\right]} E_{0}\left[e^{n R_{n}(g)} \mathbf{1}_{A}\left(\omega, Z_{1, \infty}\right)\right]
$$

Rate function $\quad I(\mu)=\sup _{\varphi \in \mathcal{U}\left(\Omega_{\ell}\right)}\left\{E^{\mu}(\varphi)-\Lambda(\varphi+g)\right\}+\Lambda(g)$.

Theorem. (RSY) Assumptions as above and $\Lambda(g)$ finite. Then \mathbb{P}-a.s. for compact $F \subseteq \mathcal{M}_{1}\left(\Omega_{\ell}\right)$ and open $G \subseteq \mathcal{M}_{1}\left(\Omega_{\ell}\right)$:

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} n^{-1} \log Q_{n}\left\{R_{n} \in F\right\} \leq-\inf _{\mu \in F} I(\mu), \\
& \underline{\lim }_{n \rightarrow \infty} n^{-1} \log Q_{n}\left\{R_{n} \in G\right\} \geq-\inf _{\mu \in G} I(\mu)
\end{aligned}
$$

Return to $d+1$ dim directed polymer in i.i.d. environment.

Return to $d+1$ dim directed polymer in i.i.d. environment.
Question: Is the path $x(\cdot)$ diffusive or not, that is, does it scale like standard RW?

Return to $d+1$ dim directed polymer in i.i.d. environment.
Question: Is the path $x(\cdot)$ diffusive or not, that is, does it scale like standard RW?

Early results: diffusive behavior for $d \geq 3$ and small $\beta>0$:
1988 Imbrie and Spencer: $n^{-1} E^{Q}\left(|x(n)|^{2}\right) \rightarrow c \quad \mathbb{P}$-a.s.
1989 Bolthausen: quenched CLT for $n^{-1 / 2} x(n)$.

Return to $d+1$ dim directed polymer in i.i.d. environment.
Question: Is the path $x(\cdot)$ diffusive or not, that is, does it scale like standard RW?

Early results: diffusive behavior for $d \geq 3$ and small $\beta>0$:
1988 Imbrie and Spencer: $n^{-1} E^{Q}\left(|x(n)|^{2}\right) \rightarrow c \quad \mathbb{P}$-a.s.
1989 Bolthausen: quenched CLT for $n^{-1 / 2} x(n)$.

In the opposite direction: if $d=1,2$, or $d \geq 3$ and β large enough, then $\exists c>0$ s.t.

$$
\varlimsup_{n \rightarrow \infty} \max _{z} Q_{n}\{x(n)=z\} \geq c \quad \mathbb{P} \text {-a.s. }
$$

(Carmona and Hu 2002, Comets, Shiga, and Yoshida 2003)

Definition of fluctuation exponents ζ and χ

Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t): 0 \leq t \leq n\}$ are of order n^{ζ}.

Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t): 0 \leq t \leq n\}$ are of order n^{ζ}.
- Fluctuations of $\log Z_{n}$ are of order n^{χ}.

Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t): 0 \leq t \leq n\}$ are of order n^{ζ}.
- Fluctuations of $\log Z_{n}$ are of order n^{χ}.
- Conjecture for $d=1: \quad \zeta=2 / 3 \quad$ and $\quad \chi=1 / 3$.

Definition of fluctuation exponents ζ and χ

- Fluctuations of the path $\{x(t): 0 \leq t \leq n\}$ are of order n.
- Fluctuations of $\log Z_{n}$ are of order n^{χ}.
- Conjecture for $d=1: \quad \zeta=2 / 3 \quad$ and $\quad \chi=1 / 3$.

Results: these exact exponents for three particular $1+1$ dimensional models.

Earlier results for $d=1$ exponents

Past rigorous bounds give $3 / 5 \leq \zeta \leq 3 / 4$ and $\chi \geq 1 / 8$:

Earlier results for $d=1$ exponents

Past rigorous bounds give $3 / 5 \leq \zeta \leq 3 / 4$ and $\chi \geq 1 / 8$:

- Brownian motion in Poissonian potential: Wüthrich 1998, Comets and Yoshida 2005.

Earlier results for $d=1$ exponents

Past rigorous bounds give $3 / 5 \leq \zeta \leq 3 / 4$ and $\chi \geq 1 / 8$:

- Brownian motion in Poissonian potential: Wüthrich 1998, Comets and Yoshida 2005.
- Gaussian RW in Gaussian potential: Petermann $2000 \zeta \geq 3 / 5$, Mejane $2004 \zeta \leq 3 / 4$

Earlier results for $d=1$ exponents

Past rigorous bounds give $3 / 5 \leq \zeta \leq 3 / 4$ and $\chi \geq 1 / 8$:

- Brownian motion in Poissonian potential: Wüthrich 1998, Comets and Yoshida 2005.
- Gaussian RW in Gaussian potential: Petermann $2000 \zeta \geq 3 / 5$, Mejane $2004 \zeta \leq 3 / 4$
- Licea, Newman, Piza 1995-96: corresponding results for first passage percolation

Rigorous $\zeta=2 / 3$ and $\chi=1 / 3$ results

(1) Log-gamma polymer: $\beta=1$ and $e^{-\omega(x, t)} \sim$ Gamma, plus appropriate boundary conditions

Rigorous $\zeta=2 / 3$ and $\chi=1 / 3$ results

(1) Log-gamma polymer: $\beta=1$ and $e^{-\omega(x, t)} \sim$ Gamma, plus appropriate boundary conditions
(2) Polymer in a Brownian environment. (Joint with B. Valkó.) Model introduced by O'Connell and Yor 2001.

Rigorous $\zeta=2 / 3$ and $\chi=1 / 3$ results

(1) Log-gamma polymer: $\beta=1$ and $e^{-\omega(x, t)} \sim$ Gamma, plus appropriate boundary conditions
(2) Polymer in a Brownian environment. (Joint with B. Valkó.) Model introduced by O'Connell and Yor 2001.
(3) Continuum directed polymer, or Hopf-Cole solution of the Kardar-Parisi-Zhang (KPZ) equation:
(i) Initial height function given by two-sided Brownian motion. (Joint with M. Balázs and J. Quastel.)
(ii) Narrow wedge initial condition. (Amir, Corwin, Quastel)

Rigorous $\zeta=2 / 3$ and $\chi=1 / 3$ results

(1) Log-gamma polymer: $\beta=1$ and $e^{-\omega(x, t)} \sim$ Gamma, plus appropriate boundary conditions
(2) Polymer in a Brownian environment. (Joint with B. Valkó.) Model introduced by O'Connell and Yor 2001.
(3) Continuum directed polymer, or Hopf-Cole solution of the Kardar-Parisi-Zhang (KPZ) equation:
(i) Initial height function given by two-sided Brownian motion. (Joint with M. Balázs and J. Quastel.)
(ii) Narrow wedge initial condition. (Amir, Corwin, Quastel)

Next details on (3.i), then details on (1).

Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a $1+1$ dim interface:

$$
h_{t}=\frac{1}{2} h_{x x}-\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

where $\dot{W}=$ Gaussian space-time white noise.

Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a $1+1$ dim interface:

$$
h_{t}=\frac{1}{2} h_{x x}-\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

where $\dot{W}=$ Gaussian space-time white noise.
Initial height $h(0, x)=$ two-sided Brownian motion for $x \in \mathbb{R}$.

Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a $1+1$ dim interface:

$$
h_{t}=\frac{1}{2} h_{x x}-\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

where $\dot{W}=$ Gaussian space-time white noise.
Initial height $h(0, x)=$ two-sided Brownian motion for $x \in \mathbb{R}$.
$Z=\exp (-h)$ satisfies $Z_{t}=\frac{1}{2} Z_{x x}-Z \dot{W}$ that can be solved.

Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a $1+1$ dim interface:

$$
h_{t}=\frac{1}{2} h_{x x}-\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

where $\dot{W}=$ Gaussian space-time white noise.
Initial height $h(0, x)=$ two-sided Brownian motion for $x \in \mathbb{R}$.
$Z=\exp (-h)$ satisfies $Z_{t}=\frac{1}{2} Z_{x x}-Z \dot{W}$ that can be solved.
Define $h=-\log Z$, the Hopf-Cole solution of KPZ.

Hopf-Cole solution to KPZ equation

KPZ eqn for height function $h(t, x)$ of a $1+1$ dim interface:

$$
h_{t}=\frac{1}{2} h_{x x}-\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

where $\dot{W}=$ Gaussian space-time white noise.
Initial height $h(0, x)=$ two-sided Brownian motion for $x \in \mathbb{R}$.
$Z=\exp (-h)$ satisfies $Z_{t}=\frac{1}{2} Z_{x x}-Z \dot{W}$ that can be solved.
Define $h=-\log Z$, the Hopf-Cole solution of KPZ.

Bertini-Giacomin (1997): h can be obtained as a weak limit via a smoothing and renormalization of KPZ.

WASEP connection

$\zeta_{\varepsilon}(t, x)$ height process of weakly asymmetric simple exclusion s.t.

$$
\zeta_{\varepsilon}(x+1)-\zeta_{\varepsilon}(x)= \pm 1
$$

WASEP connection

$\zeta_{\varepsilon}(t, x)$ height process of weakly asymmetric simple exclusion s.t.

$$
\zeta_{\varepsilon}(x+1)-\zeta_{\varepsilon}(x)= \pm 1
$$

WASEP connection

Jumps:

$$
\zeta_{\varepsilon}(x) \longrightarrow\left\{\begin{array}{lll}
\zeta_{\varepsilon}(x)+2 & \text { with rate } \frac{1}{2}+\sqrt{\varepsilon} & \text { if } \zeta_{\varepsilon}(x) \text { is a local min } \\
\zeta_{\varepsilon}(x)-2 & \text { with rate } \frac{1}{2} & \text { if } \zeta_{\varepsilon}(x) \text { is a local max }
\end{array}\right.
$$

WASEP connection

Jumps:

$$
\zeta_{\varepsilon}(x) \longrightarrow\left\{\begin{array}{lll}
\zeta_{\varepsilon}(x)+2 & \text { with rate } \frac{1}{2}+\sqrt{\varepsilon} & \text { if } \zeta_{\varepsilon}(x) \text { is a local min } \\
\zeta_{\varepsilon}(x)-2 & \text { with rate } \frac{1}{2} & \text { if } \zeta_{\varepsilon}(x) \text { is a local max }
\end{array}\right.
$$

Initially: $\quad \zeta_{\varepsilon}(0, x+1)-\zeta_{\varepsilon}(0, x)= \pm 1$ with probab $\frac{1}{2}$.

WASEP connection

Jumps:

$$
\zeta_{\varepsilon}(x) \longrightarrow\left\{\begin{array}{lll}
\zeta_{\varepsilon}(x)+2 & \text { with rate } \frac{1}{2}+\sqrt{\varepsilon} & \text { if } \zeta_{\varepsilon}(x) \text { is a local min } \\
\zeta_{\varepsilon}(x)-2 & \text { with rate } \frac{1}{2} & \text { if } \zeta_{\varepsilon}(x) \text { is a local max }
\end{array}\right.
$$

Initially: $\quad \zeta_{\varepsilon}(0, x+1)-\zeta_{\varepsilon}(0, x)= \pm 1 \quad$ with probab $\quad \frac{1}{2}$.

$$
h_{\varepsilon}(t, x)=\varepsilon^{1 / 2}\left(\zeta_{\varepsilon}\left(\varepsilon^{-2} t,\left[\varepsilon^{-1} x\right]\right)-v_{\varepsilon} t\right)
$$

WASEP connection

Jumps:

$$
\zeta_{\varepsilon}(x) \longrightarrow\left\{\begin{array}{lll}
\zeta_{\varepsilon}(x)+2 & \text { with rate } \frac{1}{2}+\sqrt{\varepsilon} & \text { if } \zeta_{\varepsilon}(x) \text { is a local min } \\
\zeta_{\varepsilon}(x)-2 & \text { with rate } \frac{1}{2} & \text { if } \zeta_{\varepsilon}(x) \text { is a local max }
\end{array}\right.
$$

Initially: $\quad \zeta_{\varepsilon}(0, x+1)-\zeta_{\varepsilon}(0, x)= \pm 1 \quad$ with probab $\quad \frac{1}{2}$.

$$
h_{\varepsilon}(t, x)=\varepsilon^{1 / 2}\left(\zeta_{\varepsilon}\left(\varepsilon^{-2} t,\left[\varepsilon^{-1} x\right]\right)-v_{\varepsilon} t\right)
$$

Thm. As $\varepsilon \searrow 0, \quad h_{\varepsilon} \Rightarrow h$ (Bertini-Giacomin 1997).

Fluctuation bounds

From coupling arguments for WASEP

$$
C_{1} t^{2 / 3} \leq \operatorname{Var}\left(h_{\varepsilon}(t, 0)\right) \leq C_{2} t^{2 / 3}
$$

Fluctuation bounds

From coupling arguments for WASEP

$$
C_{1} t^{2 / 3} \leq \operatorname{Var}\left(h_{\varepsilon}(t, 0)\right) \leq C_{2} t^{2 / 3}
$$

Thm. (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

$$
C_{1} t^{2 / 3} \leq \operatorname{Var}(h(t, 0)) \leq C_{2} t^{2 / 3}
$$

Fluctuation bounds

From coupling arguments for WASEP

$$
C_{1} t^{2 / 3} \leq \operatorname{Var}\left(h_{\varepsilon}(t, 0)\right) \leq C_{2} t^{2 / 3}
$$

Thm. (Balázs-Quastel-S) For the Hopf-Cole solution of KPZ,

$$
C_{1} t^{2 / 3} \leq \operatorname{Var}(h(t, 0)) \leq C_{2} t^{2 / 3}
$$

The lower bound comes from control of rescaled correlations

$$
S_{\varepsilon}(t, x)=4 \varepsilon^{-1} \operatorname{Cov}\left[\eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right), \eta(0,0)\right]
$$

Rescaled correlations:

$$
S_{\varepsilon}(t, x)=4 \varepsilon^{-1} \operatorname{Cov}\left[\eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right), \eta(0,0)\right]
$$

Rescaled correlations:

$$
S_{\varepsilon}(t, x)=4 \varepsilon^{-1} \operatorname{Cov}\left[\eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right), \eta(0,0)\right]
$$

$S_{\varepsilon}(t, x) d x \Rightarrow S(t, d x)$ with control of moments:

$$
\int|x|^{m} S_{\varepsilon}(t, x) d x \sim O\left(t^{2 m / 3}\right), \quad 1 \leq m<3
$$

(A second class particle estimate.)

Rescaled correlations:

$$
S_{\varepsilon}(t, x)=4 \varepsilon^{-1} \operatorname{Cov}\left[\eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right), \eta(0,0)\right]
$$

$S_{\varepsilon}(t, x) d x \Rightarrow S(t, d x)$ with control of moments:

$$
\int|x|^{m} S_{\varepsilon}(t, x) d x \sim O\left(t^{2 m / 3}\right), \quad 1 \leq m<3
$$

(A second class particle estimate.)

$$
S(t, d x)=\frac{1}{2} \partial_{x x} \operatorname{Var}(h(t, x)) \quad \text { as distributions }
$$

Rescaled correlations:

$$
S_{\varepsilon}(t, x)=4 \varepsilon^{-1} \operatorname{Cov}\left[\eta\left(\varepsilon^{-2} t, \varepsilon^{-1} x\right), \eta(0,0)\right]
$$

$S_{\varepsilon}(t, x) d x \Rightarrow S(t, d x)$ with control of moments:

$$
\int|x|^{m} S_{\varepsilon}(t, x) d x \sim O\left(t^{2 m / 3}\right), \quad 1 \leq m<3
$$

(A second class particle estimate.)

$$
S(t, d x)=\frac{1}{2} \partial_{x x} \operatorname{Var}(h(t, x)) \quad \text { as distributions. }
$$

With some control over tails we arrive at

$$
\operatorname{Var}(h(t, 0))=\int|x| S(t, d x) \sim O\left(t^{2 / 3}\right)
$$

1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

$$
\Pi_{m, n}=\text { set of admissible paths }
$$

1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

$\Pi_{m, n}=$ set of admissible paths independent weights $Y_{i, j}=e^{\omega(i, j)}$

$1+1$ dimensional lattice polymer with log-gamma weights

Fix both endpoints.

$\Pi_{m, n}=$ set of admissible paths
independent weights $Y_{i, j}=e^{\omega(i, j)}$
environment $\quad\left(Y_{i, j}:(i, j) \in \mathbb{Z}_{+}^{2}\right)$

$1+1$ dimensional lattice polymer with log-gamma weights

Fix both endpoints.

$\Pi_{m, n}=$ set of admissible paths independent weights $Y_{i, j}=e^{\omega(i, j)}$ environment $\left(Y_{i, j}:(i, j) \in \mathbb{Z}_{+}^{2}\right)$
$Z_{m, n}=\sum_{x .} \prod_{k=1}^{m+n} Y_{x_{k}}$

1+1 dimensional lattice polymer with log-gamma weights

Fix both endpoints.

$\Pi_{m, n}=$ set of admissible paths independent weights $Y_{i, j}=e^{\omega(i, j)}$ environment $\left(Y_{i, j}:(i, j) \in \mathbb{Z}_{+}^{2}\right)$ $Z_{m, n}=\sum_{x .} \prod_{k=1}^{m+n} Y_{x_{k}}$
quenched measure $Q_{m, n}\left(x_{.}\right)=Z_{m, n}^{-1} \prod_{k=1}^{m+n} Y_{x_{k}}$
averaged measure $P_{m, n}\left(x_{.}\right)=\mathbb{E} Q_{m, n}\left(x_{.}\right)$

Weight distributions

- Parameters $0<\theta<\mu$.

Weight distributions

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}$

Weight distributions

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}$
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

Weight distributions

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}$
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

Weight distributions

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}$
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta) \\
& V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Weight distributions

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}$
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta) \\
& V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

- Gamma (θ) density: $\Gamma(\theta)^{-1} x^{\theta-1} e^{-x}$ on \mathbb{R}_{+}

Weight distributions

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}$
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta) \\
& V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

- Gamma (θ) density: $\Gamma(\theta)^{-1} x^{\theta-1} e^{-x}$ on \mathbb{R}_{+}
- $\Psi_{n}(s)=\left(d^{n+1} / d s^{n+1}\right) \log \Gamma(s)$

Weight distributions

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}$
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta) \\
& V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

- Gamma (θ) density: $\Gamma(\theta)^{-1} x^{\theta-1} e^{-x}$ on \mathbb{R}_{+}
- $\Psi_{n}(s)=\left(d^{n+1} / d s^{n+1}\right) \log \Gamma(s)$
- $\mathbb{E}(\log U)=-\Psi_{0}(\theta)$ and $\mathbb{V a r}(\log U)=\Psi_{1}(\theta)$

Variance bounds for $\log Z$

With $0<\theta<\mu$ fixed and $N \nearrow \infty$ assume

$$
\begin{equation*}
\left|m-N \Psi_{1}(\mu-\theta)\right| \leq C N^{2 / 3} \quad \text { and } \quad\left|n-N \Psi_{1}(\theta)\right| \leq C N^{2 / 3} \tag{1}
\end{equation*}
$$

Variance bounds for $\log Z$

With $0<\theta<\mu$ fixed and $N \nearrow \infty$ assume

$$
\begin{equation*}
\left|m-N \Psi_{1}(\mu-\theta)\right| \leq C N^{2 / 3} \quad \text { and } \quad\left|n-N \Psi_{1}(\theta)\right| \leq C N^{2 / 3} \tag{1}
\end{equation*}
$$

Theorem

For (m, n) as in (1), $\quad C_{1} N^{2 / 3} \leq \operatorname{Var}\left(\log Z_{m, n}\right) \leq C_{2} N^{2 / 3}$.

Variance bounds for $\log Z$

With $0<\theta<\mu$ fixed and $N \nearrow \infty$ assume

$$
\begin{equation*}
\left|m-N \Psi_{1}(\mu-\theta)\right| \leq C N^{2 / 3} \quad \text { and } \quad\left|n-N \Psi_{1}(\theta)\right| \leq C N^{2 / 3} \tag{1}
\end{equation*}
$$

Theorem

For (m, n) as in (1), $\quad C_{1} N^{2 / 3} \leq \operatorname{Var}\left(\log Z_{m, n}\right) \leq C_{2} N^{2 / 3}$.

Theorem

Suppose $n=\Psi_{1}(\theta) N$ and $m=\Psi_{1}(\mu-\theta) N+\gamma N^{\alpha}$ with $\gamma>0, \alpha>2 / 3$. Then

$$
N^{-\alpha / 2}\left\{\log Z_{m, n}-\mathbb{E}\left(\log Z_{m, n}\right)\right\} \Rightarrow \mathcal{N}\left(0, \gamma \Psi_{1}(\theta)\right)
$$

Fluctuation bounds for path

$v_{0}(j)=$ leftmost, $v_{1}(j)=$ rightmost point of x. on horizontal line:

$$
\begin{aligned}
& v_{0}(j)=\min \left\{i \in\{0, \ldots, m\}: \exists k: x_{k}=(i, j)\right\} \\
& v_{1}(j)=\max \left\{i \in\{0, \ldots, m\}: \exists k: x_{k}=(i, j)\right\}
\end{aligned}
$$

Fluctuation bounds for path

$v_{0}(j)=$ leftmost, $v_{1}(j)=$ rightmost point of x. on horizontal line:

$$
\begin{aligned}
& v_{0}(j)=\min \left\{i \in\{0, \ldots, m\}: \exists k: x_{k}=(i, j)\right\} \\
& v_{1}(j)=\max \left\{i \in\{0, \ldots, m\}: \exists k: x_{k}=(i, j)\right\}
\end{aligned}
$$

Theorem

Assume (m, n) as previously and $0<\tau<1$. Then

$$
\text { (a) } P\left\{v_{0}(\lfloor\tau n\rfloor)<\tau m-b N^{2 / 3} \text { or } v_{1}(\lfloor\tau n\rfloor)>\tau m+b N^{2 / 3}\right\} \leq \frac{C}{b^{3}}
$$

(b) $\forall \varepsilon>0 \exists \delta>0$ such that

$$
\varlimsup_{N \rightarrow \infty} P\left\{\exists k \text { such that }\left|x_{k}-(\tau m, \tau n)\right| \leq \delta N^{2 / 3}\right\} \leq \varepsilon
$$

Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

$$
\zeta=2 / 3 \quad \text { and } \quad \chi=1 / 3
$$

Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

$$
\zeta=2 / 3 \quad \text { and } \quad \chi=1 / 3
$$

Next step is to

- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint

Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

$$
\zeta=2 / 3 \quad \text { and } \quad \chi=1 / 3
$$

Next step is to

- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both $\log Z$ and the path.
But currently do not have the lower bounds.

Results for log-gamma polymer summarized

With reciprocals of gammas for weights, both endpoints of the polymer fixed and the right boundary conditions on the axes, we have identified the one-dimensional exponents

$$
\zeta=2 / 3 \quad \text { and } \quad \chi=1 / 3
$$

Next step is to

- eliminate the boundary conditions and
- consider polymers with fixed length and free endpoint

In both scenarios we have the upper bounds for both $\log Z$ and the path.
But currently do not have the lower bounds.
Next some key points of the proof.

Burke property for log-gamma polymer with boundary

Given initial weights $(i, j \in \mathbb{N})$:

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta), \quad V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Burke property for log-gamma polymer with boundary

Given initial weights $(i, j \in \mathbb{N})$:

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta), \quad V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Compute $Z_{m, n}$ for all $(m, n) \in \mathbb{Z}_{+}^{2}$ and then define

$$
U_{m, n}=\frac{Z_{m, n}}{Z_{m-1, n}} \quad V_{m, n}=\frac{Z_{m, n}}{Z_{m, n-1}} \quad X_{m, n}=\left(\frac{Z_{m, n}}{Z_{m+1, n}}+\frac{Z_{m, n}}{Z_{m, n+1}}\right)^{-1}
$$

Burke property for log-gamma polymer with boundary

Given initial weights $(i, j \in \mathbb{N})$:

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta), \quad V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Compute $Z_{m, n}$ for all $(m, n) \in \mathbb{Z}_{+}^{2}$ and then define

$$
U_{m, n}=\frac{Z_{m, n}}{Z_{m-1, n}} \quad V_{m, n}=\frac{Z_{m, n}}{Z_{m, n-1}} \quad X_{m, n}=\left(\frac{Z_{m, n}}{Z_{m+1, n}}+\frac{Z_{m, n}}{Z_{m, n+1}}\right)^{-1}
$$

For an undirected edge $f: \quad T_{f}= \begin{cases}U_{x} & f=\left\{x-e_{1}, x\right\} \\ V_{x} & f=\left\{x-e_{2}, x\right\}\end{cases}$

ーー一 down－right path $\left(z_{k}\right)$ with edges $f_{k}=\left\{z_{k-1}, z_{k}\right\}, k \in \mathbb{Z}$
－interior points \mathcal{I} of path $\left(z_{k}\right)$

ーー一 down－right path $\left(z_{k}\right)$ with

$$
\text { edges } f_{k}=\left\{z_{k-1}, z_{k}\right\}, k \in \mathbb{Z}
$$

－interior points \mathcal{I} of path $\left(z_{k}\right)$

Theorem

Variables $\left\{T_{f_{k}}, X_{z}: k \in \mathbb{Z}, z \in \mathcal{I}\right\}$ are independent with marginals $U^{-1} \sim$ $\operatorname{Gamma}(\theta), \quad V^{-1} \sim \operatorname{Gamma}(\mu-\theta)$, and $X^{-1} \sim \operatorname{Gamma}(\mu)$ ．

ーー一 down－right path $\left(z_{k}\right)$ with

$$
\text { edges } f_{k}=\left\{z_{k-1}, z_{k}\right\}, k \in \mathbb{Z}
$$

－interior points \mathcal{I} of path $\left(z_{k}\right)$

Theorem

Variables $\left\{T_{f_{k}}, X_{z}: k \in \mathbb{Z}, z \in \mathcal{I}\right\}$ are independent with marginals $U^{-1} \sim$ $\operatorname{Gamma}(\theta), \quad V^{-1} \sim \operatorname{Gamma}(\mu-\theta)$, and $X^{-1} \sim \operatorname{Gamma}(\mu)$ ．
＂Burke property＂because the analogous property for last－passage is a generalization of Burke＇s Theorem for $\mathrm{M} / \mathrm{M} / 1$ queues，via the last－passage representation of $M / M / 1$ queues in series．

Proof of Burke property

Induction on \mathcal{I} by flipping a growth corner:

Proof of Burke property

Induction on \mathcal{I} by flipping a growth corner:

Lemma. Given that (U, V, Y) are independent positive r.v.'s, $\left(U^{\prime}, V^{\prime}, X\right) \stackrel{d}{=}(U, V, Y)$ iff (U, V, Y) have the gamma distr's.

Proof. "if" part by computation, "only if" part from a characterization of gamma due to Lukacs (1955). \square

Proof of Burke property

Induction on \mathcal{I} by flipping a growth corner:

Lemma. Given that (U, V, Y) are independent positive r.v.'s, $\left(U^{\prime}, V^{\prime}, X\right) \stackrel{d}{=}(U, V, Y)$ iff (U, V, Y) have the gamma distr's.

Proof. "if" part by computation, "only if" part from a characterization of gamma due to Lukacs (1955). \square

This gives all $\left(z_{k}\right)$ with finite \mathcal{I}. General case follows.

Proof of off-characteristic CLT

Recall that $\left\{\begin{array}{l}n=\Psi_{1}(\theta) N \\ m=\psi_{1}(\mu-\theta) N+\gamma N^{\alpha}\end{array} \quad \gamma>0, \alpha>2 / 3\right.$.

Proof of off-characteristic CLT

Recall that $\left\{\begin{array}{l}n=\Psi_{1}(\theta) N \\ m=\Psi_{1}(\mu-\theta) N+\gamma N^{\alpha}\end{array} \quad \gamma>0, \alpha>2 / 3\right.$.
Set $m_{1}=\left\lfloor\Psi_{1}(\mu-\theta) N\right\rfloor$.

Proof of off-characteristic CLT

Recall that $\left\{\begin{array}{l}n=\Psi_{1}(\theta) N \\ m=\psi_{1}(\mu-\theta) N+\gamma N^{\alpha}\end{array} \quad \gamma>0, \alpha>2 / 3\right.$.
Set $m_{1}=\left\lfloor\Psi_{1}(\mu-\theta) N\right\rfloor$. Since $Z_{m, n}=Z_{m_{1}, n} \cdot \prod_{i=m_{1}+1}^{m} U_{i, n}$

Proof of off-characteristic CLT

Recall that $\left\{\begin{array}{l}n=\Psi_{1}(\theta) N \\ m=\psi_{1}(\mu-\theta) N+\gamma N^{\alpha}\end{array} \quad \gamma>0, \alpha>2 / 3\right.$.
Set $m_{1}=\left\lfloor\Psi_{1}(\mu-\theta) N\right\rfloor$. Since $Z_{m, n}=Z_{m_{1}, n} \cdot \prod_{i=m_{1}+1}^{m} U_{i, n}$

$$
N^{-\alpha / 2} \overline{\log Z_{m, n}}=N^{-\alpha / 2} \overline{\log Z_{m_{1}, n}}+N^{-\alpha / 2} \sum_{i=m_{1}+1}^{m} \overline{\log U_{i, n}}
$$

First term on the right is $O\left(N^{1 / 3-\alpha / 2}\right) \rightarrow 0$. Second term is a sum of order N^{α} i.i.d. terms. \square

Variance identity

Exit point of path from x-axis
 $\xi_{x}=\max \left\{k \geq 0: x_{i}=(i, 0)\right.$ for $\left.0 \leq i \leq k\right\}$

Variance identity

Exit point of path from x-axis
$\xi_{x}=\max \left\{k \geq 0: x_{i}=(i, 0)\right.$ for $\left.0 \leq i \leq k\right\}$

For $\theta, x>0$ define positive function

$$
L(\theta, x)=\int_{0}^{x}\left(\Psi_{0}(\theta)-\log y\right) x^{-\theta} y^{\theta-1} e^{x-y} d y
$$

Variance identity

Exit point of path from x-axis
$\xi_{x}=\max \left\{k \geq 0: x_{i}=(i, 0)\right.$ for $\left.0 \leq i \leq k\right\}$

For $\theta, x>0$ define positive function

$$
L(\theta, x)=\int_{0}^{x}\left(\Psi_{0}(\theta)-\log y\right) x^{-\theta} y^{\theta-1} e^{x-y} d y
$$

Theorem. For the model with boundary,

$$
\mathbb{V a r}\left[\log Z_{m, n}\right]=n \Psi_{1}(\mu-\theta)-m \Psi_{1}(\theta)+2 E_{m, n}\left[\sum_{i=1}^{\xi_{x}} L\left(\theta, Y_{i, 0}^{-1}\right)\right]
$$

Variance identity, sketch of proof

$$
\begin{gathered}
N=\log Z_{m, n}-\log Z_{0, n} \\
W=\log Z_{0, n} \square_{S=\log Z_{m, 0}} E=\log Z_{m, n}-\log Z_{m, 0} \\
\end{gathered}
$$

Variance identity, sketch of proof

$$
\begin{gathered}
N=\log Z_{m, n}-\log Z_{0, n} \\
W=\log Z_{0, n} \overbrace{S=\log Z_{m, 0}} E=\log Z_{m, n}-\log Z_{m, 0}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{V a r}\left[\log Z_{m, n}\right]=\mathbb{V} \operatorname{ar}(W+N) \\
& =\mathbb{V} \operatorname{ar}(W)+\mathbb{V} \operatorname{ar}(N)+2 \mathbb{C o v}(W, N) \\
& =\mathbb{V a r}(W)+\mathbb{V} \operatorname{ar}(N)+2 \operatorname{Cov}(S+E-N, N) \\
& =\mathbb{V} \operatorname{ar}(W)-\mathbb{V} \operatorname{ar}(N)+2 \mathbb{C o v}(S, N) \quad(E, N \text { ind. }) \\
& =n \Psi_{1}(\mu-\theta)-m \Psi_{1}(\theta)+2 \mathbb{C o v}(S, N) .
\end{aligned}
$$

To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho(=\mu-\theta)$ for W.

$$
-\operatorname{Cov}(S, N)=\frac{\partial}{\partial \theta} \mathbb{E}(N)
$$

To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho(=\mu-\theta)$ for W.

$$
-\operatorname{Cov}(S, N)=\frac{\partial}{\partial \theta} \mathbb{E}(N)=\widetilde{\mathbb{E}}\left[\frac{\partial}{\partial \theta} \log Z_{m, n}(\theta)\right]
$$

To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho(=\mu-\theta)$ for W.

$$
-\operatorname{Cov}(S, N)=\frac{\partial}{\partial \theta} \mathbb{E}(N)=\widetilde{\mathbb{E}}\left[\frac{\partial}{\partial \theta} \log Z_{m, n}(\theta)\right]
$$

when $\quad Z_{m, n}(\theta)=\sum_{x . \in \prod_{m, n}} \prod_{i=1}^{\xi_{x}} H_{\theta}\left(\eta_{i}\right)^{-1} \cdot \prod_{k=\xi_{x}+1}^{m+n} Y_{x_{k}}$ with
$\eta_{i} \sim \operatorname{IID} \operatorname{Unif}(0,1), \quad H_{\theta}(\eta)=F_{\theta}^{-1}(\eta), \quad F_{\theta}(x)=\int_{0}^{x} \frac{y^{\theta-1} e^{-y}}{\Gamma(\theta)} d y$.

To differentiate w.r.t. parameter θ of S while keeping W fixed, introduce a separate parameter $\rho(=\mu-\theta)$ for W.

$$
-\operatorname{Cov}(S, N)=\frac{\partial}{\partial \theta} \mathbb{E}(N)=\widetilde{\mathbb{E}}\left[\frac{\partial}{\partial \theta} \log Z_{m, n}(\theta)\right]
$$

when $\quad Z_{m, n}(\theta)=\sum_{x . \in \Pi_{m, n}} \prod_{i=1}^{\xi_{x}} H_{\theta}\left(\eta_{i}\right)^{-1} \cdot \prod_{k=\xi_{x}+1}^{m+n} Y_{x_{k}} \quad$ with
$\eta_{i} \sim \operatorname{IID} \operatorname{Unif}(0,1), \quad H_{\theta}(\eta)=F_{\theta}^{-1}(\eta), \quad F_{\theta}(x)=\int_{0}^{x} \frac{y^{\theta-1} e^{-y}}{\Gamma(\theta)} d y$.
Differentiate: $\quad \frac{\partial}{\partial \theta} \log Z_{m, n}(\theta)=-E^{Q_{m, n}}\left[\sum_{i=1}^{\xi_{x}} L\left(\theta, Y_{i, 0}^{-1}\right)\right]$.

Together:

$$
\begin{aligned}
& \mathbb{V a r}\left[\log Z_{m, n}\right]=n \Psi_{1}(\mu-\theta)-m \Psi_{1}(\theta)+2 \operatorname{Cov}(S, N) \\
& =n \Psi_{1}(\mu-\theta)-m \Psi_{1}(\theta)+2 E_{m, n}\left[\sum_{i=1}^{\xi_{x}} L\left(\theta, Y_{i, 0}^{-1}\right)\right] .
\end{aligned}
$$

This was the claimed formula.

Sketch of upper bound proof

The argument develops an inequality that controls both $\log Z$ and ξ_{x} simultaneously. Introduce an auxiliary parameter $\lambda=\theta-b u / N$.

Sketch of upper bound proof

The argument develops an inequality that controls both $\log Z$ and ξ_{x} simultaneously. Introduce an auxiliary parameter $\lambda=\theta-b u / N$. The weight of a path x. such that $\xi_{x}>0$ satisfies

$$
W(\theta)=\prod_{i=1}^{\xi_{x}} H_{\theta}\left(\eta_{i}\right)^{-1} \cdot \prod_{k=\xi_{x}+1}^{m+n} Y_{x_{k}}
$$

Sketch of upper bound proof

The argument develops an inequality that controls both $\log Z$ and ξ_{x} simultaneously. Introduce an auxiliary parameter $\lambda=\theta-b u / N$. The weight of a path x. such that $\xi_{x}>0$ satisfies

$$
W(\theta)=\prod_{i=1}^{\xi_{x}} H_{\theta}\left(\eta_{i}\right)^{-1} \cdot \prod_{k=\xi_{x}+1}^{m+n} Y_{x_{k}}=W(\lambda) \cdot \prod_{i=1}^{\xi_{x}} \frac{H_{\lambda}\left(\eta_{i}\right)}{H_{\theta}\left(\eta_{i}\right)} .
$$

Sketch of upper bound proof

The argument develops an inequality that controls both $\log Z$ and ξ_{x} simultaneously. Introduce an auxiliary parameter $\lambda=\theta-b u / N$. The weight of a path x. such that $\xi_{x}>0$ satisfies

$$
W(\theta)=\prod_{i=1}^{\xi_{x}} H_{\theta}\left(\eta_{i}\right)^{-1} \cdot \prod_{k=\xi_{x}+1}^{m+n} Y_{x_{k}}=W(\lambda) \cdot \prod_{i=1}^{\xi_{x}} \frac{H_{\lambda}\left(\eta_{i}\right)}{H_{\theta}\left(\eta_{i}\right)}
$$

Since $H_{\lambda}(\eta) \leq H_{\theta}(\eta)$,

$$
Q^{\theta, \omega}\left\{\xi_{x} \geq u\right\}=\frac{1}{Z(\theta)} \sum_{x .} \mathbf{1}\left\{\xi_{x} \geq u\right\} W(\theta) \leq \frac{Z(\lambda)}{Z(\theta)} \cdot \prod_{i=1}^{\lfloor u\rfloor} \frac{H_{\lambda}\left(\eta_{i}\right)}{H_{\theta}\left(\eta_{i}\right)}
$$

For $1 \leq u \leq \delta N$ and $0<s<\delta$,

$$
\begin{aligned}
\mathbb{P}\left[Q^{\omega}\left\{\xi_{x} \geq u\right\} \geq e^{-s u^{2} / N}\right] \leq \mathbb{P} & \left\{\prod_{i=1}^{\lfloor u\rfloor} \frac{H_{\lambda}\left(\eta_{i}\right)}{H_{\theta}\left(\eta_{i}\right)} \geq \alpha\right\} \\
& +\mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-s u^{2} / N}\right) .
\end{aligned}
$$

For $1 \leq u \leq \delta N$ and $0<s<\delta$,

$$
\begin{aligned}
\mathbb{P}\left[Q^{\omega}\left\{\xi_{x} \geq u\right\} \geq e^{-s u^{2} / N}\right] \leq \mathbb{P} & \left\{\prod_{i=1}^{\lfloor u\rfloor} \frac{H_{\lambda}\left(\eta_{i}\right)}{H_{\theta}\left(\eta_{i}\right)} \geq \alpha\right\} \\
& +\mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-s u^{2} / N}\right) .
\end{aligned}
$$

Choose α right. Bound these probabilities with Chebychev which brings $\mathbb{V a r}(\log Z)$ into play. In the characteristic rectangle $\mathbb{V a r}(\log Z)$ can be bounded by $E\left(\xi_{x}\right)$. The end result is this inequality:

$$
\mathbb{P}\left[Q^{\omega}\left\{\xi_{x} \geq u\right\} \geq e^{-s u^{2} / N}\right] \leq \frac{C N^{2}}{u^{4}} E\left(\xi_{x}\right)+\frac{C N^{2}}{u^{3}}
$$

For $1 \leq u \leq \delta N$ and $0<s<\delta$,

$$
\begin{aligned}
\mathbb{P}\left[Q^{\omega}\left\{\xi_{x} \geq u\right\} \geq e^{-s u^{2} / N}\right] \leq \mathbb{P} & \left\{\prod_{i=1}^{\lfloor u\rfloor} \frac{H_{\lambda}\left(\eta_{i}\right)}{H_{\theta}\left(\eta_{i}\right)} \geq \alpha\right\} \\
& +\mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-s u^{2} / N}\right) .
\end{aligned}
$$

Choose α right. Bound these probabilities with Chebychev which brings $\mathbb{V a r}(\log Z)$ into play. In the characteristic rectangle $\mathbb{V a r}(\log Z)$ can be bounded by $E\left(\xi_{x}\right)$. The end result is this inequality:

$$
\mathbb{P}\left[Q^{\omega}\left\{\xi_{x} \geq u\right\} \geq e^{-s u^{2} / N}\right] \leq \frac{C N^{2}}{u^{4}} E\left(\xi_{x}\right)+\frac{C N^{2}}{u^{3}}
$$

Handle $u \geq \delta N$ with large deviation estimates. In the end, integration gives the moment bounds.

For $1 \leq u \leq \delta N$ and $0<s<\delta$,

$$
\begin{aligned}
\mathbb{P}\left[Q^{\omega}\left\{\xi_{x} \geq u\right\} \geq e^{-s u^{2} / N}\right] \leq \mathbb{P} & \left\{\prod_{i=1}^{\lfloor u\rfloor} \frac{H_{\lambda}\left(\eta_{i}\right)}{H_{\theta}\left(\eta_{i}\right)} \geq \alpha\right\} \\
& +\mathbb{P}\left(\frac{Z(\lambda)}{Z(\theta)} \geq \alpha^{-1} e^{-s u^{2} / N}\right)
\end{aligned}
$$

Choose α right. Bound these probabilities with Chebychev which brings $\mathbb{V a r}(\log Z)$ into play. In the characteristic rectangle $\mathbb{V a r}(\log Z)$ can be bounded by $E\left(\xi_{x}\right)$. The end result is this inequality:

$$
\mathbb{P}\left[Q^{\omega}\left\{\xi_{x} \geq u\right\} \geq e^{-s u^{2} / N}\right] \leq \frac{C N^{2}}{u^{4}} E\left(\xi_{x}\right)+\frac{C N^{2}}{u^{3}}
$$

Handle $u \geq \delta N$ with large deviation estimates. In the end, integration gives the moment bounds. END.

Polymer in a Brownian environment

Environment: independent Brownian motions $B_{1}, B_{2}, \ldots, B_{n}$ Partition function (without boundary conditions):

$$
\begin{aligned}
& Z_{n, t}(\beta)=\int_{0<s_{1}<\cdots<s_{n-1}<t} \exp \left[\beta \left(B_{1}\left(s_{1}\right)+B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)+\right.\right. \\
& \left.\left.\quad+B_{3}\left(s_{3}\right)-B_{3}\left(s_{2}\right)+\cdots+B_{n}(t)-B_{n}\left(s_{n-1}\right)\right)\right] d s_{1, n-1}
\end{aligned}
$$

